module Test.Feat.Finite (Finite (..), Index, fromFinite, finFin) where
import Control.Applicative
import Data.Monoid
type Index = Integer
data Finite a = Finite {fCard :: Index, fIndex :: Index -> a}
finEmpty = Finite 0 (\i -> error "index: Empty")
finUnion :: Finite a -> Finite a -> Finite a
finUnion f1 f2
| fCard f1 == 0 = f2
| fCard f2 == 0 = f1
| otherwise = Finite car sel where
car = fCard f1 + fCard f2
sel i = if i < fCard f1
then fIndex f1 i
else fIndex f2 (i-fCard f1)
instance Functor Finite where
fmap f fin = fin{fIndex = f . fIndex fin}
instance Applicative Finite where
pure = finPure
a <*> b = fmap (uncurry ($)) (finCart a b)
instance Alternative Finite where
empty = finEmpty
(<|>) = finUnion
instance Monoid (Finite a) where
mempty = finEmpty
mappend = finUnion
mconcat xs = Finite
(sum $ map fCard xs)
(sumSel $ filter ((>0) . fCard) xs)
sumSel :: [Finite a] -> (Index -> a)
sumSel (f:rest) = \i -> if i < fCard f
then fIndex f i
else sumSel rest (i-fCard f)
sumSel _ = error "Index out of bounds"
finCart :: Finite a -> Finite b -> Finite (a,b)
finCart f1 f2 = Finite car sel where
car = fCard f1 * fCard f2
sel i = let (q, r) = (i `quotRem` fCard f2)
in (fIndex f1 q, fIndex f2 r)
finPure :: a -> Finite a
finPure a = Finite 1 one where
one 0 = a
one _ = error "Index out of bounds"
fromFinite :: Finite a -> (Index,[a])
fromFinite (Finite c ix) = (c,map ix [0..c-1])
instance Show a => Show (Finite a) where
show = show . fromFinite
finFin :: Integer -> Finite Integer
finFin k | k <= 0 = finEmpty
finFin k = Finite k (\i -> i)