toysolver-0.3.0: Assorted decision procedures for SAT, Max-SAT, PB, MIP, etc

Copyright(c) Masahiro Sakai 2012-2014
LicenseBSD-style
Maintainermasahiro.sakai@gmail.com
Stabilityprovisional
Portabilitynon-portable (BangPatterns, ScopedTypeVariables, CPP, DeriveDataTypeable, RecursiveDo)
Safe HaskellNone
LanguageHaskell2010

ToySolver.SAT

Contents

Description

A CDCL SAT solver.

It follows the design of MiniSat and SAT4J.

See also:

Synopsis

The Solver type

data Solver Source

Solver instance

newSolver :: IO Solver Source

Create a new Solver instance.

Basic data structures

type Var = Int Source

Variable is represented as positive integers (DIMACS format).

type Lit = Int Source

Positive (resp. negative) literals are represented as positive (resp. negative) integers. (DIMACS format).

literal Source

Arguments

:: Var

variable

-> Bool

polarity

-> Lit 

Construct a literal from a variable and its polarity. True (resp False) means positive (resp. negative) literal.

litNot :: Lit -> Lit Source

Negation of the Lit.

litVar :: Lit -> Var Source

Underlying variable of the Lit

litPolarity :: Lit -> Bool Source

Polarity of the Lit. True means positive literal and False means negative literal.

type Clause = [Lit] Source

Disjunction of Lit.

Problem specification

newVar :: Solver -> IO Var Source

Add a new variable

newVars :: Solver -> Int -> IO [Var] Source

Add variables. newVars solver n = replicateM n (newVar solver)

newVars_ :: Solver -> Int -> IO () Source

Add variables. newVars_ solver n = newVars solver n >> return ()

resizeVarCapacity :: Solver -> Int -> IO () Source

Pre-allocate internal buffer for n variables.

addClause :: Solver -> Clause -> IO () Source

Add a clause to the solver.

addAtLeast Source

Arguments

:: Solver

The Solver argument.

-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n.

-> IO () 

Add a cardinality constraints atleast({l1,l2,..},n).

addAtMost Source

Arguments

:: Solver

The Solver argument

-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n

-> IO () 

Add a cardinality constraints atmost({l1,l2,..},n).

addExactly Source

Arguments

:: Solver

The Solver argument

-> [Lit]

set of literals {l1,l2,..} (duplicated elements are ignored)

-> Int

n

-> IO () 

Add a cardinality constraints exactly({l1,l2,..},n).

addPBAtLeast Source

Arguments

:: Solver

The Solver argument.

-> [(Integer, Lit)]

set of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … ≥ n.

addPBAtMost Source

Arguments

:: Solver

The Solver argument.

-> [(Integer, Lit)]

list of [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … ≤ n.

addPBExactly Source

Arguments

:: Solver

The Solver argument.

-> [(Integer, Lit)]

list of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a pseudo boolean constraints c1*l1 + c2*l2 + … = n.

addPBAtLeastSoft Source

Arguments

:: Solver

The Solver argument.

-> Lit

Selector literal sel

-> [(Integer, Lit)]

set of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … ≥ n.

addPBAtMostSoft Source

Arguments

:: Solver

The Solver argument.

-> Lit

Selector literal sel

-> [(Integer, Lit)]

set of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … ≤ n.

addPBExactlySoft Source

Arguments

:: Solver

The Solver argument.

-> Lit

Selector literal sel

-> [(Integer, Lit)]

set of terms [(c1,l1),(c2,l2),…]

-> Integer

n

-> IO () 

Add a soft pseudo boolean constraints sel ⇒ c1*l1 + c2*l2 + … = n.

addXORClause Source

Arguments

:: Solver

The Solver argument.

-> [Lit]

literals [l1, l2, …, ln]

-> Bool

rhs

-> IO () 

Add a parity constraint l1 ⊕ l2 ⊕ … ⊕ ln = rhs

addXORClauseSoft Source

Arguments

:: Solver

The Solver argument.

-> Lit

Selector literal sel

-> [Lit]

literals [l1, l2, …, ln]

-> Bool

rhs

-> IO () 

Add a soft parity constraint sel ⇒ l1 ⊕ l2 ⊕ … ⊕ ln = rhs

Solving

solve :: Solver -> IO Bool Source

Solve constraints. Returns True if the problem is SATISFIABLE. Returns False if the problem is UNSATISFIABLE.

solveWith Source

Arguments

:: Solver 
-> [Lit]

Assumptions

-> IO Bool 

Solve constraints under assuptions. Returns True if the problem is SATISFIABLE. Returns False if the problem is UNSATISFIABLE.

Extract results

type Model = UArray Var Bool Source

A model is represented as a mapping from variables to its values.

getModel :: Solver -> IO Model Source

After solve returns True, it returns an satisfying assignment.

getFailedAssumptions :: Solver -> IO [Lit] Source

After solveWith returns False, it returns a set of assumptions that leads to contradiction. In particular, if it returns an empty set, the problem is unsatisiable without any assumptions.

Solver configulation

defaultRestartStrategy :: RestartStrategy Source

default value for RestartStrategy.

setRestartFirst :: Solver -> Int -> IO () Source

The initial restart limit. (default 100) Zero and negative values are used to disable restart.

defaultRestartFirst :: Int Source

default value for RestartFirst.

setRestartInc :: Solver -> Double -> IO () Source

The factor with which the restart limit is multiplied in each restart. (default 1.5)

This must be >1.

defaultRestartInc :: Double Source

default value for RestartInc.

setLearntSizeFirst :: Solver -> Int -> IO () Source

The initial limit for learnt clauses.

Negative value means computing default value from problem instance.

defaultLearntSizeFirst :: Int Source

default value for LearntSizeFirst.

setLearntSizeInc :: Solver -> Double -> IO () Source

The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)

This must be >1.

defaultLearntSizeInc :: Double Source

default value for LearntSizeInc.

setCCMin :: Solver -> Int -> IO () Source

Controls conflict clause minimization (0=none, 1=basic, 2=deep)

defaultCCMin :: Int Source

default value for CCMin.

setVarPolarity :: Solver -> Var -> Bool -> IO () Source

The default polarity of a variable.

setLogger :: Solver -> (String -> IO ()) -> IO () Source

set callback function for receiving messages.

setRandomFreq :: Solver -> Double -> IO () Source

The frequency with which the decision heuristic tries to choose a random variable

setRandomGen :: Solver -> StdGen -> IO () Source

Set random generator used by the random variable selection

getRandomGen :: Solver -> IO StdGen Source

Get random generator used by the random variable selection

setPBSplitClausePart :: Solver -> Bool -> IO () Source

Split PB-constraints into a PB part and a clause part.

Example from minisat+ paper:

  • 4 x1 + 4 x2 + 4 x3 + 4 x4 + 2y1 + y2 + y3 ≥ 4

would be split into

  • x1 + x2 + x3 + x4 + ¬z ≥ 1 (clause part)
  • 2 y1 + y2 + y3 + 4 z ≥ 4 (PB part)

where z is a newly introduced variable, not present in any other constraint.

Reference:

  • N . Eéen and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. JSAT 2:1–26, 2006.

Read state

getNVars :: Solver -> IO Int Source

number of variables of the problem.

getNConstraints :: Solver -> IO Int Source

number of constraints.

getNLearntConstraints :: Solver -> IO Int Source

number of learnt constrints.

Read state (deprecated)

nVars :: Solver -> IO Int Source

Deprecated: Use getNVars instead

number of variables of the problem.

nAssigns :: Solver -> IO Int Source

Deprecated: nAssigns is deprecated

number of assigned variables.

nConstraints :: Solver -> IO Int Source

Deprecated: Use getNConstraints instead

number of constraints.

nLearnt :: Solver -> IO Int Source

Deprecated: Use getNLearntConstraints instead

number of learnt constrints.

Internal API