{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UnboxedTuples #-}
module Text.Trifecta.Util.It
( It(Pure, It)
, needIt
, wantIt
, simplifyIt
, foldIt
, runIt
, fillIt
, rewindIt
, sliceIt
) where
import Control.Comonad
import Control.Monad
import Data.ByteString as Strict
import Data.ByteString.Lazy as Lazy
import Data.Profunctor
import Text.Trifecta.Delta
import Text.Trifecta.Rope
import Text.Trifecta.Util.Combinators as Util
data It r a
= Pure a
| It a (r -> It r a)
instance Show a => Show (It r a) where
showsPrec :: Int -> It r a -> ShowS
showsPrec Int
d (Pure a
a) = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"Pure " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 a
a
showsPrec Int
d (It a
a r -> It r a
_) = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"It " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
11 a
a ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> ShowS
showString String
" ..."
instance Functor (It r) where
fmap :: forall a b. (a -> b) -> It r a -> It r b
fmap a -> b
f (Pure a
a) = b -> It r b
forall r a. a -> It r a
Pure (b -> It r b) -> b -> It r b
forall a b. (a -> b) -> a -> b
$ a -> b
f a
a
fmap a -> b
f (It a
a r -> It r a
k) = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (a -> b
f a
a) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ (a -> b) -> It r a -> It r b
forall a b. (a -> b) -> It r a -> It r b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (It r a -> It r b) -> (r -> It r a) -> r -> It r b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> It r a
k
instance Profunctor It where
rmap :: forall b c a. (b -> c) -> It a b -> It a c
rmap = (b -> c) -> It a b -> It a c
forall a b. (a -> b) -> It a a -> It a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
lmap :: forall a b c. (a -> b) -> It b c -> It a c
lmap a -> b
_ (Pure c
a) = c -> It a c
forall r a. a -> It r a
Pure c
a
lmap a -> b
f (It c
a b -> It b c
g) = c -> (a -> It a c) -> It a c
forall r a. a -> (r -> It r a) -> It r a
It c
a ((a -> b) -> It b c -> It a c
forall a b c. (a -> b) -> It b c -> It a c
forall (p :: * -> * -> *) a b c.
Profunctor p =>
(a -> b) -> p b c -> p a c
lmap a -> b
f (It b c -> It a c) -> (a -> It b c) -> a -> It a c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> It b c
g (b -> It b c) -> (a -> b) -> a -> It b c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f)
instance Applicative (It r) where
pure :: forall a. a -> It r a
pure = a -> It r a
forall r a. a -> It r a
Pure
Pure a -> b
f <*> :: forall a b. It r (a -> b) -> It r a -> It r b
<*> Pure a
a = b -> It r b
forall r a. a -> It r a
Pure (b -> It r b) -> b -> It r b
forall a b. (a -> b) -> a -> b
$ a -> b
f a
a
Pure a -> b
f <*> It a
a r -> It r a
ka = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (a -> b
f a
a) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ (a -> b) -> It r a -> It r b
forall a b. (a -> b) -> It r a -> It r b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (It r a -> It r b) -> (r -> It r a) -> r -> It r b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> It r a
ka
It a -> b
f r -> It r (a -> b)
kf <*> Pure a
a = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (a -> b
f a
a) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ ((a -> b) -> b) -> It r (a -> b) -> It r b
forall a b. (a -> b) -> It r a -> It r b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
$ a
a) (It r (a -> b) -> It r b) -> (r -> It r (a -> b)) -> r -> It r b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> It r (a -> b)
kf
It a -> b
f r -> It r (a -> b)
kf <*> It a
a r -> It r a
ka = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (a -> b
f a
a) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ \r
r -> r -> It r (a -> b)
kf r
r It r (a -> b) -> It r a -> It r b
forall a b. It r (a -> b) -> It r a -> It r b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> r -> It r a
ka r
r
indexIt :: It r a -> r -> a
indexIt :: forall r a. It r a -> r -> a
indexIt (Pure a
a) r
_ = a
a
indexIt (It a
_ r -> It r a
k) r
r = It r a -> a
forall a. It r a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract (r -> It r a
k r
r)
simplifyIt :: It r a -> r -> It r a
simplifyIt :: forall r a. It r a -> r -> It r a
simplifyIt (It a
_ r -> It r a
k) r
r = r -> It r a
k r
r
simplifyIt It r a
pa r
_ = It r a
pa
instance Monad (It r) where
return :: forall a. a -> It r a
return = a -> It r a
forall a. a -> It r a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
Pure a
a >>= :: forall a b. It r a -> (a -> It r b) -> It r b
>>= a -> It r b
f = a -> It r b
f a
a
It a
a r -> It r a
k >>= a -> It r b
f = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (It r b -> b
forall a. It r a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract (a -> It r b
f a
a)) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ \r
r -> case r -> It r a
k r
r of
It a
a' r -> It r a
k' -> b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (It r b -> r -> b
forall r a. It r a -> r -> a
indexIt (a -> It r b
f a
a') r
r) ((r -> It r b) -> It r b) -> (r -> It r b) -> It r b
forall a b. (a -> b) -> a -> b
$ r -> It r a
k' (r -> It r a) -> (a -> It r b) -> r -> It r b
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> a -> It r b
f
Pure a
a' -> It r b -> r -> It r b
forall r a. It r a -> r -> It r a
simplifyIt (a -> It r b
f a
a') r
r
instance ComonadApply (It r) where <@> :: forall a b. It r (a -> b) -> It r a -> It r b
(<@>) = It r (a -> b) -> It r a -> It r b
forall a b. It r (a -> b) -> It r a -> It r b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
instance Comonad (It r) where
duplicate :: forall a. It r a -> It r (It r a)
duplicate p :: It r a
p@Pure{} = It r a -> It r (It r a)
forall r a. a -> It r a
Pure It r a
p
duplicate p :: It r a
p@(It a
_ r -> It r a
k) = It r a -> (r -> It r (It r a)) -> It r (It r a)
forall r a. a -> (r -> It r a) -> It r a
It It r a
p (It r a -> It r (It r a)
forall a. It r a -> It r (It r a)
forall (w :: * -> *) a. Comonad w => w a -> w (w a)
duplicate (It r a -> It r (It r a)) -> (r -> It r a) -> r -> It r (It r a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> It r a
k)
extend :: forall a b. (It r a -> b) -> It r a -> It r b
extend It r a -> b
f p :: It r a
p@Pure{} = b -> It r b
forall r a. a -> It r a
Pure (It r a -> b
f It r a
p)
extend It r a -> b
f p :: It r a
p@(It a
_ r -> It r a
k) = b -> (r -> It r b) -> It r b
forall r a. a -> (r -> It r a) -> It r a
It (It r a -> b
f It r a
p) ((It r a -> b) -> It r a -> It r b
forall a b. (It r a -> b) -> It r a -> It r b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend It r a -> b
f (It r a -> It r b) -> (r -> It r a) -> r -> It r b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> It r a
k)
extract :: forall a. It r a -> a
extract (Pure a
a) = a
a
extract (It a
a r -> It r a
_) = a
a
needIt
:: a
-> (r -> Maybe a)
-> It r a
needIt :: forall a r. a -> (r -> Maybe a) -> It r a
needIt a
z r -> Maybe a
f = It r a
k where
k :: It r a
k = a -> (r -> It r a) -> It r a
forall r a. a -> (r -> It r a) -> It r a
It a
z ((r -> It r a) -> It r a) -> (r -> It r a) -> It r a
forall a b. (a -> b) -> a -> b
$ \r
r -> case r -> Maybe a
f r
r of
Just a
a -> a -> It r a
forall r a. a -> It r a
Pure a
a
Maybe a
Nothing -> It r a
k
wantIt
:: a
-> (r -> (# Bool, a #))
-> It r a
wantIt :: forall a r. a -> (r -> (# Bool, a #)) -> It r a
wantIt a
z r -> (# Bool, a #)
f = a -> (r -> It r a) -> It r a
forall r a. a -> (r -> It r a) -> It r a
It a
z r -> It r a
k where
k :: r -> It r a
k r
r = case r -> (# Bool, a #)
f r
r of
(# Bool
False, a
a #) -> a -> (r -> It r a) -> It r a
forall r a. a -> (r -> It r a) -> It r a
It a
a r -> It r a
k
(# Bool
True, a
a #) -> a -> It r a
forall r a. a -> It r a
Pure a
a
foldIt :: (a -> o) -> (a -> (r -> o) -> o) -> It r a -> o
foldIt :: forall a o r. (a -> o) -> (a -> (r -> o) -> o) -> It r a -> o
foldIt a -> o
p a -> (r -> o) -> o
_ (Pure a
a) = a -> o
p a
a
foldIt a -> o
p a -> (r -> o) -> o
i (It a
a r -> It r a
k) = a -> (r -> o) -> o
i a
a (\r
r -> (a -> o) -> (a -> (r -> o) -> o) -> It r a -> o
forall a o r. (a -> o) -> (a -> (r -> o) -> o) -> It r a -> o
foldIt a -> o
p a -> (r -> o) -> o
i (r -> It r a
k r
r))
runIt :: (a -> o) -> (a -> (r -> It r a) -> o) -> It r a -> o
runIt :: forall a o r. (a -> o) -> (a -> (r -> It r a) -> o) -> It r a -> o
runIt a -> o
p a -> (r -> It r a) -> o
_ (Pure a
a) = a -> o
p a
a
runIt a -> o
_ a -> (r -> It r a) -> o
i (It a
a r -> It r a
k) = a -> (r -> It r a) -> o
i a
a r -> It r a
k
fillIt :: r -> (Delta -> Strict.ByteString -> r) -> Delta -> It Rope r
fillIt :: forall r. r -> (Delta -> ByteString -> r) -> Delta -> It Rope r
fillIt r
kf Delta -> ByteString -> r
ks Delta
n = r -> (Rope -> (# Bool, r #)) -> It Rope r
forall a r. a -> (r -> (# Bool, a #)) -> It r a
wantIt r
kf ((Rope -> (# Bool, r #)) -> It Rope r)
-> (Rope -> (# Bool, r #)) -> It Rope r
forall a b. (a -> b) -> a -> b
$ \Rope
r ->
(# Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes Delta
n Int64 -> Int64 -> Bool
forall a. Ord a => a -> a -> Bool
< Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes (Delta -> Delta
rewind (Rope -> Delta
forall t. HasDelta t => t -> Delta
delta Rope
r))
, Delta -> Rope -> r -> (Delta -> ByteString -> r) -> r
forall r. Delta -> Rope -> r -> (Delta -> ByteString -> r) -> r
grabLine Delta
n Rope
r r
kf Delta -> ByteString -> r
ks #)
rewindIt :: Delta -> It Rope (Maybe Strict.ByteString)
rewindIt :: Delta -> It Rope (Maybe ByteString)
rewindIt Delta
n = Maybe ByteString
-> (Rope -> (# Bool, Maybe ByteString #))
-> It Rope (Maybe ByteString)
forall a r. a -> (r -> (# Bool, a #)) -> It r a
wantIt Maybe ByteString
forall a. Maybe a
Nothing ((Rope -> (# Bool, Maybe ByteString #))
-> It Rope (Maybe ByteString))
-> (Rope -> (# Bool, Maybe ByteString #))
-> It Rope (Maybe ByteString)
forall a b. (a -> b) -> a -> b
$ \Rope
r ->
(# Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes Delta
n Int64 -> Int64 -> Bool
forall a. Ord a => a -> a -> Bool
< Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes (Delta -> Delta
rewind (Rope -> Delta
forall t. HasDelta t => t -> Delta
delta Rope
r))
, Delta
-> Rope
-> Maybe ByteString
-> (Delta -> ByteString -> Maybe ByteString)
-> Maybe ByteString
forall r. Delta -> Rope -> r -> (Delta -> ByteString -> r) -> r
grabLine (Delta -> Delta
rewind Delta
n) Rope
r Maybe ByteString
forall a. Maybe a
Nothing ((Delta -> ByteString -> Maybe ByteString) -> Maybe ByteString)
-> (Delta -> ByteString -> Maybe ByteString) -> Maybe ByteString
forall a b. (a -> b) -> a -> b
$ (ByteString -> Maybe ByteString)
-> Delta -> ByteString -> Maybe ByteString
forall a b. a -> b -> a
const ByteString -> Maybe ByteString
forall a. a -> Maybe a
Just #)
sliceIt :: Delta -> Delta -> It Rope Strict.ByteString
sliceIt :: Delta -> Delta -> It Rope ByteString
sliceIt !Delta
i !Delta
j = ByteString
-> (Rope -> (# Bool, ByteString #)) -> It Rope ByteString
forall a r. a -> (r -> (# Bool, a #)) -> It r a
wantIt ByteString
forall a. Monoid a => a
mempty ((Rope -> (# Bool, ByteString #)) -> It Rope ByteString)
-> (Rope -> (# Bool, ByteString #)) -> It Rope ByteString
forall a b. (a -> b) -> a -> b
$ \Rope
r ->
(# Int64
bj Int64 -> Int64 -> Bool
forall a. Ord a => a -> a -> Bool
< Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes (Delta -> Delta
rewind (Rope -> Delta
forall t. HasDelta t => t -> Delta
delta Rope
r))
, Delta
-> Rope
-> ByteString
-> (Delta -> ByteString -> ByteString)
-> ByteString
forall r. Delta -> Rope -> r -> (Delta -> ByteString -> r) -> r
grabRest Delta
i Rope
r ByteString
forall a. Monoid a => a
mempty ((Delta -> ByteString -> ByteString) -> ByteString)
-> (Delta -> ByteString -> ByteString) -> ByteString
forall a b. (a -> b) -> a -> b
$ (ByteString -> ByteString) -> Delta -> ByteString -> ByteString
forall a b. a -> b -> a
const ((ByteString -> ByteString) -> Delta -> ByteString -> ByteString)
-> (ByteString -> ByteString) -> Delta -> ByteString -> ByteString
forall a b. (a -> b) -> a -> b
$ ByteString -> ByteString
Util.fromLazy (ByteString -> ByteString)
-> (ByteString -> ByteString) -> ByteString -> ByteString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int64 -> ByteString -> ByteString
Lazy.take (Int64 -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int64
bj Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
- Int64
bi)) #)
where
bi :: Int64
bi = Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes Delta
i
bj :: Int64
bj = Delta -> Int64
forall t. HasBytes t => t -> Int64
bytes Delta
j