{-# OPTIONS_GHC -Wno-noncanonical-monad-instances #-}
module Data.Binary.Bits.Put
( BitPut
, runBitPut
, joinPut
, putBool
, putWord8
, putWord16be
, putWord32be
, putWord64be
, putByteString
)
where
import Data.Binary.Builder (Builder)
import qualified Data.Binary.Builder as B
import Data.Binary.Put (Put)
import qualified Data.Binary.Put as Put
import Data.ByteString
import Data.Bits
import Data.Word
newtype BitPut a = BitPut { BitPut a -> S -> PairS a
run :: S -> PairS a }
data PairS a = PairS a {-# UNPACK #-} !S
data S = S !Builder !Word8 !Int
putBool :: Bool -> BitPut ()
putBool :: Bool -> BitPut ()
putBool Bool
b = Int -> Word8 -> BitPut ()
putWord8 Int
1 (if Bool
b then Word8
0xff else Word8
0x00)
makeMask :: (Bits a, Num a) => Int -> a
makeMask :: Int -> a
makeMask Int
n = (a
1 a -> Int -> a
forall a. Bits a => a -> Int -> a
`shiftL` Int -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) a -> a -> a
forall a. Num a => a -> a -> a
- a
1
{-# SPECIALIZE makeMask :: Int -> Int #-}
{-# SPECIALIZE makeMask :: Int -> Word #-}
{-# SPECIALIZE makeMask :: Int -> Word8 #-}
{-# SPECIALIZE makeMask :: Int -> Word16 #-}
{-# SPECIALIZE makeMask :: Int -> Word32 #-}
{-# SPECIALIZE makeMask :: Int -> Word64 #-}
putWord8 :: Int -> Word8 -> BitPut ()
putWord8 :: Int -> Word8 -> BitPut ()
putWord8 Int
n Word8
w = (S -> PairS ()) -> BitPut ()
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS ()) -> BitPut ()) -> (S -> PairS ()) -> BitPut ()
forall a b. (a -> b) -> a -> b
$ \S
s -> () -> S -> PairS ()
forall a. a -> S -> PairS a
PairS () (S -> PairS ()) -> S -> PairS ()
forall a b. (a -> b) -> a -> b
$
let w' :: Word8
w' = Int -> Word8
forall a. (Bits a, Num a) => Int -> a
makeMask Int
n Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.&. Word8
w in
case S
s of
(S Builder
b Word8
t Int
o) | Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
8 Bool -> Bool -> Bool
&& Int
o Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 -> S -> S
flush (S -> S) -> S -> S
forall a b. (a -> b) -> a -> b
$ Builder -> Word8 -> Int -> S
S Builder
b Word8
w Int
n
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
8 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o -> S -> S
flush (S -> S) -> S -> S
forall a b. (a -> b) -> a -> b
$ Builder -> Word8 -> Int -> S
S Builder
b (Word8
t Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.|. (Word8
w' Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`shiftL` (Int
8 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o))) (Int
oInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
n)
| Bool
otherwise -> S -> S
flush (S -> S) -> S -> S
forall a b. (a -> b) -> a -> b
$
let o' :: Int
o' = Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
8
b' :: Word8
b' = Word8
t Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.|. (Word8
w' Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`shiftR` Int
o')
t' :: Word8
t' = Word8
w Word8 -> Int -> Word8
forall a. Bits a => a -> Int -> a
`shiftL` (Int
8 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o')
in Builder -> Word8 -> Int -> S
S (Builder
b Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
b') Word8
t' Int
o'
putWord16be :: Int -> Word16 -> BitPut ()
putWord16be :: Int -> Word16 -> BitPut ()
putWord16be Int
n Word16
w
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
8 = Int -> Word8 -> BitPut ()
putWord8 Int
n (Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word16
w)
| Bool
otherwise =
(S -> PairS ()) -> BitPut ()
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS ()) -> BitPut ()) -> (S -> PairS ()) -> BitPut ()
forall a b. (a -> b) -> a -> b
$ \S
s -> () -> S -> PairS ()
forall a. a -> S -> PairS a
PairS () (S -> PairS ()) -> S -> PairS ()
forall a b. (a -> b) -> a -> b
$
let w' :: Word16
w' = Int -> Word16
forall a. (Bits a, Num a) => Int -> a
makeMask Int
n Word16 -> Word16 -> Word16
forall a. Bits a => a -> a -> a
.&. Word16
w in
case S
s of
(S Builder
b Word8
t Int
o) | Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
16 -> S -> S
flush (S -> S) -> S -> S
forall a b. (a -> b) -> a -> b
$
let o' :: Int
o' = Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
8
b' :: Word8
b' = Word8
t Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.|. Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
w' Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`shiftR` Int
o')
t' :: Word8
t' = Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
w Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`shiftL` (Int
8Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
o'))
in Builder -> Word8 -> Int -> S
S (Builder
b Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
b') Word8
t' Int
o'
| Bool
otherwise -> S -> S
flush (S -> S) -> S -> S
forall a b. (a -> b) -> a -> b
$
let o' :: Int
o' = Int
o Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
16
b' :: Word8
b' = Word8
t Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.|. Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
w' Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`shiftR` (Int
o' Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
8))
b'' :: Word8
b'' = Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral ((Word16
w Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`shiftR` Int
o') Word16 -> Word16 -> Word16
forall a. Bits a => a -> a -> a
.&. Word16
0xff)
t' :: Word8
t' = Word16 -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word16
w Word16 -> Int -> Word16
forall a. Bits a => a -> Int -> a
`shiftL` (Int
8Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
o'))
in Builder -> Word8 -> Int -> S
S (Builder
b Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
b' Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
b'') Word8
t' Int
o'
putWord32be :: Int -> Word32 -> BitPut ()
putWord32be :: Int -> Word32 -> BitPut ()
putWord32be Int
n Word32
w
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
16 = Int -> Word16 -> BitPut ()
putWord16be Int
n (Word32 -> Word16
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word32
w)
| Bool
otherwise = do
Int -> Word32 -> BitPut ()
putWord32be (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
16) (Word32
wWord32 -> Int -> Word32
forall a. Bits a => a -> Int -> a
`shiftR`Int
16)
Int -> Word32 -> BitPut ()
putWord32be Int
16 (Word32
w Word32 -> Word32 -> Word32
forall a. Bits a => a -> a -> a
.&. Word32
0x0000ffff)
putWord64be :: Int -> Word64 -> BitPut ()
putWord64be :: Int -> Word64 -> BitPut ()
putWord64be Int
n Word64
w
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
32 = Int -> Word32 -> BitPut ()
putWord32be Int
n (Word64 -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
w)
| Bool
otherwise = do
Int -> Word64 -> BitPut ()
putWord64be (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
32) (Word64
wWord64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`shiftR`Int
32)
Int -> Word64 -> BitPut ()
putWord64be Int
32 (Word64
w Word64 -> Word64 -> Word64
forall a. Bits a => a -> a -> a
.&. Word64
0xffffffff)
putByteString :: ByteString -> BitPut ()
putByteString :: ByteString -> BitPut ()
putByteString ByteString
bs = do
Bool
offset <- BitPut Bool
hasOffset
if Bool
offset
then (Word8 -> BitPut ()) -> [Word8] -> BitPut ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Int -> Word8 -> BitPut ()
putWord8 Int
8) (ByteString -> [Word8]
unpack ByteString
bs)
else Put -> BitPut ()
joinPut (ByteString -> Put
Put.putByteString ByteString
bs)
where
hasOffset :: BitPut Bool
hasOffset = (S -> PairS Bool) -> BitPut Bool
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS Bool) -> BitPut Bool)
-> (S -> PairS Bool) -> BitPut Bool
forall a b. (a -> b) -> a -> b
$ \ s :: S
s@(S Builder
_ Word8
_ Int
o) -> Bool -> S -> PairS Bool
forall a. a -> S -> PairS a
PairS (Int
o Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0) S
s
joinPut :: Put -> BitPut ()
joinPut :: Put -> BitPut ()
joinPut Put
m = (S -> PairS ()) -> BitPut ()
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS ()) -> BitPut ()) -> (S -> PairS ()) -> BitPut ()
forall a b. (a -> b) -> a -> b
$ \S
s0 -> () -> S -> PairS ()
forall a. a -> S -> PairS a
PairS () (S -> PairS ()) -> S -> PairS ()
forall a b. (a -> b) -> a -> b
$
let S Builder
b0 Word8
_ Int
_ = S -> S
flushIncomplete S
s0
b :: Builder
b = Put -> Builder
forall a. PutM a -> Builder
Put.execPut Put
m
in Builder -> Word8 -> Int -> S
S (Builder
b0Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend`Builder
b) Word8
0 Int
0
flush :: S -> S
flush :: S -> S
flush s :: S
s@(S Builder
b Word8
w Int
o)
| Int
o Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
8 = [Char] -> S
forall a. HasCallStack => [Char] -> a
error [Char]
"flush: offset > 8"
| Int
o Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
8 = Builder -> Word8 -> Int -> S
S (Builder
b Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
w) Word8
0 Int
0
| Bool
otherwise = S
s
flushIncomplete :: S -> S
flushIncomplete :: S -> S
flushIncomplete s :: S
s@(S Builder
b Word8
w Int
o)
| Int
o Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = S
s
| Bool
otherwise = Builder -> Word8 -> Int -> S
S (Builder
b Builder -> Builder -> Builder
forall a. Monoid a => a -> a -> a
`mappend` Word8 -> Builder
B.singleton Word8
w) Word8
0 Int
0
runBitPut :: BitPut () -> Put.Put
runBitPut :: BitPut () -> Put
runBitPut BitPut ()
m = Builder -> Put
Put.putBuilder Builder
b
where
PairS ()
_ S
s = BitPut () -> S -> PairS ()
forall a. BitPut a -> S -> PairS a
run BitPut ()
m (Builder -> Word8 -> Int -> S
S Builder
forall a. Monoid a => a
mempty Word8
0 Int
0)
(S Builder
b Word8
_ Int
_) = S -> S
flushIncomplete S
s
instance Functor BitPut where
fmap :: (a -> b) -> BitPut a -> BitPut b
fmap a -> b
f (BitPut S -> PairS a
k) = (S -> PairS b) -> BitPut b
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS b) -> BitPut b) -> (S -> PairS b) -> BitPut b
forall a b. (a -> b) -> a -> b
$ \S
s ->
let PairS a
x S
s' = S -> PairS a
k S
s
in b -> S -> PairS b
forall a. a -> S -> PairS a
PairS (a -> b
f a
x) S
s'
instance Applicative BitPut where
pure :: a -> BitPut a
pure a
a = (S -> PairS a) -> BitPut a
forall a. (S -> PairS a) -> BitPut a
BitPut (a -> S -> PairS a
forall a. a -> S -> PairS a
PairS a
a)
BitPut S -> PairS (a -> b)
f <*> :: BitPut (a -> b) -> BitPut a -> BitPut b
<*> BitPut S -> PairS a
g = (S -> PairS b) -> BitPut b
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS b) -> BitPut b) -> (S -> PairS b) -> BitPut b
forall a b. (a -> b) -> a -> b
$ \S
s ->
let PairS a -> b
a S
s' = S -> PairS (a -> b)
f S
s
PairS a
b S
s'' = S -> PairS a
g S
s'
in b -> S -> PairS b
forall a. a -> S -> PairS a
PairS (a -> b
a a
b) S
s''
instance Monad BitPut where
BitPut a
m >>= :: BitPut a -> (a -> BitPut b) -> BitPut b
>>= a -> BitPut b
k = (S -> PairS b) -> BitPut b
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS b) -> BitPut b) -> (S -> PairS b) -> BitPut b
forall a b. (a -> b) -> a -> b
$ \S
s ->
let PairS a
a S
s' = BitPut a -> S -> PairS a
forall a. BitPut a -> S -> PairS a
run BitPut a
m S
s
PairS b
b S
s'' = BitPut b -> S -> PairS b
forall a. BitPut a -> S -> PairS a
run (a -> BitPut b
k a
a) S
s'
in b -> S -> PairS b
forall a. a -> S -> PairS a
PairS b
b S
s''
return :: a -> BitPut a
return a
x = (S -> PairS a) -> BitPut a
forall a. (S -> PairS a) -> BitPut a
BitPut ((S -> PairS a) -> BitPut a) -> (S -> PairS a) -> BitPut a
forall a b. (a -> b) -> a -> b
$ \S
s -> a -> S -> PairS a
forall a. a -> S -> PairS a
PairS a
x S
s