{-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} module ZkFold.Base.Protocol.Plonkup.Prover.Setup where import qualified Data.Vector as V import Prelude hiding (Num (..), drop, length, sum, take, (!!), (/), (^)) import ZkFold.Base.Algebra.EllipticCurve.Class (EllipticCurve (..), Point) import ZkFold.Base.Algebra.Polynomials.Univariate hiding (qr) import ZkFold.Base.Protocol.Plonkup.Prover.Polynomials import ZkFold.Base.Protocol.Plonkup.Relation (PlonkupRelation (..)) data PlonkupProverSetup p i n l c1 c2 = PlonkupProverSetup { forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 omega :: ScalarField c1 , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 k1 :: ScalarField c1 , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 k2 :: ScalarField c1 , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> Vector (Point c1) gs :: V.Vector (Point c1) , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n sigma1s :: PolyVec (ScalarField c1) n , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n sigma2s :: PolyVec (ScalarField c1) n , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n sigma3s :: PolyVec (ScalarField c1) n , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PlonkupRelation p i n l (ScalarField c1) relation :: PlonkupRelation p i n l (ScalarField c1) , forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PlonkupCircuitPolynomials n c1 polynomials :: PlonkupCircuitPolynomials n c1 } instance ( EllipticCurve c1 , EllipticCurve c2 , Show (BaseField c1) , Show (BaseField c2) , Show (ScalarField c1) , Show (PlonkupRelation p i n l (ScalarField c1)) , BooleanOf c1 ~ Bool ) => Show (PlonkupProverSetup p i n l c1 c2) where show :: PlonkupProverSetup p i n l c1 c2 -> String show PlonkupProverSetup {Vector (Point c1) PolyVec (ScalarField c1) n ScalarField c1 PlonkupRelation p i n l (ScalarField c1) PlonkupCircuitPolynomials n c1 omega :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 k1 :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 k2 :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> ScalarField c1 gs :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> Vector (Point c1) sigma1s :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n sigma2s :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n sigma3s :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PolyVec (ScalarField c1) n relation :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PlonkupRelation p i n l (ScalarField c1) polynomials :: forall {k} (p :: Type -> Type) (i :: Type -> Type) (n :: Natural) (l :: Type -> Type) c1 (c2 :: k). PlonkupProverSetup p i n l c1 c2 -> PlonkupCircuitPolynomials n c1 omega :: ScalarField c1 k1 :: ScalarField c1 k2 :: ScalarField c1 gs :: Vector (Point c1) sigma1s :: PolyVec (ScalarField c1) n sigma2s :: PolyVec (ScalarField c1) n sigma3s :: PolyVec (ScalarField c1) n relation :: PlonkupRelation p i n l (ScalarField c1) polynomials :: PlonkupCircuitPolynomials n c1 ..} = String "Prover setup: " String -> ShowS forall a. [a] -> [a] -> [a] ++ ScalarField c1 -> String forall a. Show a => a -> String show ScalarField c1 omega String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ ScalarField c1 -> String forall a. Show a => a -> String show ScalarField c1 k1 String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ ScalarField c1 -> String forall a. Show a => a -> String show ScalarField c1 k2 String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ Vector (Point c1) -> String forall a. Show a => a -> String show Vector (Point c1) gs String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ PolyVec (ScalarField c1) n -> String forall a. Show a => a -> String show PolyVec (ScalarField c1) n sigma1s String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ PolyVec (ScalarField c1) n -> String forall a. Show a => a -> String show PolyVec (ScalarField c1) n sigma2s String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ PolyVec (ScalarField c1) n -> String forall a. Show a => a -> String show PolyVec (ScalarField c1) n sigma3s String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ PlonkupRelation p i n l (ScalarField c1) -> String forall a. Show a => a -> String show PlonkupRelation p i n l (ScalarField c1) relation String -> ShowS forall a. [a] -> [a] -> [a] ++ String " " String -> ShowS forall a. [a] -> [a] -> [a] ++ PlonkupCircuitPolynomials n c1 -> String forall a. Show a => a -> String show PlonkupCircuitPolynomials n c1 polynomials