{- Language/Haskell/TH/Desugar/Reify.hs

(c) Richard Eisenberg 2014
rae@cs.brynmawr.edu

Allows for reification from a list of declarations, without looking a name
up in the environment.
-}

{-# LANGUAGE CPP, GeneralizedNewtypeDeriving #-}

module Language.Haskell.TH.Desugar.Reify (
  -- * Reification
  reifyWithLocals_maybe, reifyWithLocals, reifyWithWarning, reifyInDecs,

  -- ** Fixity reification
  qReifyFixity, reifyFixity, reifyFixityWithLocals, reifyFixityInDecs,

  -- * Datatype lookup
  getDataD, dataConNameToCon, dataConNameToDataName,

  -- * Value and type lookup
  lookupValueNameWithLocals, lookupTypeNameWithLocals,
  mkDataNameWithLocals, mkTypeNameWithLocals,
  reifyNameSpace,

  -- * Monad support
  DsMonad(..), DsM, withLocalDeclarations
  ) where

import qualified Control.Monad.Fail as Fail
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Writer
import Control.Monad.RWS
import Control.Monad.Trans.Instances ()
import qualified Data.Foldable as F
import Data.Function (on)
import Data.List
import Data.Maybe
#if __GLASGOW_HASKELL__ < 709
import Control.Applicative
#endif

import Language.Haskell.TH.Datatype
import Language.Haskell.TH.Instances ()
import Language.Haskell.TH.Syntax hiding ( lift )

import Language.Haskell.TH.Desugar.Util

-- | Like @reify@ from Template Haskell, but looks also in any not-yet-typechecked
-- declarations. To establish this list of not-yet-typechecked declarations,
-- use 'withLocalDeclarations'. Returns 'Nothing' if reification fails.
-- Note that no inferred type information is available from local declarations;
-- bottoms may be used if necessary.
reifyWithLocals_maybe :: DsMonad q => Name -> q (Maybe Info)
reifyWithLocals_maybe name = qRecover
  (return . reifyInDecs name =<< localDeclarations)
  (Just `fmap` qReify name)

-- | Like 'reifyWithLocals_maybe', but throws an exception upon failure,
-- warning the user about separating splices.
reifyWithLocals :: DsMonad q => Name -> q Info
reifyWithLocals name = do
  m_info <- reifyWithLocals_maybe name
  case m_info of
    Nothing -> reifyFail name
    Just i  -> return i

-- | Reify a declaration, warning the user about splices if the reify fails.
-- The warning says that reification can fail if you try to reify a type in
-- the same splice as it is declared.
reifyWithWarning :: (Quasi q, Fail.MonadFail q) => Name -> q Info
reifyWithWarning name = qRecover (reifyFail name) (qReify name)

-- | Print out a warning about separating splices and fail.
reifyFail :: Fail.MonadFail m => Name -> m a
reifyFail name =
  Fail.fail $ "Looking up " ++ (show name) ++ " in the list of available " ++
              "declarations failed.\nThis lookup fails if the declaration " ++
              "referenced was made in the same Template\nHaskell splice as the use " ++
              "of the declaration. If this is the case, put\nthe reference to " ++
              "the declaration in a new splice."

---------------------------------
-- Utilities
---------------------------------

-- | Extract the @TyVarBndr@s and constructors given the @Name@ of a type
getDataD :: DsMonad q
         => String       -- ^ Print this out on failure
         -> Name         -- ^ Name of the datatype (@data@ or @newtype@) of interest
         -> q ([TyVarBndr], [Con])
getDataD err name = do
  info <- reifyWithLocals name
  dec <- case info of
           TyConI dec -> return dec
           _ -> badDeclaration
  case dec of
#if __GLASGOW_HASKELL__ > 710
    DataD _cxt _name tvbs mk cons _derivings -> go tvbs mk cons
    NewtypeD _cxt _name tvbs mk con _derivings -> go tvbs mk [con]
#else
    DataD _cxt _name tvbs cons _derivings -> go tvbs Nothing cons
    NewtypeD _cxt _name tvbs con _derivings -> go tvbs Nothing [con]
#endif
    _ -> badDeclaration
  where
    go tvbs mk cons = do
      k <- maybe (pure (ConT typeKindName)) (runQ . resolveTypeSynonyms) mk
      extra_tvbs <- mkExtraKindBindersGeneric unravelType KindedTV k
      let all_tvbs = tvbs ++ extra_tvbs
      return (all_tvbs, cons)

    badDeclaration =
          fail $ "The name (" ++ (show name) ++ ") refers to something " ++
                 "other than a datatype. " ++ err

-- | From the name of a data constructor, retrive the datatype definition it
-- is a part of.
dataConNameToDataName :: DsMonad q => Name -> q Name
dataConNameToDataName con_name = do
  info <- reifyWithLocals con_name
  case info of
#if __GLASGOW_HASKELL__ > 710
    DataConI _name _type parent_name -> return parent_name
#else
    DataConI _name _type parent_name _fixity -> return parent_name
#endif
    _ -> fail $ "The name " ++ show con_name ++ " does not appear to be " ++
                "a data constructor."

-- | From the name of a data constructor, retrieve its definition as a @Con@
dataConNameToCon :: DsMonad q => Name -> q Con
dataConNameToCon con_name = do
  -- we need to get the field ordering from the constructor. We must reify
  -- the constructor to get the tycon, and then reify the tycon to get the `Con`s
  type_name <- dataConNameToDataName con_name
  (_, cons) <- getDataD "This seems to be an error in GHC." type_name
  let m_con = find (any (con_name ==) . get_con_name) cons
  case m_con of
    Just con -> return con
    Nothing -> impossible "Datatype does not contain one of its own constructors."

  where
    get_con_name (NormalC name _)     = [name]
    get_con_name (RecC name _)        = [name]
    get_con_name (InfixC _ name _)    = [name]
    get_con_name (ForallC _ _ con)    = get_con_name con
#if __GLASGOW_HASKELL__ > 710
    get_con_name (GadtC names _ _)    = names
    get_con_name (RecGadtC names _ _) = names
#endif

--------------------------------------------------
-- DsMonad
--------------------------------------------------

-- | A 'DsMonad' stores some list of declarations that should be considered
-- in scope. 'DsM' is the prototypical inhabitant of 'DsMonad'.
class (Quasi m, Fail.MonadFail m) => DsMonad m where
  -- | Produce a list of local declarations.
  localDeclarations :: m [Dec]

instance DsMonad Q where
  localDeclarations = return []
instance DsMonad IO where
  localDeclarations = return []

-- | A convenient implementation of the 'DsMonad' class. Use by calling
-- 'withLocalDeclarations'.
newtype DsM q a = DsM (ReaderT [Dec] q a)
  deriving ( Functor, Applicative, Monad, MonadTrans, Quasi, Fail.MonadFail
#if __GLASGOW_HASKELL__ >= 803
           , MonadIO
#endif
           )

instance (Quasi q, Fail.MonadFail q) => DsMonad (DsM q) where
  localDeclarations = DsM ask

instance DsMonad m => DsMonad (ReaderT r m) where
  localDeclarations = lift localDeclarations

instance DsMonad m => DsMonad (StateT s m) where
  localDeclarations = lift localDeclarations

instance (DsMonad m, Monoid w) => DsMonad (WriterT w m) where
  localDeclarations = lift localDeclarations

instance (DsMonad m, Monoid w) => DsMonad (RWST r w s m) where
  localDeclarations = lift localDeclarations

-- | Add a list of declarations to be considered when reifying local
-- declarations.
withLocalDeclarations :: DsMonad q => [Dec] -> DsM q a -> q a
withLocalDeclarations new_decs (DsM x) = do
  orig_decs <- localDeclarations
  runReaderT x (orig_decs ++ new_decs)

---------------------------
-- Reifying local declarations
---------------------------

-- | Look through a list of declarations and possibly return a relevant 'Info'
reifyInDecs :: Name -> [Dec] -> Maybe Info
reifyInDecs n decs = snd `fmap` firstMatch (reifyInDec n decs) decs

-- | Look through a list of declarations and possibly return a fixity.
reifyFixityInDecs :: Name -> [Dec] -> Maybe Fixity
reifyFixityInDecs n = firstMatch match_fixity
  where
    match_fixity (InfixD fixity n') | n `nameMatches` n' = Just fixity
    match_fixity _                                       = Nothing

-- | A reified thing along with the name of that thing.
type Named a = (Name, a)

reifyInDec :: Name -> [Dec] -> Dec -> Maybe (Named Info)
reifyInDec n decs (FunD n' _) | n `nameMatches` n' = Just (n', mkVarI n decs)
reifyInDec n decs (ValD pat _ _)
  | Just n' <- find (nameMatches n) (F.toList (extractBoundNamesPat pat)) = Just (n', mkVarI n decs)
#if __GLASGOW_HASKELL__ > 710
reifyInDec n _    dec@(DataD    _ n' _ _ _ _) | n `nameMatches` n' = Just (n', TyConI dec)
reifyInDec n _    dec@(NewtypeD _ n' _ _ _ _) | n `nameMatches` n' = Just (n', TyConI dec)
#else
reifyInDec n _    dec@(DataD    _ n' _ _ _) | n `nameMatches` n' = Just (n', TyConI dec)
reifyInDec n _    dec@(NewtypeD _ n' _ _ _) | n `nameMatches` n' = Just (n', TyConI dec)
#endif
reifyInDec n _    dec@(TySynD n' _ _)       | n `nameMatches` n' = Just (n', TyConI dec)
reifyInDec n decs dec@(ClassD _ n' _ _ _)   | n `nameMatches` n'
  = Just (n', ClassI (quantifyClassDecMethods dec) (findInstances n decs))
reifyInDec n decs (ForeignD (ImportF _ _ _ n' ty)) | n `nameMatches` n'
  = Just (n', mkVarITy n decs ty)
reifyInDec n decs (ForeignD (ExportF _ _ n' ty)) | n `nameMatches` n'
  = Just (n', mkVarITy n decs ty)
#if __GLASGOW_HASKELL__ > 710
reifyInDec n decs dec@(OpenTypeFamilyD (TypeFamilyHead n' _ _ _)) | n `nameMatches` n'
  = Just (n', FamilyI dec (findInstances n decs))
reifyInDec n decs dec@(DataFamilyD n' _ _) | n `nameMatches` n'
  = Just (n', FamilyI dec (findInstances n decs))
reifyInDec n _    dec@(ClosedTypeFamilyD (TypeFamilyHead n' _ _ _) _) | n `nameMatches` n'
  = Just (n', FamilyI dec [])
#else
reifyInDec n decs dec@(FamilyD _ n' _ _) | n `nameMatches` n'
  = Just (n', FamilyI dec (findInstances n decs))
reifyInDec n _    dec@(ClosedTypeFamilyD n' _ _ _) | n `nameMatches` n'
  = Just (n', FamilyI dec [])
#endif
#if __GLASGOW_HASKELL__ >= 801
reifyInDec n decs (PatSynD n' _ _ _) | n `nameMatches` n'
  = Just (n', mkPatSynI n decs)
#endif

#if __GLASGOW_HASKELL__ > 710
reifyInDec n decs (DataD _ ty_name tvbs _mk cons _)
  | Just info <- maybeReifyCon n decs ty_name (map tvbToTANormalWithSig tvbs) cons
  = Just info
reifyInDec n decs (NewtypeD _ ty_name tvbs _mk con _)
  | Just info <- maybeReifyCon n decs ty_name (map tvbToTANormalWithSig tvbs) [con]
  = Just info
#else
reifyInDec n decs (DataD _ ty_name tvbs cons _)
  | Just info <- maybeReifyCon n decs ty_name (map tvbToTANormalWithSig tvbs) cons
  = Just info
reifyInDec n decs (NewtypeD _ ty_name tvbs con _)
  | Just info <- maybeReifyCon n decs ty_name (map tvbToTANormalWithSig tvbs) [con]
  = Just info
#endif
#if __GLASGOW_HASKELL__ > 710
reifyInDec n _decs (ClassD _ ty_name tvbs _ sub_decs)
  | Just (n', ty) <- findType n sub_decs
  = Just (n', ClassOpI n (quantifyClassMethodType ty_name tvbs True ty) ty_name)
#else
reifyInDec n decs (ClassD _ ty_name tvbs _ sub_decs)
  | Just (n', ty) <- findType n sub_decs
  = Just (n', ClassOpI n (quantifyClassMethodType ty_name tvbs True ty)
                       ty_name (fromMaybe defaultFixity $
                                reifyFixityInDecs n $ sub_decs ++ decs))
#endif
reifyInDec n decs (ClassD _ _ _ _ sub_decs)
  | Just info <- firstMatch (reifyInDec n (sub_decs ++ decs)) sub_decs
  = Just info
#if __GLASGOW_HASKELL__ >= 711
reifyInDec n decs (InstanceD _ _ _ sub_decs)
#else
reifyInDec n decs (InstanceD _ _ sub_decs)
#endif
  | Just info <- firstMatch reify_in_instance sub_decs
  = Just info
  where
    reify_in_instance dec@(DataInstD {})    = reifyInDec n (sub_decs ++ decs) dec
    reify_in_instance dec@(NewtypeInstD {}) = reifyInDec n (sub_decs ++ decs) dec
    reify_in_instance _                     = Nothing
#if __GLASGOW_HASKELL__ >= 807
reifyInDec n decs (DataInstD _ _ lhs _ cons _)
  | (ConT ty_name, tys) <- unfoldType lhs
  , Just info <- maybeReifyCon n decs ty_name tys cons
  = Just info
reifyInDec n decs (NewtypeInstD _ _ lhs _ con _)
  | (ConT ty_name, tys) <- unfoldType lhs
  , Just info <- maybeReifyCon n decs ty_name tys [con]
  = Just info
#elif __GLASGOW_HASKELL__ > 710
reifyInDec n decs (DataInstD _ ty_name tys _ cons _)
  | Just info <- maybeReifyCon n decs ty_name (map TANormal tys) cons
  = Just info
reifyInDec n decs (NewtypeInstD _ ty_name tys _ con _)
  | Just info <- maybeReifyCon n decs ty_name (map TANormal tys) [con]
  = Just info
#else
reifyInDec n decs (DataInstD _ ty_name tys cons _)
  | Just info <- maybeReifyCon n decs ty_name (map TANormal tys) cons
  = Just info
reifyInDec n decs (NewtypeInstD _ ty_name tys con _)
  | Just info <- maybeReifyCon n decs ty_name (map TANormal tys) [con]
  = Just info
#endif

reifyInDec _ _ _ = Nothing

maybeReifyCon :: Name -> [Dec] -> Name -> [TypeArg] -> [Con] -> Maybe (Named Info)
#if __GLASGOW_HASKELL__ > 710
maybeReifyCon n _decs ty_name ty_args cons
  | Just (n', con) <- findCon n cons
  = Just (n', DataConI n (maybeForallT tvbs [] $ con_to_type con) ty_name)
#else
maybeReifyCon n decs ty_name ty_args cons
  | Just (n', con) <- findCon n cons
  = Just (n', DataConI n (maybeForallT tvbs [] $ con_to_type con)
                         ty_name fixity)
#endif

  | Just (n', ty) <- findRecSelector n cons
      -- we don't try to ferret out naughty record selectors.
#if __GLASGOW_HASKELL__ > 710
  = Just (n', VarI n (maybeForallT tvbs [] $ mkArrows [result_ty] ty) Nothing)
#else
  = Just (n', VarI n (maybeForallT tvbs [] $ mkArrows [result_ty] ty) Nothing fixity)
#endif
  where
    result_ty = applyType (ConT ty_name) (map unSigTypeArg ty_args)
      -- Make sure to call unSigTypeArg here. Otherwise, if you have this:
      --
      --   data D (a :: k) = MkD { unD :: Proxy a }
      --
      -- Then the type of unD will be reified as:
      --
      --   unD :: forall k (a :: k). D (a :: k) -> Proxy a
      --
      -- This is contrast to GHC's own reification, which will produce `D a`
      -- (without the explicit kind signature) as the type of the first argument.

    con_to_type (NormalC _ stys) = mkArrows (map snd    stys)  result_ty
    con_to_type (RecC _ vstys)   = mkArrows (map thdOf3 vstys) result_ty
    con_to_type (InfixC t1 _ t2) = mkArrows (map snd [t1, t2]) result_ty
    con_to_type (ForallC bndrs cxt c) = ForallT bndrs cxt (con_to_type c)
#if __GLASGOW_HASKELL__ > 710
    con_to_type (GadtC _ stys rty)     = mkArrows (map snd    stys)  rty
    con_to_type (RecGadtC _ vstys rty) = mkArrows (map thdOf3 vstys) rty
#endif
#if __GLASGOW_HASKELL__ < 711
    fixity = fromMaybe defaultFixity $ reifyFixityInDecs n decs
#endif
    tvbs = freeVariablesWellScoped $ map probablyWrongUnTypeArg ty_args
maybeReifyCon _ _ _ _ _ = Nothing

mkVarI :: Name -> [Dec] -> Info
mkVarI n decs = mkVarITy n decs (maybe (no_type n) snd $ findType n decs)

mkVarITy :: Name -> [Dec] -> Type -> Info
#if __GLASGOW_HASKELL__ > 710
mkVarITy n _decs ty = VarI n ty Nothing
#else
mkVarITy n decs ty = VarI n ty Nothing (fromMaybe defaultFixity $
                                        reifyFixityInDecs n decs)
#endif

findType :: Name -> [Dec] -> Maybe (Named Type)
findType n = firstMatch match_type
  where
    match_type (SigD n' ty) | n `nameMatches` n' = Just (n', ty)
    match_type _                                 = Nothing

#if __GLASGOW_HASKELL__ >= 801
mkPatSynI :: Name -> [Dec] -> Info
mkPatSynI n decs = PatSynI n (fromMaybe (no_type n) $ findPatSynType n decs)

findPatSynType :: Name -> [Dec] -> Maybe PatSynType
findPatSynType n = firstMatch match_pat_syn_type
  where
    match_pat_syn_type (PatSynSigD n' psty) | n `nameMatches` n' = Just psty
    match_pat_syn_type _                                         = Nothing
#endif

no_type :: Name -> Type
no_type n = error $ "No type information found in local declaration for "
                    ++ show n

findInstances :: Name -> [Dec] -> [Dec]
findInstances n = map stripInstanceDec . concatMap match_instance
  where
#if __GLASGOW_HASKELL__ >= 711
    match_instance d@(InstanceD _ _ ty _)
#else
    match_instance d@(InstanceD _ ty _)
#endif
                                               | ConT n' <- ty_head ty
                                               , n `nameMatches` n' = [d]
#if __GLASGOW_HASKELL__ >= 807
    match_instance (DataInstD ctxt _ lhs mk cons derivs)
                                                  | ConT n' <- ty_head lhs
                                                  , n `nameMatches` n' = [d]
      where
        mtvbs = rejig_data_inst_tvbs ctxt lhs mk
        d = DataInstD ctxt mtvbs lhs mk cons derivs
    match_instance (NewtypeInstD ctxt _ lhs mk con derivs)
                                                  | ConT n' <- ty_head lhs
                                                  , n `nameMatches` n' = [d]
      where
        mtvbs = rejig_data_inst_tvbs ctxt lhs mk
        d = NewtypeInstD ctxt mtvbs lhs mk con derivs
#elif __GLASGOW_HASKELL__ > 710
    match_instance d@(DataInstD _ n' _ _ _ _)    | n `nameMatches` n' = [d]
    match_instance d@(NewtypeInstD _ n' _ _ _ _) | n `nameMatches` n' = [d]
#else
    match_instance d@(DataInstD _ n' _ _ _)    | n `nameMatches` n' = [d]
    match_instance d@(NewtypeInstD _ n' _ _ _) | n `nameMatches` n' = [d]
#endif
#if __GLASGOW_HASKELL__ >= 807
    match_instance (TySynInstD (TySynEqn _ lhs rhs))
                                               | ConT n' <- ty_head lhs
                                               , n `nameMatches` n' = [d]
      where
        mtvbs = rejig_tvbs [lhs, rhs]
        d = TySynInstD (TySynEqn mtvbs lhs rhs)
#else
    match_instance d@(TySynInstD n' _)         | n `nameMatches` n' = [d]
#endif

#if __GLASGOW_HASKELL__ >= 711
    match_instance (InstanceD _ _ _ decs)
#else
    match_instance (InstanceD _ _ decs)
#endif
                                        = concatMap match_instance decs
    match_instance _                    = []

#if __GLASGOW_HASKELL__ >= 807
    -- See Note [Rejigging reified type family equations variable binders]
    -- for why this is necessary.
    rejig_tvbs :: [Type] -> Maybe [TyVarBndr]
    rejig_tvbs ts =
      let tvbs = freeVariablesWellScoped ts
      in if null tvbs
         then Nothing
         else Just tvbs

    rejig_data_inst_tvbs :: Cxt -> Type -> Maybe Kind -> Maybe [TyVarBndr]
    rejig_data_inst_tvbs cxt lhs mk =
      rejig_tvbs $ cxt ++ [lhs] ++ maybeToList mk
#endif

    ty_head = fst . unfoldType

{-
Note [Rejigging reified type family equations variable binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When reifying a type family instance (on GHC 8.8 or later), which quantified
type variables do you use? This might seem like a strange question to ask since
these instances already come equipped with a field of type `Maybe [TyVarBndr]`,
but it's not always the case that you want to use exactly that field. Here is
an example to better explain it:

  class C a where
    type T b a
  instance C (Maybe a) where
    type forall b. T b (Maybe a) = a

If the above instance were quoted, it would give you `Just [PlainTV b]`. But if
you were to reify ''T (and therefore retrieve the instance for T), you wouldn't
want to use that as your list of type variable binders! This is because
reifiying any type family always presents the information as though the type
family were top-level. Therefore, reifying T (in GHC, at least) would yield:

  type family T b a
  type instance forall b a. T b (Maybe a) = a

Note that we quantify over `b` *and* `a` here, not just `b`. To emulate this
GHC quirk, whenever we reify any type family instance, we just ignore the field
of type `Maybe [TyVarBndr]` and quantify over the instance afresh. It's a bit
tedious, but it gets the job done. (This is accomplished by the rejig_tvbs
function.)
-}

-- Consider the following class declaration:
--
--   [d| class C a where
--         method :: a -> b -> a |]
--
-- When reifying C locally, quantifyClassDecMethods serves two purposes:
--
-- 1. It quantifies the class method's local type variables. To illustrate this
--    point, this is how GHC would reify C:
--
--      class C a where
--        method :: forall b. a -> b -> a
--
--    Notice the presence of the explicit `forall b.`. quantifyClassDecMethods
--    performs this explicit quantification if necessary (as in the case in the
--    local C declaration, where `b` is implicitly quantified.)
-- 2. It emulates a quirk in the way old versions of GHC would reify class
--    declarations (Trac #15551). On versions of GHC older than 8.8, it would
--    reify C like so:
--
--      class C a where
--        method :: forall a. C a => forall b. a -> b -> a
--
--    Notice how GHC has added the (totally extraneous) `forall a. C a =>`
--    part! This is weird, but our primary goal in this module is to mimic
--    GHC's reification, so we play the part by adding the `forall`/class
--    context to each class method in quantifyClassDecMethods.
--
--    Since Trac #15551 was fixed in GHC 8.8, this function doesn't perform
--    this step on 8.7 or later.
quantifyClassDecMethods :: Dec -> Dec
quantifyClassDecMethods (ClassD cxt cls_name cls_tvbs fds sub_decs)
  = ClassD cxt cls_name cls_tvbs fds sub_decs'
  where
    sub_decs' = mapMaybe go sub_decs
    go (SigD n ty) =
      Just $ SigD n
           $ quantifyClassMethodType cls_name cls_tvbs prepend_cls ty
#if __GLASGOW_HASKELL__ > 710
    go d@(OpenTypeFamilyD {}) = Just d
    go d@(DataFamilyD {})     = Just d
#endif
    go _           = Nothing

    -- See (2) in the comments for quantifyClassDecMethods.
    prepend_cls :: Bool
#if __GLASGOW_HASKELL__ >= 807
    prepend_cls = False
#else
    prepend_cls = True
#endif
quantifyClassDecMethods dec = dec

-- Add explicit quantification to a class method's type if necessary. In this
-- example:
--
--   [d| class C a where
--         method :: a -> b -> a |]
--
-- If one invokes `quantifyClassMethodType C [a] prepend (a -> b -> a)`, then
-- the output will be:
--
-- 1. `forall a. C a => forall b. a -> b -> a` (if `prepend` is True)
-- 2.                  `forall b. a -> b -> a` (if `prepend` is False)
--
-- Whether you want `prepend` to be True or False depends on the situation.
-- When reifying an entire type class, like C, one does not need to prepend a
-- class context to each of the bundled method types (see the comments for
-- quantifyClassDecMethods), so False is appropriate. When one is only reifying
-- a single class method, like `method`, then one needs the class context to
-- appear in the reified type, so `True` is appropriate.
quantifyClassMethodType
  :: Name        -- ^ The class name.
  -> [TyVarBndr] -- ^ The class's type variable binders.
  -> Bool        -- ^ If 'True', prepend a class predicate.
  -> Type        -- ^ The method type.
  -> Type
quantifyClassMethodType cls_name cls_tvbs prepend meth_ty =
  add_cls_cxt quantified_meth_ty
  where
    add_cls_cxt :: Type -> Type
    add_cls_cxt
      | prepend   = ForallT all_cls_tvbs cls_cxt
      | otherwise = id

    cls_cxt :: Cxt
#if __GLASGOW_HASKELL__ < 709
    cls_cxt = [ClassP cls_name (map tvbToType cls_tvbs)]
#else
    cls_cxt = [foldl AppT (ConT cls_name) (map tvbToType cls_tvbs)]
#endif

    quantified_meth_ty :: Type
    quantified_meth_ty
      | null meth_tvbs
      = meth_ty
      | ForallT meth_tvbs' meth_ctxt meth_tau <- meth_ty
      = ForallT (meth_tvbs ++ meth_tvbs') meth_ctxt meth_tau
      | otherwise
      = ForallT meth_tvbs [] meth_ty

    meth_tvbs :: [TyVarBndr]
    meth_tvbs = deleteFirstsBy ((==) `on` tvName)
                  (freeVariablesWellScoped [meth_ty]) all_cls_tvbs

    -- Explicitly quantify any kind variables bound by the class, if any.
    all_cls_tvbs :: [TyVarBndr]
    all_cls_tvbs = freeVariablesWellScoped $ map tvbToTypeWithSig cls_tvbs

stripInstanceDec :: Dec -> Dec
#if __GLASGOW_HASKELL__ >= 711
stripInstanceDec (InstanceD over cxt ty _) = InstanceD over cxt ty []
#else
stripInstanceDec (InstanceD cxt ty _)      = InstanceD cxt ty []
#endif
stripInstanceDec dec                       = dec

mkArrows :: [Type] -> Type -> Type
mkArrows []     res_ty = res_ty
mkArrows (t:ts) res_ty = AppT (AppT ArrowT t) $ mkArrows ts res_ty

maybeForallT :: [TyVarBndr] -> Cxt -> Type -> Type
maybeForallT tvbs cxt ty
  | null tvbs && null cxt        = ty
  | ForallT tvbs2 cxt2 ty2 <- ty = ForallT (tvbs ++ tvbs2) (cxt ++ cxt2) ty2
  | otherwise                    = ForallT tvbs cxt ty

findCon :: Name -> [Con] -> Maybe (Named Con)
findCon n = firstMatch match_con
  where
    match_con :: Con -> Maybe (Named Con)
    match_con con =
      case con of
        NormalC n' _  | n `nameMatches` n' -> Just (n', con)
        RecC n' _     | n `nameMatches` n' -> Just (n', con)
        InfixC _ n' _ | n `nameMatches` n' -> Just (n', con)
        ForallC _ _ c -> case match_con c of
                           Just (n', _) -> Just (n', con)
                           Nothing      -> Nothing
#if __GLASGOW_HASKELL__ > 710
        GadtC nms _ _    -> gadt_case con nms
        RecGadtC nms _ _ -> gadt_case con nms
#endif
        _                -> Nothing

#if __GLASGOW_HASKELL__ > 710
    gadt_case :: Con -> [Name] -> Maybe (Named Con)
    gadt_case con nms = case find (n `nameMatches`) nms of
                          Just n' -> Just (n', con)
                          Nothing -> Nothing
#endif

findRecSelector :: Name -> [Con] -> Maybe (Named Type)
findRecSelector n = firstMatch match_con
  where
    match_con (RecC _ vstys)       = firstMatch match_rec_sel vstys
#if __GLASGOW_HASKELL__ >= 800
    match_con (RecGadtC _ vstys _) = firstMatch match_rec_sel vstys
#endif
    match_con (ForallC _ _ c)      = match_con c
    match_con _                    = Nothing

    match_rec_sel (n', _, ty) | n `nameMatches` n' = Just (n', ty)
    match_rec_sel _                                = Nothing

---------------------------------
-- Reifying fixities
---------------------------------
--
-- This section allows GHC 7.x to call reifyFixity

#if __GLASGOW_HASKELL__ < 711
qReifyFixity :: Quasi m => Name -> m (Maybe Fixity)
qReifyFixity name = do
  info <- qReify name
  return $ case info of
    ClassOpI _ _ _ fixity -> Just fixity
    DataConI _ _ _ fixity -> Just fixity
    VarI _ _ _ fixity     -> Just fixity
    _                     -> Nothing

{- | @reifyFixity nm@ attempts to find a fixity declaration for @nm@. For
example, if the function @foo@ has the fixity declaration @infixr 7 foo@, then
@reifyFixity 'foo@ would return @'Just' ('Fixity' 7 'InfixR')@. If the function
@bar@ does not have a fixity declaration, then @reifyFixity 'bar@ returns
'Nothing', so you may assume @bar@ has 'defaultFixity'.
-}
reifyFixity :: Name -> Q (Maybe Fixity)
reifyFixity = qReifyFixity
#endif

-- | Like 'reifyWithLocals_maybe', but for fixities. Note that a return of
-- @Nothing@ might mean that the name is not in scope, or it might mean
-- that the name has no assigned fixity. (Use 'reifyWithLocals_maybe' if
-- you really need to tell the difference.)
reifyFixityWithLocals :: DsMonad q => Name -> q (Maybe Fixity)
reifyFixityWithLocals name = qRecover
  (return . reifyFixityInDecs name =<< localDeclarations)
  (qReifyFixity name)

--------------------------------------
-- Lookuping name value and type names
--------------------------------------

-- | Like 'lookupValueName' from Template Haskell, but looks also in 'Names' of
-- not-yet-typechecked declarations. To establish this list of not-yet-typechecked
-- declarations, use 'withLocalDeclarations'. Returns 'Nothing' if no value
-- with the same name can be found.
lookupValueNameWithLocals :: DsMonad q => String -> q (Maybe Name)
lookupValueNameWithLocals = lookupNameWithLocals False

-- | Like 'lookupTypeName' from Template Haskell, but looks also in 'Names' of
-- not-yet-typechecked declarations. To establish this list of not-yet-typechecked
-- declarations, use 'withLocalDeclarations'. Returns 'Nothing' if no type
-- with the same name can be found.
lookupTypeNameWithLocals :: DsMonad q => String -> q (Maybe Name)
lookupTypeNameWithLocals = lookupNameWithLocals True

lookupNameWithLocals :: DsMonad q => Bool -> String -> q (Maybe Name)
lookupNameWithLocals ns s = do
    mb_name <- qLookupName ns s
    case mb_name of
      j_name@(Just{}) -> return j_name
      Nothing         -> consult_locals
  where
    built_name = mkName s

    consult_locals = do
      decs <- localDeclarations
      let mb_infos = map (reifyInDec built_name decs) decs
          infos = catMaybes mb_infos
      return $ firstMatch (if ns then find_type_name
                                 else find_value_name) infos

    -- These functions work over Named Infos so we can avoid performing
    -- tiresome pattern-matching to retrieve the name associated with each Info.
    find_type_name, find_value_name :: Named Info -> Maybe Name
    find_type_name (n, info) =
      case infoNameSpace info of
        TcClsName -> Just n
        VarName   -> Nothing
        DataName  -> Nothing

    find_value_name (n, info) =
      case infoNameSpace info of
        VarName   -> Just n
        DataName  -> Just n
        TcClsName -> Nothing

-- | Like TH's @lookupValueName@, but if this name is not bound, then we assume
-- it is declared in the current module.
--
-- Unlike 'mkDataName', this also consults the local declarations in scope when
-- determining if the name is currently bound.
mkDataNameWithLocals :: DsMonad q => String -> q Name
mkDataNameWithLocals = mkNameWith lookupValueNameWithLocals mkNameG_d

-- | Like TH's @lookupTypeName@, but if this name is not bound, then we assume
-- it is declared in the current module.
--
-- Unlike 'mkTypeName', this also consults the local declarations in scope when
-- determining if the name is currently bound.
mkTypeNameWithLocals :: DsMonad q => String -> q Name
mkTypeNameWithLocals = mkNameWith lookupTypeNameWithLocals mkNameG_tc

-- | Determines a `Name`'s 'NameSpace'. If the 'NameSpace' is attached to
-- the 'Name' itself (i.e., it is unambiguous), then that 'NameSpace' is
-- immediately returned. Otherwise, reification is used to lookup up the
-- 'NameSpace' (consulting local declarations if necessary).
--
-- Note that if a 'Name' lives in two different 'NameSpaces' (which can
-- genuinely happen--for instance, @'mkName' \"==\"@, where @==@ is both
-- a function and a type family), then this function will simply return
-- whichever 'NameSpace' is discovered first via reification. If you wish
-- to find a 'Name' in a particular 'NameSpace', use the
-- 'lookupValueNameWithLocals' or 'lookupTypeNameWithLocals' functions.
reifyNameSpace :: DsMonad q => Name -> q (Maybe NameSpace)
reifyNameSpace n@(Name _ nf) =
  case nf of
    -- NameGs are simple, as they have a NameSpace attached.
    NameG ns _ _ -> pure $ Just ns

    -- For other names, we must use reification to determine what NameSpace
    -- it lives in (if any).
    _ -> do mb_info <- reifyWithLocals_maybe n
            pure $ fmap infoNameSpace mb_info

-- | Determine a name's 'NameSpace' from its 'Info'.
infoNameSpace :: Info -> NameSpace
infoNameSpace info =
  case info of
    ClassI{}     -> TcClsName
    TyConI{}     -> TcClsName
    FamilyI{}    -> TcClsName
    PrimTyConI{} -> TcClsName
    TyVarI{}     -> TcClsName

    ClassOpI{}   -> VarName
    VarI{}       -> VarName

    DataConI{}   -> DataName
#if __GLASGOW_HASKELL__ >= 801
    PatSynI{}    -> DataName
#endif