Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Synopsis
- seq :: a -> b -> b
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- ($) :: (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- class Bounded a where
- class Enum a
- class Eq a where
- (/) :: Fractional a => a -> a -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class Show a where
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- (<>) :: Semigroup a => a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- data Char
- data Double
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Maybe a
- data Either a b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- class Applicative f => Alternative (f :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class Bifunctor (p :: Type -> Type -> Type) where
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- forever :: Applicative f => f a -> f b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
- fmapDefault :: Traversable t => (a -> b) -> t a -> t b
- mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
- mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- optional :: Alternative f => f a -> f (Maybe a)
- newtype WrappedMonad (m :: Type -> Type) a = WrapMonad {
- unwrapMonad :: m a
- newtype WrappedArrow (a :: Type -> Type -> Type) b c = WrapArrow {
- unwrapArrow :: a b c
- newtype ZipList a = ZipList {
- getZipList :: [a]
- newtype Const a (b :: k) :: forall k. Type -> k -> Type = Const {
- getConst :: a
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- and :: Foldable t => t Bool -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- readMaybe :: Read a => String -> Maybe a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- bool :: a -> a -> Bool -> a
- (&) :: a -> (a -> b) -> b
- void :: Functor f => f a -> f ()
- ($>) :: Functor f => f a -> b -> f b
- (^) :: (Num a, Integral b) => a -> b -> a
- fromMaybe :: a -> Maybe a -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- flip :: (a -> b -> c) -> b -> a -> c
- (.) :: (b -> c) -> (a -> b) -> a -> c
- const :: a -> b -> a
- id :: a -> a
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- liftA :: Applicative f => (a -> b) -> f a -> f b
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- error :: HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- hoistEitherT :: (forall b. m b -> n b) -> EitherT x m a -> EitherT x n a
- hoistMaybe :: Monad m => x -> Maybe a -> EitherT x m a
- secondEitherT :: Functor m => (a -> b) -> EitherT x m a -> EitherT x m b
- firstEitherT :: Functor m => (x -> y) -> EitherT x m a -> EitherT y m a
- bimapEitherT :: Functor m => (x -> y) -> (a -> b) -> EitherT x m a -> EitherT y m b
- hoistEither :: Monad m => Either x a -> EitherT x m a
- mapEitherT :: (m (Either x a) -> n (Either y b)) -> EitherT x m a -> EitherT y n b
- right :: Monad m => a -> EitherT x m a
- left :: Monad m => x -> EitherT x m a
- eitherT :: Monad m => (x -> m b) -> (a -> m b) -> EitherT x m a -> m b
- newEitherT :: m (Either x a) -> EitherT x m a
- runEitherT :: EitherT x m a -> m (Either x a)
- pattern EitherT :: forall (m :: Type -> Type) x a. m (Either x a) -> ExceptT x m a
- type EitherT = ExceptT
- fromMaybeM :: Applicative f => f a -> Maybe a -> f a
- whenM :: Monad m => m Bool -> m () -> m ()
- unlessM :: Monad m => m Bool -> m () -> m ()
- with :: Functor f => f a -> (a -> b) -> f b
Documentation
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
($) :: (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that ($)
is levity-polymorphic in its result type, so that
foo $ True where foo :: Bool -> Int#
is well-typed
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative
computations. Defined by
guard True =pure
() guard False =empty
Examples
Common uses of guard
include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative
-based parser.
As an example of signaling an error in the error monad Maybe
,
consider a safe division function safeDiv x y
that returns
Nothing
when the denominator y
is zero and
otherwise. For example:Just
(x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv
using guards, but not guard
:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y | y /= 0 = Just (x `div` y) | otherwise = Nothing
A definition of safeDiv
using guard
and Monad
do
-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
Examples
A common use of join
is to run an IO
computation returned from
an STM
transaction, since STM
transactions
can't perform IO
directly. Recall that
atomically
:: STM a -> IO a
is used to run STM
transactions atomically. So, by
specializing the types of atomically
and join
to
atomically
:: STM (IO b) -> IO (IO b)join
:: IO (IO b) -> IO b
we can compose them as
join
.atomically
:: STM (IO b) -> IO b
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Bounded Bool | Since: base-2.1 |
Bounded Char | Since: base-2.1 |
Bounded Int | Since: base-2.1 |
Bounded Int8 | Since: base-2.1 |
Bounded Int16 | Since: base-2.1 |
Bounded Int32 | Since: base-2.1 |
Bounded Int64 | Since: base-2.1 |
Bounded Ordering | Since: base-2.1 |
Bounded Word | Since: base-2.1 |
Bounded Word8 | Since: base-2.1 |
Bounded Word16 | Since: base-2.1 |
Bounded Word32 | Since: base-2.1 |
Bounded Word64 | Since: base-2.1 |
Bounded VecCount | Since: base-4.10.0.0 |
Bounded VecElem | Since: base-4.10.0.0 |
Bounded () | Since: base-2.1 |
Bounded All | Since: base-2.1 |
Bounded Any | Since: base-2.1 |
Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Bounded WordPtr | |
Bounded IntPtr | |
Bounded GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode | |
Bounded IsolationLevel | |
Defined in Database.PostgreSQL.Simple.Transaction | |
Bounded ReadWriteMode | |
Defined in Database.PostgreSQL.Simple.Transaction | |
Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Dual a) | Since: base-2.1 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Bounded a => Bounded (Product a) | Since: base-2.1 |
(Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
Bounded (Proxy t) | Since: base-4.7.0.0 |
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Bounded a) => Bounded (Ap f a) | Since: base-4.12.0.0 |
Coercible a b => Bounded (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
Bounded b => Bounded (Tagged s b) | |
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
a ~~ b => Bounded (a :~~: b) | Since: base-4.10.0.0 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
(/) :: Fractional a => a -> a -> a infixl 7 #
fractional division
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following laws:
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do
expression.
As part of the MonadFail proposal (MFP), this function is moved
to its own class MonadFail
(see Control.Monad.Fail for more
details). The definition here will be removed in a future
release.
Instances
Monad [] | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
Monad IO | Since: base-2.1 |
Monad Par1 | Since: base-4.9.0.0 |
Monad Q | |
Monad IResult | |
Monad Result | |
Monad Parser | |
Monad Complex | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Put | |
Monad DList | |
Monad RowParser | |
Monad Conversion | |
Defined in Database.PostgreSQL.Simple.Internal (>>=) :: Conversion a -> (a -> Conversion b) -> Conversion b # (>>) :: Conversion a -> Conversion b -> Conversion b # return :: a -> Conversion a # fail :: String -> Conversion a # | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # fail :: String -> SmallArray a # | |
Monad Vector | |
Monad Db Source # | |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad (ST s) | Since: base-2.1 |
Monad (Parser i) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # fail :: String -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # fail :: String -> ArrowMonad a a0 # | |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad m => Monad (ExceptT e m) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (StateT s m) | |
Monad (Tagged s) | |
Monad ((->) r :: Type -> Type) | Since: base-2.1 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
Monad m => Monad (ReaderT r m) | |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
class Functor (f :: Type -> Type) where #
The Functor
class is used for types that can be mapped over.
Instances of Functor
should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor
for lists, Maybe
and IO
satisfy these laws.
Instances
Functor [] | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Functor IO | Since: base-2.1 |
Functor Par1 | Since: base-4.9.0.0 |
Functor Q | |
Functor IResult | |
Functor Result | |
Functor Parser | |
Functor Complex | Since: base-4.9.0.0 |
Functor ZipList | Since: base-2.1 |
Functor Identity | Since: base-4.8.0.0 |
Functor STM | Since: base-4.3.0.0 |
Functor First | Since: base-4.8.0.0 |
Functor Last | Since: base-4.8.0.0 |
Functor Dual | Since: base-4.8.0.0 |
Functor Sum | Since: base-4.8.0.0 |
Functor Product | Since: base-4.8.0.0 |
Functor Down | Since: base-4.11.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
Functor Put | |
Defined in Data.ByteString.Builder.Internal | |
Functor DList | |
Functor RowParser | |
Functor Conversion | |
Defined in Database.PostgreSQL.Simple.Internal fmap :: (a -> b) -> Conversion a -> Conversion b # (<$) :: a -> Conversion b -> Conversion a # | |
Functor Only | |
Functor In | |
Functor Binary | |
Functor PGArray | |
Functor Doc | |
Functor AnnotDetails | |
Defined in Text.PrettyPrint.Annotated.HughesPJ fmap :: (a -> b) -> AnnotDetails a -> AnnotDetails b # (<$) :: a -> AnnotDetails b -> AnnotDetails a # | |
Functor Span | |
Functor SmallArray | |
Defined in Data.Primitive.SmallArray fmap :: (a -> b) -> SmallArray a -> SmallArray b # (<$) :: a -> SmallArray b -> SmallArray a # | |
Functor Vector | |
Functor Db Source # | |
Functor Unique Source # | |
Functor (Either a) | Since: base-3.0 |
Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor ((,) a) | Since: base-2.1 |
Functor (HashMap k) | |
Functor (ST s) | Since: base-2.1 |
Functor (Array i) | Since: base-2.1 |
Functor (IResult i) | |
Functor (Parser i) | |
Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad m => Functor (Handler m) | |
Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
Functor m => Functor (ExceptT e m) | |
Functor m => Functor (ErrorT e m) | |
Functor m => Functor (StateT s m) | |
Functor (Tagged s) | |
Functor ((->) r :: Type -> Type) | Since: base-2.1 |
Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
Functor m => Functor (ReaderT r m) | |
Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
Basic numeric class.
The Haskell Report defines no laws for Num
. However, '(+)' and '(*)' are
customarily expected to define a ring and have the following properties:
- Associativity of (+)
(x + y) + z
=x + (y + z)
- Commutativity of (+)
x + y
=y + x
fromInteger 0
is the additive identityx + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of (*)
(x * y) * z
=x * (y * z)
fromInteger 1
is the multiplicative identityx * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of (*) with respect to (+)
a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
Num Int | Since: base-2.1 |
Num Int8 | Since: base-2.1 |
Num Int16 | Since: base-2.1 |
Num Int32 | Since: base-2.1 |
Num Int64 | Since: base-2.1 |
Num Integer | Since: base-2.1 |
Num Natural | Note that Since: base-4.8.0.0 |
Num Word | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Num Word16 | Since: base-2.1 |
Num Word32 | Since: base-2.1 |
Num Word64 | Since: base-2.1 |
Num Pos | |
Num WordPtr | |
Num IntPtr | |
Num Column | |
Num Row | |
Num NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime (+) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (-) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # (*) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # negate :: NominalDiffTime -> NominalDiffTime # abs :: NominalDiffTime -> NominalDiffTime # signum :: NominalDiffTime -> NominalDiffTime # fromInteger :: Integer -> NominalDiffTime # | |
Num CodePoint | |
Num DecoderState | |
Defined in Data.Text.Encoding (+) :: DecoderState -> DecoderState -> DecoderState # (-) :: DecoderState -> DecoderState -> DecoderState # (*) :: DecoderState -> DecoderState -> DecoderState # negate :: DecoderState -> DecoderState # abs :: DecoderState -> DecoderState # signum :: DecoderState -> DecoderState # fromInteger :: Integer -> DecoderState # | |
Integral a => Num (Ratio a) | Since: base-2.0.1 |
RealFloat a => Num (Complex a) | Since: base-2.1 |
HasResolution a => Num (Fixed a) | Since: base-2.1 |
Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Num a => Num (Product a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
Num a => Num (Down a) | Since: base-4.11.0.0 |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Num a) => Num (Ap f a) | Since: base-4.12.0.0 |
Num (f a) => Num (Alt f a) | Since: base-4.8.0.0 |
Num a => Num (Tagged s a) | |
Defined in Data.Tagged |
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Ord Bool | |
Ord Char | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Ord Int | |
Ord Int8 | Since: base-2.1 |
Ord Int16 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
Ord Integer | |
Ord Natural | Since: base-4.8.0.0 |
Ord Ordering | |
Defined in GHC.Classes | |
Ord Word | |
Ord Word8 | Since: base-2.1 |
Ord Word16 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Ord SomeTypeRep | |
Defined in Data.Typeable.Internal compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
Ord Exp | |
Ord Match | |
Ord Clause | |
Ord Pat | |
Ord Type | |
Ord Dec | |
Ord Name | |
Ord FunDep | |
Ord InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax compare :: InjectivityAnn -> InjectivityAnn -> Ordering # (<) :: InjectivityAnn -> InjectivityAnn -> Bool # (<=) :: InjectivityAnn -> InjectivityAnn -> Bool # (>) :: InjectivityAnn -> InjectivityAnn -> Bool # (>=) :: InjectivityAnn -> InjectivityAnn -> Bool # max :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # min :: InjectivityAnn -> InjectivityAnn -> InjectivityAnn # | |
Ord Overlap | |
Ord () | |
Ord TyCon | |
Ord Con | |
Ord ByteString | |
Defined in Data.ByteString.Internal compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
Ord JSONPathElement | |
Defined in Data.Aeson.Types.Internal compare :: JSONPathElement -> JSONPathElement -> Ordering # (<) :: JSONPathElement -> JSONPathElement -> Bool # (<=) :: JSONPathElement -> JSONPathElement -> Bool # (>) :: JSONPathElement -> JSONPathElement -> Bool # (>=) :: JSONPathElement -> JSONPathElement -> Bool # max :: JSONPathElement -> JSONPathElement -> JSONPathElement # min :: JSONPathElement -> JSONPathElement -> JSONPathElement # | |
Ord DotNetTime | |
Defined in Data.Aeson.Types.Internal compare :: DotNetTime -> DotNetTime -> Ordering # (<) :: DotNetTime -> DotNetTime -> Bool # (<=) :: DotNetTime -> DotNetTime -> Bool # (>) :: DotNetTime -> DotNetTime -> Bool # (>=) :: DotNetTime -> DotNetTime -> Bool # max :: DotNetTime -> DotNetTime -> DotNetTime # min :: DotNetTime -> DotNetTime -> DotNetTime # | |
Ord Pos | |
Ord BigNat | |
Ord Void | Since: base-4.8.0.0 |
Ord Version | Since: base-2.1 |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Ord Newline | Since: base-4.3.0.0 |
Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Ord All | Since: base-2.1 |
Ord Any | Since: base-2.1 |
Ord Fixity | Since: base-4.6.0.0 |
Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord WordPtr | |
Ord IntPtr | |
Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
Ord Format | |
Ord Oid | |
Ord Column | |
Ord Row | |
Ord LoFd | |
Ord IsolationLevel | |
Defined in Database.PostgreSQL.Simple.Transaction compare :: IsolationLevel -> IsolationLevel -> Ordering # (<) :: IsolationLevel -> IsolationLevel -> Bool # (<=) :: IsolationLevel -> IsolationLevel -> Bool # (>) :: IsolationLevel -> IsolationLevel -> Bool # (>=) :: IsolationLevel -> IsolationLevel -> Bool # max :: IsolationLevel -> IsolationLevel -> IsolationLevel # min :: IsolationLevel -> IsolationLevel -> IsolationLevel # | |
Ord ReadWriteMode | |
Defined in Database.PostgreSQL.Simple.Transaction compare :: ReadWriteMode -> ReadWriteMode -> Ordering # (<) :: ReadWriteMode -> ReadWriteMode -> Bool # (<=) :: ReadWriteMode -> ReadWriteMode -> Bool # (>) :: ReadWriteMode -> ReadWriteMode -> Bool # (>=) :: ReadWriteMode -> ReadWriteMode -> Bool # max :: ReadWriteMode -> ReadWriteMode -> ReadWriteMode # min :: ReadWriteMode -> ReadWriteMode -> ReadWriteMode # | |
Ord Query | |
Ord Identifier | |
Defined in Database.PostgreSQL.Simple.Types compare :: Identifier -> Identifier -> Ordering # (<) :: Identifier -> Identifier -> Bool # (<=) :: Identifier -> Identifier -> Bool # (>) :: Identifier -> Identifier -> Bool # (>=) :: Identifier -> Identifier -> Bool # max :: Identifier -> Identifier -> Identifier # min :: Identifier -> Identifier -> Identifier # | |
Ord QualifiedIdentifier | |
Defined in Database.PostgreSQL.Simple.Types compare :: QualifiedIdentifier -> QualifiedIdentifier -> Ordering # (<) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (<=) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (>) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # (>=) :: QualifiedIdentifier -> QualifiedIdentifier -> Bool # max :: QualifiedIdentifier -> QualifiedIdentifier -> QualifiedIdentifier # min :: QualifiedIdentifier -> QualifiedIdentifier -> QualifiedIdentifier # | |
Ord Savepoint | |
Defined in Database.PostgreSQL.Simple.Types | |
Ord ByteArray | Non-lexicographic ordering. This compares the lengths of the byte arrays first and uses a lexicographic ordering if the lengths are equal. Subject to change between major versions. Since: primitive-0.6.3.0 |
Defined in Data.Primitive.ByteArray | |
Ord ModName | |
Ord PkgName | |
Ord Module | |
Ord OccName | |
Ord NameFlavour | |
Defined in Language.Haskell.TH.Syntax compare :: NameFlavour -> NameFlavour -> Ordering # (<) :: NameFlavour -> NameFlavour -> Bool # (<=) :: NameFlavour -> NameFlavour -> Bool # (>) :: NameFlavour -> NameFlavour -> Bool # (>=) :: NameFlavour -> NameFlavour -> Bool # max :: NameFlavour -> NameFlavour -> NameFlavour # min :: NameFlavour -> NameFlavour -> NameFlavour # | |
Ord NameSpace | |
Defined in Language.Haskell.TH.Syntax | |
Ord Loc | |
Ord Info | |
Ord ModuleInfo | |
Defined in Language.Haskell.TH.Syntax compare :: ModuleInfo -> ModuleInfo -> Ordering # (<) :: ModuleInfo -> ModuleInfo -> Bool # (<=) :: ModuleInfo -> ModuleInfo -> Bool # (>) :: ModuleInfo -> ModuleInfo -> Bool # (>=) :: ModuleInfo -> ModuleInfo -> Bool # max :: ModuleInfo -> ModuleInfo -> ModuleInfo # min :: ModuleInfo -> ModuleInfo -> ModuleInfo # | |
Ord Fixity | |
Ord FixityDirection | |
Defined in Language.Haskell.TH.Syntax compare :: FixityDirection -> FixityDirection -> Ordering # (<) :: FixityDirection -> FixityDirection -> Bool # (<=) :: FixityDirection -> FixityDirection -> Bool # (>) :: FixityDirection -> FixityDirection -> Bool # (>=) :: FixityDirection -> FixityDirection -> Bool # max :: FixityDirection -> FixityDirection -> FixityDirection # min :: FixityDirection -> FixityDirection -> FixityDirection # | |
Ord Lit | |
Ord Body | |
Ord Guard | |
Ord Stmt | |
Ord Range | |
Ord DerivClause | |
Defined in Language.Haskell.TH.Syntax compare :: DerivClause -> DerivClause -> Ordering # (<) :: DerivClause -> DerivClause -> Bool # (<=) :: DerivClause -> DerivClause -> Bool # (>) :: DerivClause -> DerivClause -> Bool # (>=) :: DerivClause -> DerivClause -> Bool # max :: DerivClause -> DerivClause -> DerivClause # min :: DerivClause -> DerivClause -> DerivClause # | |
Ord DerivStrategy | |
Defined in Language.Haskell.TH.Syntax compare :: DerivStrategy -> DerivStrategy -> Ordering # (<) :: DerivStrategy -> DerivStrategy -> Bool # (<=) :: DerivStrategy -> DerivStrategy -> Bool # (>) :: DerivStrategy -> DerivStrategy -> Bool # (>=) :: DerivStrategy -> DerivStrategy -> Bool # max :: DerivStrategy -> DerivStrategy -> DerivStrategy # min :: DerivStrategy -> DerivStrategy -> DerivStrategy # | |
Ord TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax compare :: TypeFamilyHead -> TypeFamilyHead -> Ordering # (<) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (<=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>) :: TypeFamilyHead -> TypeFamilyHead -> Bool # (>=) :: TypeFamilyHead -> TypeFamilyHead -> Bool # max :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # min :: TypeFamilyHead -> TypeFamilyHead -> TypeFamilyHead # | |
Ord TySynEqn | |
Defined in Language.Haskell.TH.Syntax | |
Ord Foreign | |
Ord Callconv | |
Defined in Language.Haskell.TH.Syntax | |
Ord Safety | |
Ord Pragma | |
Ord Inline | |
Ord RuleMatch | |
Defined in Language.Haskell.TH.Syntax | |
Ord Phases | |
Ord RuleBndr | |
Defined in Language.Haskell.TH.Syntax | |
Ord AnnTarget | |
Defined in Language.Haskell.TH.Syntax | |
Ord SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SourceStrictness | |
Defined in Language.Haskell.TH.Syntax compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord Bang | |
Ord PatSynDir | |
Defined in Language.Haskell.TH.Syntax | |
Ord PatSynArgs | |
Defined in Language.Haskell.TH.Syntax compare :: PatSynArgs -> PatSynArgs -> Ordering # (<) :: PatSynArgs -> PatSynArgs -> Bool # (<=) :: PatSynArgs -> PatSynArgs -> Bool # (>) :: PatSynArgs -> PatSynArgs -> Bool # (>=) :: PatSynArgs -> PatSynArgs -> Bool # max :: PatSynArgs -> PatSynArgs -> PatSynArgs # min :: PatSynArgs -> PatSynArgs -> PatSynArgs # | |
Ord TyVarBndr | |
Defined in Language.Haskell.TH.Syntax | |
Ord FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax compare :: FamilyResultSig -> FamilyResultSig -> Ordering # (<) :: FamilyResultSig -> FamilyResultSig -> Bool # (<=) :: FamilyResultSig -> FamilyResultSig -> Bool # (>) :: FamilyResultSig -> FamilyResultSig -> Bool # (>=) :: FamilyResultSig -> FamilyResultSig -> Bool # max :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # min :: FamilyResultSig -> FamilyResultSig -> FamilyResultSig # | |
Ord TyLit | |
Ord Role | |
Ord AnnLookup | |
Defined in Language.Haskell.TH.Syntax | |
Ord LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
Ord UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime compare :: UniversalTime -> UniversalTime -> Ordering # (<) :: UniversalTime -> UniversalTime -> Bool # (<=) :: UniversalTime -> UniversalTime -> Bool # (>) :: UniversalTime -> UniversalTime -> Bool # (>=) :: UniversalTime -> UniversalTime -> Bool # max :: UniversalTime -> UniversalTime -> UniversalTime # min :: UniversalTime -> UniversalTime -> UniversalTime # | |
Ord NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime compare :: NominalDiffTime -> NominalDiffTime -> Ordering # (<) :: NominalDiffTime -> NominalDiffTime -> Bool # (<=) :: NominalDiffTime -> NominalDiffTime -> Bool # (>) :: NominalDiffTime -> NominalDiffTime -> Bool # (>=) :: NominalDiffTime -> NominalDiffTime -> Bool # max :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # min :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # | |
Ord Day | |
Ord UnpackedUUID | |
Defined in Data.UUID.Types.Internal | |
Ord UUID | |
Ord DbPoolConfiguration Source # | |
Defined in Traction.Control compare :: DbPoolConfiguration -> DbPoolConfiguration -> Ordering # (<) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (<=) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (>) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # (>=) :: DbPoolConfiguration -> DbPoolConfiguration -> Bool # max :: DbPoolConfiguration -> DbPoolConfiguration -> DbPoolConfiguration # min :: DbPoolConfiguration -> DbPoolConfiguration -> DbPoolConfiguration # | |
Ord a => Ord [a] | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord (Ptr a) | Since: base-2.1 |
Ord (FunPtr a) | |
Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
Ord (Fixed a) | Since: base-2.1 |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Ord a => Ord (First a) | Since: base-2.1 |
Ord a => Ord (Last a) | Since: base-2.1 |
Ord a => Ord (Dual a) | Since: base-2.1 |
Ord a => Ord (Sum a) | Since: base-2.1 |
Ord a => Ord (Product a) | Since: base-2.1 |
Defined in Data.Semigroup.Internal | |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (Set a) | |
Ord a => Ord (DList a) | |
Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
Ord a => Ord (Only a) | |
Ord a => Ord (In a) | |
Ord a => Ord (Binary a) | |
Defined in Database.PostgreSQL.Simple.Types | |
Ord a => Ord (PGArray a) | |
Defined in Database.PostgreSQL.Simple.Types | |
Ord a => Ord (Values a) | |
Defined in Database.PostgreSQL.Simple.Types | |
(Ord a, Prim a) => Ord (PrimArray a) | Lexicographic ordering. Subject to change between major versions. Since: primitive-0.6.4.0 |
Defined in Data.Primitive.PrimArray | |
Ord a => Ord (SmallArray a) | Lexicographic ordering. Subject to change between major versions. |
Defined in Data.Primitive.SmallArray compare :: SmallArray a -> SmallArray a -> Ordering # (<) :: SmallArray a -> SmallArray a -> Bool # (<=) :: SmallArray a -> SmallArray a -> Bool # (>) :: SmallArray a -> SmallArray a -> Bool # (>=) :: SmallArray a -> SmallArray a -> Bool # max :: SmallArray a -> SmallArray a -> SmallArray a # min :: SmallArray a -> SmallArray a -> SmallArray a # | |
Ord a => Ord (HashSet a) | |
Defined in Data.HashSet.Base | |
(Storable a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Storable | |
(Prim a, Ord a) => Ord (Vector a) | |
Defined in Data.Vector.Primitive | |
Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
Ord (V1 p) | Since: base-4.9.0.0 |
Ord (U1 p) | Since: base-4.7.0.0 |
Ord (TypeRep a) | Since: base-4.4.0.0 |
Defined in Data.Typeable.Internal | |
(Ord a, Ord b) => Ord (a, b) | |
(Ord k, Ord v) => Ord (HashMap k v) | The order is total. Note: Because the hash is not guaranteed to be stable across library
versions, OSes, or architectures, neither is an actual order of elements in
|
Defined in Data.HashMap.Base | |
(Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
Defined in GHC.Arr | |
Ord (Proxy s) | Since: base-4.7.0.0 |
(Ord h, Ord t) => Ord (h :. t) | |
Defined in Database.PostgreSQL.Simple.Types | |
Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
Defined in GHC.Classes | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Ord (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |
(Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
Ord b => Ord (Tagged s b) | |
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
Ord (a :~~: b) | Since: base-4.10.0.0 |
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
:: Int | the operator precedence of the enclosing
context (a number from |
-> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that
showsPrec
started with.
The method readList
is provided to allow the programmer to
give a specialised way of parsing lists of values.
For example, this is used by the predefined Read
instance of
the Char
type, where values of type String
should be are
expected to use double quotes, rather than square brackets.
Proposed replacement for readsPrec
using new-style parsers (GHC only).
readListPrec :: ReadPrec [a] #
Proposed replacement for readList
using new-style parsers (GHC only).
The default definition uses readList
. Instances that define readPrec
should also define readListPrec
as readListPrecDefault
.
Instances
Read Bool | Since: base-2.1 |
Read Char | Since: base-2.1 |
Read Double | Since: base-2.1 |
Read Float | Since: base-2.1 |
Read Int | Since: base-2.1 |
Read Int8 | Since: base-2.1 |
Read Int16 | Since: base-2.1 |
Read Int32 | Since: base-2.1 |
Read Int64 | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Read Natural | Since: base-4.8.0.0 |
Read Ordering | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Read Word8 | Since: base-2.1 |
Read Word16 | Since: base-2.1 |
Read Word32 | Since: base-2.1 |
Read Word64 | Since: base-2.1 |
Read () | Since: base-2.1 |
Read ByteString | |
Defined in Data.ByteString.Internal readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
Read Value | |
Read DotNetTime | |
Defined in Data.Aeson.Types.Internal readsPrec :: Int -> ReadS DotNetTime # readList :: ReadS [DotNetTime] # readPrec :: ReadPrec DotNetTime # readListPrec :: ReadPrec [DotNetTime] # | |
Read Void | Reading a Since: base-4.8.0.0 |
Read Version | Since: base-2.1 |
Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
Read Newline | Since: base-4.3.0.0 |
Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
Read All | Since: base-2.1 |
Read Any | Since: base-2.1 |
Read Fixity | Since: base-4.6.0.0 |
Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Read WordPtr | |
Read IntPtr | |
Read Lexeme | Since: base-2.1 |
Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read | |
Read Oid | |
Read ConnectInfo | |
Defined in Database.PostgreSQL.Simple.Internal readsPrec :: Int -> ReadS ConnectInfo # readList :: ReadS [ConnectInfo] # readPrec :: ReadPrec ConnectInfo # readListPrec :: ReadPrec [ConnectInfo] # | |
Read Null | |
Read Default | |
Read Query | |
Read Identifier | |
Defined in Database.PostgreSQL.Simple.Types readsPrec :: Int -> ReadS Identifier # readList :: ReadS [Identifier] # readPrec :: ReadPrec Identifier # readListPrec :: ReadPrec [Identifier] # | |
Read QualifiedIdentifier | |
Read Savepoint | |
Read UnpackedUUID | |
Read UUID | |
Read a => Read [a] | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
(Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
Read p => Read (Par1 p) | Since: base-4.7.0.0 |
Read a => Read (Complex a) | Since: base-2.1 |
HasResolution a => Read (Fixed a) | Since: base-4.3.0.0 |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read a => Read (First a) | Since: base-2.1 |
Read a => Read (Last a) | Since: base-2.1 |
Read a => Read (Dual a) | Since: base-2.1 |
Read a => Read (Sum a) | Since: base-2.1 |
Read a => Read (Product a) | Since: base-2.1 |
Read a => Read (Down a) | Since: base-4.7.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
(Read a, Ord a) => Read (Set a) | |
Read a => Read (DList a) | |
Read a => Read (Only a) | |
Read a => Read (In a) | |
Read a => Read (Binary a) | |
Read a => Read (PGArray a) | |
Read a => Read (Values a) | |
Read a => Read (SmallArray a) | |
Defined in Data.Primitive.SmallArray readsPrec :: Int -> ReadS (SmallArray a) # readList :: ReadS [SmallArray a] # readPrec :: ReadPrec (SmallArray a) # readListPrec :: ReadPrec [SmallArray a] # | |
(Eq a, Hashable a, Read a) => Read (HashSet a) | |
(Read a, Storable a) => Read (Vector a) | |
(Read a, Prim a) => Read (Vector a) | |
Read a => Read (Vector a) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
Read (V1 p) | Since: base-4.9.0.0 |
Read (U1 p) | Since: base-4.9.0.0 |
(Read a, Read b) => Read (a, b) | Since: base-2.1 |
(Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
(Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
Read (Proxy t) | Since: base-4.7.0.0 |
(Read h, Read t) => Read (h :. t) | |
Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Read (f a) => Read (Ap f a) | Since: base-4.12.0.0 |
Read (f a) => Read (Alt f a) | Since: base-4.8.0.0 |
Coercible a b => Read (Coercion a b) | Since: base-4.7.0.0 |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
(Read e, Read1 m, Read a) => Read (ExceptT e m a) | |
(Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
Read b => Read (Tagged s b) | |
Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
(Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
a ~~ b => Read (a :~~: b) | Since: base-4.10.0.0 |
Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read |
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative [] | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Applicative IO | Since: base-2.1 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative Q | |
Applicative IResult | |
Applicative Result | |
Applicative Parser | |
Applicative Complex | Since: base-4.9.0.0 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative Put | |
Applicative DList | |
Applicative RowParser | |
Defined in Database.PostgreSQL.Simple.Internal | |
Applicative Conversion | |
Defined in Database.PostgreSQL.Simple.Internal pure :: a -> Conversion a # (<*>) :: Conversion (a -> b) -> Conversion a -> Conversion b # liftA2 :: (a -> b -> c) -> Conversion a -> Conversion b -> Conversion c # (*>) :: Conversion a -> Conversion b -> Conversion b # (<*) :: Conversion a -> Conversion b -> Conversion a # | |
Applicative SmallArray | |
Defined in Data.Primitive.SmallArray pure :: a -> SmallArray a # (<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b # liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c # (*>) :: SmallArray a -> SmallArray b -> SmallArray b # (<*) :: SmallArray a -> SmallArray b -> SmallArray a # | |
Applicative Vector | |
Applicative Db Source # | |
Applicative (Either e) | Since: base-3.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Applicative (ST s) | Since: base-4.4.0.0 |
Applicative (Parser i) | |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
(Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
Applicative (Tagged s) | |
Applicative ((->) a :: Type -> Type) | Since: base-2.1 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
class Foldable (t :: Type -> Type) where #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
fold :: Monoid m => t m -> m #
Combine the elements of a structure using a monoid.
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that, since the head of the resulting expression is produced by
an application of the operator to the first element of the list,
foldr
can produce a terminating expression from an infinite list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
foldr' :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, but with strict application of the operator.
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure.
In the case of lists, foldl
, when applied to a binary
operator, a starting value (typically the left-identity of the operator),
and a list, reduces the list using the binary operator, from left to
right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. This means that foldl'
will
diverge if given an infinite list.
Also note that if you want an efficient left-fold, you probably want to
use foldl'
instead of foldl
. The reason for this is that latter does
not force the "inner" results (e.g. z
in the above example)
before applying them to the operator (e.g. to f
x1(
). This results
in a thunk chain f
x2)O(n)
elements long, which then must be evaluated from
the outside-in.
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl
f z .toList
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to weak head normal
form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a finite
list to a single, monolithic result (e.g. length
).
For a general Foldable
structure this should be semantically identical
to,
foldl f z =foldl'
f z .toList
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr
that has no base case,
and thus may only be applied to non-empty structures.
foldr1
f =foldr1
f .toList
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl
that has no base case,
and thus may only be applied to non-empty structures.
foldl1
f =foldl1
f .toList
List of elements of a structure, from left to right.
Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.
Returns the size/length of a finite structure as an Int
. The
default implementation is optimized for structures that are similar to
cons-lists, because there is no general way to do better.
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
The sum
function computes the sum of the numbers of a structure.
product :: Num a => t a -> a #
The product
function computes the product of the numbers of a
structure.
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable IResult | |
Defined in Data.Aeson.Types.Internal fold :: Monoid m => IResult m -> m # foldMap :: Monoid m => (a -> m) -> IResult a -> m # foldr :: (a -> b -> b) -> b -> IResult a -> b # foldr' :: (a -> b -> b) -> b -> IResult a -> b # foldl :: (b -> a -> b) -> b -> IResult a -> b # foldl' :: (b -> a -> b) -> b -> IResult a -> b # foldr1 :: (a -> a -> a) -> IResult a -> a # foldl1 :: (a -> a -> a) -> IResult a -> a # elem :: Eq a => a -> IResult a -> Bool # maximum :: Ord a => IResult a -> a # minimum :: Ord a => IResult a -> a # | |
Foldable Result | |
Defined in Data.Aeson.Types.Internal fold :: Monoid m => Result m -> m # foldMap :: Monoid m => (a -> m) -> Result a -> m # foldr :: (a -> b -> b) -> b -> Result a -> b # foldr' :: (a -> b -> b) -> b -> Result a -> b # foldl :: (b -> a -> b) -> b -> Result a -> b # foldl' :: (b -> a -> b) -> b -> Result a -> b # foldr1 :: (a -> a -> a) -> Result a -> a # foldl1 :: (a -> a -> a) -> Result a -> a # elem :: Eq a => a -> Result a -> Bool # maximum :: Ord a => Result a -> a # minimum :: Ord a => Result a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable DList | |
Defined in Data.DList fold :: Monoid m => DList m -> m # foldMap :: Monoid m => (a -> m) -> DList a -> m # foldr :: (a -> b -> b) -> b -> DList a -> b # foldr' :: (a -> b -> b) -> b -> DList a -> b # foldl :: (b -> a -> b) -> b -> DList a -> b # foldl' :: (b -> a -> b) -> b -> DList a -> b # foldr1 :: (a -> a -> a) -> DList a -> a # foldl1 :: (a -> a -> a) -> DList a -> a # elem :: Eq a => a -> DList a -> Bool # maximum :: Ord a => DList a -> a # minimum :: Ord a => DList a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray fold :: Monoid m => SmallArray m -> m # foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] # null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # sum :: Num a => SmallArray a -> a # product :: Num a => SmallArray a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet.Base fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Vector | |
Defined in Data.Vector fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Base fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable (Tagged s) | |
Defined in Data.Tagged fold :: Monoid m => Tagged s m -> m # foldMap :: Monoid m => (a -> m) -> Tagged s a -> m # foldr :: (a -> b -> b) -> b -> Tagged s a -> b # foldr' :: (a -> b -> b) -> b -> Tagged s a -> b # foldl :: (b -> a -> b) -> b -> Tagged s a -> b # foldl' :: (b -> a -> b) -> b -> Tagged s a -> b # foldr1 :: (a -> a -> a) -> Tagged s a -> a # foldl1 :: (a -> a -> a) -> Tagged s a -> a # elem :: Eq a => a -> Tagged s a -> Bool # maximum :: Ord a => Tagged s a -> a # minimum :: Ord a => Tagged s a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be traversed from left to right.
A definition of traverse
must satisfy the following laws:
- naturality
t .
for every applicative transformationtraverse
f =traverse
(t . f)t
- identity
traverse
Identity = Identity- composition
traverse
(Compose .fmap
g . f) = Compose .fmap
(traverse
g) .traverse
f
A definition of sequenceA
must satisfy the following laws:
- naturality
t .
for every applicative transformationsequenceA
=sequenceA
.fmap
tt
- identity
sequenceA
.fmap
Identity = Identity- composition
sequenceA
.fmap
Compose = Compose .fmap
sequenceA
.sequenceA
where an applicative transformation is a function
t :: (Applicative f, Applicative g) => f a -> g a
preserving the Applicative
operations, i.e.
and the identity functor Identity
and composition of functors Compose
are defined as
newtype Identity a = Identity a instance Functor Identity where fmap f (Identity x) = Identity (f x) instance Applicative Identity where pure x = Identity x Identity f <*> Identity x = Identity (f x) newtype Compose f g a = Compose (f (g a)) instance (Functor f, Functor g) => Functor (Compose f g) where fmap f (Compose x) = Compose (fmap (fmap f) x) instance (Applicative f, Applicative g) => Applicative (Compose f g) where pure x = Compose (pure (pure x)) Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
(The naturality law is implied by parametricity.)
Instances are similar to Functor
, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where traverse f Empty = pure Empty traverse f (Leaf x) = Leaf <$> f x traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functor
instance,fmap
should be equivalent to traversal with the identity applicative functor (fmapDefault
). - In the
Foldable
instance,foldMap
should be equivalent to traversal with a constant applicative functor (foldMapDefault
).
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Instances
Traversable [] | Since: base-2.1 |
Defined in Data.Traversable | |
Traversable Maybe | Since: base-2.1 |
Traversable Par1 | Since: base-4.9.0.0 |
Traversable IResult | |
Traversable Result | |
Traversable Complex | Since: base-4.9.0.0 |
Traversable ZipList | Since: base-4.9.0.0 |
Traversable Identity | Since: base-4.9.0.0 |
Traversable First | Since: base-4.8.0.0 |
Traversable Last | Since: base-4.8.0.0 |
Traversable Dual | Since: base-4.8.0.0 |
Traversable Sum | Since: base-4.8.0.0 |
Traversable Product | Since: base-4.8.0.0 |
Traversable Down | Since: base-4.12.0.0 |
Traversable NonEmpty | Since: base-4.9.0.0 |
Traversable SmallArray | |
Defined in Data.Primitive.SmallArray traverse :: Applicative f => (a -> f b) -> SmallArray a -> f (SmallArray b) # sequenceA :: Applicative f => SmallArray (f a) -> f (SmallArray a) # mapM :: Monad m => (a -> m b) -> SmallArray a -> m (SmallArray b) # sequence :: Monad m => SmallArray (m a) -> m (SmallArray a) # | |
Traversable Vector | |
Traversable (Either a) | Since: base-4.7.0.0 |
Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Traversable (HashMap k) | |
Ix i => Traversable (Array i) | Since: base-2.1 |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
Traversable (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
Traversable f => Traversable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except | |
Traversable f => Traversable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error | |
Traversable (Tagged s) | |
Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
(Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
(Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
(Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Identity of mappend
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.mappend
= '(<>)'
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid ByteString | |
Defined in Data.ByteString.Internal mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid Builder | |
Monoid More | |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid Query | |
Monoid Doc | |
Monoid ByteArray | |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Monoid (IResult a) | |
Monoid (Result a) | |
Monoid (Parser a) | |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
Ord a => Monoid (Set a) | |
Monoid (DList a) | |
Monoid (Doc a) | |
Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
(Hashable a, Eq a) => Monoid (HashSet a) | |
Storable a => Monoid (Vector a) | |
Prim a => Monoid (Vector a) | |
Monoid (Vector a) | |
Monoid (MergeSet a) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid (U1 p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
(Eq k, Hashable k) => Monoid (HashMap k v) | |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
Monoid (Parser i a) | |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
(Semigroup a, Monoid a) => Monoid (Tagged s a) | |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Instances
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
Instances
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Eq Double | Note that due to the presence of
Also note that
|
Floating Double | Since: base-2.1 |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Read Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Lift Double | |
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Storable Double | Since: base-2.1 |
FromField Double | int2, int4, float4, float8 (Uses attoparsec's |
Defined in Database.PostgreSQL.Simple.FromField | |
ToField Double | |
Defined in Database.PostgreSQL.Simple.ToField | |
Prim Double | |
Defined in Data.Primitive.Types alignment# :: Double -> Int# # indexByteArray# :: ByteArray# -> Int# -> Double # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Double#) # writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Double # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Double#) # writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s # | |
Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Double -> m (Vector Double) # basicUnsafeThaw :: PrimMonad m => Vector Double -> m (Mutable Vector (PrimState m) Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Monad m => Vector Double -> Int -> m Double # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Double -> Vector Double -> m () # | |
MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Double) # basicInitialize :: PrimMonad m => MVector (PrimState m) Double -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Double -> m (MVector (PrimState m) Double) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Double -> Int -> m Double # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Double -> Int -> Double -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Double -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Double -> Double -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Double -> MVector (PrimState m) Double -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Double -> Int -> m (MVector (PrimState m) Double) # | |
Generic1 (URec Double :: k -> Type) | |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Traversable (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Show (URec Double p) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
newtype Vector Double | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Double | |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Eq Int | |
Integral Int | Since: base-2.0.1 |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Num Int | Since: base-2.1 |
Ord Int | |
Read Int | Since: base-2.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Lift Int | |
Hashable Int | |
Defined in Data.Hashable.Class | |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
FromField Int | int2, int4, and if compiled as 64-bit code, int8 as well. This library was compiled as 64-bit code. |
Defined in Database.PostgreSQL.Simple.FromField fromField :: FieldParser Int # | |
ToField Int | |
Defined in Database.PostgreSQL.Simple.ToField | |
Prim Int | |
Defined in Data.Primitive.Types alignment# :: Int -> Int# # indexByteArray# :: ByteArray# -> Int# -> Int # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Int#) # writeByteArray# :: MutableByteArray# s -> Int# -> Int -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Int # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Int#) # writeOffAddr# :: Addr# -> Int# -> Int -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Int -> State# s -> State# s # | |
ByteSource Int | |
Defined in Data.UUID.Types.Internal.Builder | |
Unbox Int | |
Defined in Data.Vector.Unboxed.Base | |
Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) Int -> m (Vector Int) # basicUnsafeThaw :: PrimMonad m => Vector Int -> m (Mutable Vector (PrimState m) Int) # basicLength :: Vector Int -> Int # basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int # basicUnsafeIndexM :: Monad m => Vector Int -> Int -> m Int # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) Int -> Vector Int -> m () # | |
MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base basicLength :: MVector s Int -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int # basicOverlaps :: MVector s Int -> MVector s Int -> Bool # basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) Int) # basicInitialize :: PrimMonad m => MVector (PrimState m) Int -> m () # basicUnsafeReplicate :: PrimMonad m => Int -> Int -> m (MVector (PrimState m) Int) # basicUnsafeRead :: PrimMonad m => MVector (PrimState m) Int -> Int -> m Int # basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) Int -> Int -> Int -> m () # basicClear :: PrimMonad m => MVector (PrimState m) Int -> m () # basicSet :: PrimMonad m => MVector (PrimState m) Int -> Int -> m () # basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeMove :: PrimMonad m => MVector (PrimState m) Int -> MVector (PrimState m) Int -> m () # basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) Int -> Int -> m (MVector (PrimState m) Int) # | |
Generic1 (URec Int :: k -> Type) | |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Foldable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Traversable (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
Show (URec Int p) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
newtype Vector Int | |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type ByteSink Int g | |
Defined in Data.UUID.Types.Internal.Builder type ByteSink Int g = Takes4Bytes g | |
newtype MVector s Int | |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Monad Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Traversable Maybe | Since: base-2.1 |
Alternative Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
MonadThrow Maybe | |
Defined in Control.Monad.Catch | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
MonadBaseControl Maybe Maybe | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Generic (Maybe a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Lift a => Lift (Maybe a) | |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
FromField a => FromRow (Maybe [a]) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b) => FromRow (Maybe (a, b)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c) => FromRow (Maybe (a, b, c)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d) => FromRow (Maybe (a, b, c, d)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e) => FromRow (Maybe (a, b, c, d, e)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e, FromField f) => FromRow (Maybe (a, b, c, d, e, f)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g) => FromRow (Maybe (a, b, c, d, e, f, g)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h) => FromRow (Maybe (a, b, c, d, e, f, g, h)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h, FromField i) => FromRow (Maybe (a, b, c, d, e, f, g, h, i)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
(FromField a, FromField b, FromField c, FromField d, FromField e, FromField f, FromField g, FromField h, FromField i, FromField j) => FromRow (Maybe (a, b, c, d, e, f, g, h, i, j)) | |
Defined in Database.PostgreSQL.Simple.FromRow | |
FromField a => FromRow (Maybe (Only a)) | |
FromField a => FromRow (Maybe (Vector a)) | |
FromField a => FromField (Maybe a) | For dealing with null values. Compatible with any postgresql type
compatible with type |
Defined in Database.PostgreSQL.Simple.FromField fromField :: FieldParser (Maybe a) # | |
ToField a => ToField (Maybe a) | |
Defined in Database.PostgreSQL.Simple.ToField | |
Generic1 Maybe | |
SingI (Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI (Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type StM Maybe a | |
Defined in Control.Monad.Trans.Control | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
data Sing (b :: Maybe a) | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Rep1 Maybe | Since: base-4.6.0.0 |
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
Monad (Either e) | Since: base-4.4.0.0 |
Functor (Either a) | Since: base-3.0 |
Applicative (Either e) | Since: base-3.0 |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Traversable (Either a) | Since: base-4.7.0.0 |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch | |
e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Generic1 (Either a :: Type -> Type) | |
MonadBaseControl (Either e) (Either e) | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
Generic (Either a b) | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
(Lift a, Lift b) => Lift (Either a b) | |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
(FromField a, FromField b) => FromField (Either a b) | Compatible with both types. Conversions to type |
Defined in Database.PostgreSQL.Simple.FromField fromField :: FieldParser (Either a b) # | |
type StM (Either e) a | |
Defined in Control.Monad.Trans.Control | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 (MetaData "Either" "Data.Either" "base" False) (C1 (MetaCons "Left" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)) :+: C1 (MetaCons "Right" PrefixI False) (S1 (MetaSel (Nothing :: Maybe Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 b))) |
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
class Applicative f => Alternative (f :: Type -> Type) where #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 #
An associative binary operation
One or more.
Zero or more.
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Nothing
The identity of mplus
. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>
)
Instances
class Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
.
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since: base-4.8.0.0
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimap
f g ≡first
f.
second
g
Examples
>>>
bimap toUpper (+1) ('j', 3)
('J',4)
>>>
bimap toUpper (+1) (Left 'j')
Left 'J'
>>>
bimap toUpper (+1) (Right 3)
Right 4
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Bifunctor (,) | Since: base-4.8.0.0 |
Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Bifunctor (Tagged :: Type -> Type -> Type) | |
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when
.
replicateM_ :: Applicative m => Int -> m a -> m () #
Like replicateM
, but discards the result.
replicateM :: Applicative m => Int -> m a -> m [a] #
performs the action replicateM
n actn
times,
gathering the results.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM
, but discards the result.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM
function is analogous to foldl
, except that its result is
encapsulated in a monad. Note that foldM
works from left-to-right over
the list arguments. This could be an issue where (
and the `folded
function' are not commutative.>>
)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
The mapAndUnzipM
function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated
data structures or a state-transforming monad.
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever
is to process input from network sockets,
Handle
s, and channels
(e.g. MVar
and
Chan
).
For example, here is how we might implement an echo
server, using
forever
both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever
$ do client <- accept socketforkFinally
(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever
$ hGetLine client >>= hPutStrLn client
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter
function.
foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m #
fmapDefault :: Traversable t => (a -> b) -> t a -> t b #
This function may be used as a value for fmap
in a Functor
instance, provided that traverse
is defined. (Using
fmapDefault
with a Traversable
instance defined only by
sequenceA
will result in infinite recursion.)
fmapDefault
f ≡runIdentity
.traverse
(Identity
. f)
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c) #
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
newtype WrappedMonad (m :: Type -> Type) a #
WrapMonad | |
|
Instances
newtype WrappedArrow (a :: Type -> Type -> Type) b c #
WrapArrow | |
|
Instances
Lists, but with an Applicative
functor based on zipping.
ZipList | |
|
Instances
Functor ZipList | Since: base-2.1 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Traversable ZipList | Since: base-4.9.0.0 |
Alternative ZipList | Since: base-4.11.0.0 |
Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
Read a => Read (ZipList a) | Since: base-4.7.0.0 |
Show a => Show (ZipList a) | Since: base-4.7.0.0 |
Generic (ZipList a) | |
Generic1 ZipList | |
type Rep (ZipList a) | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
type Rep1 ZipList | Since: base-4.7.0.0 |
Defined in Control.Applicative |
newtype Const a (b :: k) :: forall k. Type -> k -> Type #
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |
Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Hashable2 (Const :: Type -> Type -> Type) | |
Defined in Data.Hashable.Class | |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Hashable a => Hashable1 (Const a :: Type -> Type) | |
Defined in Data.Hashable.Class | |
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
Num a => Num (Const a b) | Since: base-4.9.0.0 |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const toRational :: Const a b -> Rational # | |
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int | |
IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String fromString :: String -> Const a b # | |
Generic (Const a b) | |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
Prim a => Prim (Const a b) | Since: primitive-0.6.5.0 |
Defined in Data.Primitive.Types sizeOf# :: Const a b -> Int# # alignment# :: Const a b -> Int# # indexByteArray# :: ByteArray# -> Int# -> Const a b # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (#State# s, Const a b#) # writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Const a b # readOffAddr# :: Addr# -> Int# -> State# s -> (#State# s, Const a b#) # writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s # | |
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const |
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The least element of a non-empty structure with respect to the given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
As of base 4.8.0.0, sequence_
is just sequenceA_
, specialized
to Monad
.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA
.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an action, evaluate these
actions from left to right, and ignore the results. For a version
that doesn't ignore the results see traverse
.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #
Monadic fold over the elements of a structure, associating to the right, i.e. from right to left.
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read
instance.
Succeeds if there is exactly one valid result.
>>>
readMaybe "123" :: Maybe Int
Just 123
>>>
readMaybe "hello" :: Maybe Int
Nothing
Since: base-4.6.0.0
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
Case analysis for the Bool
type.
evaluates to bool
x y px
when p
is False
, and evaluates to y
when p
is True
.
This is equivalent to if p then y else x
; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>
bool "foo" "bar" True
"bar">>>
bool "foo" "bar" False
"foo"
Confirm that
and bool
x y pif p then y else x
are
equivalent:
>>>
let p = True; x = "bar"; y = "foo"
>>>
bool x y p == if p then y else x
True>>>
let p = False
>>>
bool x y p == if p then y else x
True
Since: base-4.7.0.0
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void
valueIO
action.
Examples
Replace the contents of a
with unit:Maybe
Int
>>>
void Nothing
Nothing>>>
void (Just 3)
Just ()
Replace the contents of an
with unit,
resulting in an Either
Int
Int
:Either
Int
'()'
>>>
void (Left 8675309)
Left 8675309>>>
void (Right 8675309)
Right ()
Replace every element of a list with unit:
>>>
void [1,2,3]
[(),(),()]
Replace the second element of a pair with unit:
>>>
void (1,2)
(1,())
Discard the result of an IO
action:
>>>
mapM print [1,2]
1 2 [(),()]>>>
void $ mapM print [1,2]
1 2
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$
.
Examples
Replace the contents of a
with a constant Maybe
Int
String
:
>>>
Nothing $> "foo"
Nothing>>>
Just 90210 $> "foo"
Just "foo"
Replace the contents of an
with a constant
Either
Int
Int
String
, resulting in an
:Either
Int
String
>>>
Left 8675309 $> "foo"
Left 8675309>>>
Right 8675309 $> "foo"
Right "foo"
Replace each element of a list with a constant String
:
>>>
[1,2,3] $> "foo"
["foo","foo","foo"]
Replace the second element of a pair with a constant String
:
>>>
(1,2) $> "foo"
(1,"foo")
Since: base-4.7.0.0
fromMaybe :: a -> Maybe a -> a #
The fromMaybe
function takes a default value and and Maybe
value. If the Maybe
is Nothing
, it returns the default values;
otherwise, it returns the value contained in the Maybe
.
Examples
Basic usage:
>>>
fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>>
fromMaybe "" Nothing
""
Read an integer from a string using readMaybe
. If we fail to
parse an integer, we want to return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
fromMaybe 0 (readMaybe "5")
5>>>
fromMaybe 0 (readMaybe "")
0
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #
Promote a function to a monad, scanning the monadic arguments from
left to right (cf. liftM2
).
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative
expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging
if the Boolean value debug
is True
, and otherwise do nothing.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
liftA :: Applicative f => (a -> b) -> f a -> f b #
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #
A variant of <*>
with the arguments reversed.
error :: HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
hoistEitherT :: (forall b. m b -> n b) -> EitherT x m a -> EitherT x n a #
Hoist
hoistMaybe :: Monad m => x -> Maybe a -> EitherT x m a #
Hoist a 'Maybe a' into a 'Right a'
secondEitherT :: Functor m => (a -> b) -> EitherT x m a -> EitherT x m b #
Map the Right
unwrapped computation using the given function.
firstEitherT :: Functor m => (x -> y) -> EitherT x m a -> EitherT y m a #
Map the Left
unwrapped computation using the given function.
bimapEitherT :: Functor m => (x -> y) -> (a -> b) -> EitherT x m a -> EitherT y m b #
Map the unwrapped computation using the given function.
newEitherT :: m (Either x a) -> EitherT x m a #
Constructor for computations in the either monad.
(The inverse of runEitherT
).
runEitherT :: EitherT x m a -> m (Either x a) #
Extractor for computations in the either monad.
(The inverse of newEitherT
).
fromMaybeM :: Applicative f => f a -> Maybe a -> f a Source #