{-# LANGUAGE
GeneralizedNewtypeDeriving
, RankNTypes
, Trustworthy
, CPP
#-}
#if !defined(MIN_VERSION_containers)
#define MIN_VERSION_containers(x,y,z) 0
#endif
module Data.Unfolder
(
Unfolder(..)
, chooseMonadDefault
, chooseMapMonadDefault
, between
, betweenD
, boundedEnum
, boundedEnumD
, Random(..)
, Arb(..)
, arbUnit
, NumConst(..)
, Nth(..)
, UnfolderTransformer(..)
, ala
, ala2
, ala3
, DualA(..)
, NT(..)
, WithRec(..)
, withRec
, limitDepth
, BFS(..)
, Split
, bfs
, bfsBySum
)
where
import Control.Applicative
import Control.Monad
import Control.Arrow (ArrowZero, ArrowPlus)
import Data.Functor.Product
import Data.Functor.Compose
import Data.Functor.Reverse
import Control.Applicative.Backwards
import Control.Applicative.Lift
import Control.Monad.Trans.Except
import Control.Monad.Trans.List
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.RWS
import Control.Monad.Trans.Reader
import Control.Monad.Trans.State
import Control.Monad.Trans.Writer
import qualified System.Random as R
import Test.QuickCheck (Arbitrary(..), Gen, oneof, elements, frequency, sized, resize)
import Data.Monoid (Monoid(..))
import Data.Maybe (catMaybes)
import qualified Data.Sequence as S
class Alternative f => Unfolder f where
choose :: [f a] -> f a
choose = chooseMap id
chooseMap :: (a -> f b) -> [a] -> f b
chooseMap f = foldr ((<|>) . f) empty
chooseInt :: Int -> f Int
chooseInt n = chooseMap pure [0 .. n - 1]
chooseMonadDefault :: (Monad m, Unfolder m) => [m a] -> m a
chooseMonadDefault ms = chooseInt (length ms) >>= (ms !!)
chooseMapMonadDefault :: (Monad m, Unfolder m) => (a -> m b) -> [a] -> m b
chooseMapMonadDefault f as = chooseInt (length as) >>= f . (as !!)
between :: (Unfolder f, Enum a) => a -> a -> f a
between lb ub = (\x -> toEnum (x + fromEnum lb)) <$> chooseInt (1 + fromEnum ub - fromEnum lb)
boundedEnum :: (Unfolder f, Bounded a, Enum a) => f a
boundedEnum = between minBound maxBound
betweenD :: (Unfolder f, Enum a) => a -> a -> f a
betweenD lb0 ub = betweenD' lb0 (fromEnum ub - fromEnum lb0)
where
betweenD' lb n | n < 0 = empty
| otherwise = choose [pure lb, betweenD' (succ lb) (pred n)]
boundedEnumD :: (Unfolder f, Bounded a, Enum a) => f a
boundedEnumD = betweenD minBound maxBound
instance MonadPlus m => Unfolder (WrappedMonad m)
instance (ArrowZero a, ArrowPlus a) => Unfolder (WrappedArrow a b)
instance Unfolder [] where
choose = concat
chooseMap = concatMap
chooseInt n = [0 .. n - 1]
instance Unfolder Maybe where
choose = foldr const Nothing
chooseMap f = foldr (const . f) Nothing
chooseInt 0 = Nothing
chooseInt _ = Just 0
instance (Unfolder p, Unfolder q) => Unfolder (Product p q) where
chooseMap f as = Pair (chooseMap (fstP . f) as) (chooseMap (sndP . f) as)
where
fstP (Pair p _) = p
sndP (Pair _ q) = q
chooseInt n = Pair (chooseInt n) (chooseInt n)
instance (Unfolder p, Applicative q) => Unfolder (Compose p q) where
chooseMap f = Compose . chooseMap (getCompose . f)
chooseInt n = Compose $ pure <$> chooseInt n
instance Unfolder f => Unfolder (Reverse f) where
chooseMap f = Reverse . chooseMap (getReverse . f)
chooseInt n = Reverse $ chooseInt n
instance Unfolder f => Unfolder (Backwards f) where
chooseMap f = Backwards . chooseMap (forwards . f)
chooseInt n = Backwards $ chooseInt n
instance Unfolder f => Unfolder (Lift f)
instance (Functor m, Monad m, Monoid e) => Unfolder (ExceptT e m)
instance Applicative f => Unfolder (ListT f) where
{-# INLINABLE chooseMap #-}
chooseMap f = ListT . foldr appRun (pure [])
where
appRun x ys = (++) <$> runListT (f x) <*> ys
chooseInt n = ListT $ pure [0 .. n - 1]
instance (Functor m, Monad m) => Unfolder (MaybeT m) where
chooseMap _ [] = MaybeT (return Nothing)
chooseMap f (a : as) = MaybeT $ do
res <- runMaybeT (f a)
case res of
Nothing -> runMaybeT $ chooseMap f as
Just _ -> return res
chooseInt 0 = MaybeT $ return Nothing
chooseInt _ = MaybeT $ return (Just 0)
instance (Monoid w, MonadPlus m, Unfolder m) => Unfolder (RWST r w s m) where
chooseMap f as = RWST $ \r s -> chooseMap (\a -> runRWST (f a) r s) as
instance (MonadPlus m, Unfolder m) => Unfolder (StateT s m) where
chooseMap f as = StateT $ \s -> chooseMap (\a -> f a `runStateT` s) as
instance Unfolder m => Unfolder (ReaderT r m) where
chooseMap f as = ReaderT $ \r -> chooseMap (\a -> f a `runReaderT` r) as
instance (Monoid w, Unfolder m) => Unfolder (WriterT w m) where
chooseMap f = WriterT . chooseMap (runWriterT . f)
instance Unfolder S.Seq where
#if MIN_VERSION_containers(0,5,6)
chooseInt n = S.fromFunction n id
#endif
newtype Random g m a = Random { getRandom :: StateT g m a }
deriving (Functor, Applicative, Monad)
instance (Functor m, Monad m, R.RandomGen g) => Alternative (Random g m) where
empty = choose []
a <|> b = choose [a, b]
instance (Functor m, Monad m, R.RandomGen g) => MonadPlus (Random g m) where
mzero = choose []
mplus a b = choose [a, b]
instance (Functor m, Monad m, R.RandomGen g) => Unfolder (Random g m) where
choose = chooseMonadDefault
chooseMap = chooseMapMonadDefault
chooseInt n = Random . StateT $ return . R.randomR (0, n - 1)
data Arb a = Arb Int Int (Gen (Maybe a))
instance Functor Arb where
fmap f (Arb r p g) = Arb r p $ fmap (fmap f) g
instance Applicative Arb where
pure = Arb 0 0 . pure . pure
Arb r1 p1 ff <*> Arb r2 p2 fx = Arb (r1 + r2) (p1 + p2) $ liftA2 (<*>) ff fx
instance Alternative Arb where
empty = Arb 0 0 (pure Nothing)
Arb r1 p1 g1 <|> Arb r2 p2 g2 = Arb (r1 + r2) (p1 + p2) $ g1 >>= \a -> g2 >>= \b -> Just <$> elements (catMaybes [a, b])
instance Unfolder Arb where
choose as = Arb 1 0 $ sized g
where
g n = freq $ foldMap f as
where
(recPosCount, parPosCount) = foldr (\(Arb r p _) (rc, pc) -> (r + rc, p + pc)) (0, 0) as
recSize = (n - parPosCount) `div` max 1 recPosCount
f (Arb r p gen) = if (r > 0 && recSize < 0) || (n == 0 && r + p > 0) then [] else [(3 + r * recSize, resize (max 0 recSize) gen)]
freq [] = pure Nothing
freq as = frequency as
arbUnit :: Arbitrary a => Arb a
arbUnit = Arb 0 1 (Just <$> arbitrary)
newtype NumConst a x = NumConst { getNumConst :: a } deriving (Eq, Show)
instance Functor (NumConst a) where
fmap _ (NumConst a) = NumConst a
instance Num a => Applicative (NumConst a) where
pure _ = NumConst 1
NumConst a <*> NumConst b = NumConst $ a * b
instance Num a => Alternative (NumConst a) where
empty = NumConst 0
NumConst a <|> NumConst b = NumConst $ a + b
instance Num a => Unfolder (NumConst a)
data Nth a = Nth
{ size :: Integer
, getNth :: Integer -> a
}
instance Functor Nth where
fmap f (Nth sizeA as) = Nth sizeA (f . as)
instance Applicative Nth where
pure a = Nth 1 (const a)
Nth sizeF fs <*> Nth sizeA as = Nth (sizeF * sizeA) $ \n ->
let (l, r) = n `divMod` sizeA in fs l (as r)
instance Alternative Nth where
empty = Nth 0 (const undefined)
Nth sizeA as <|> Nth sizeB bs = Nth (sizeA + sizeB) $ \n ->
if n < sizeA then as n else bs (n - sizeA)
instance Unfolder Nth where
chooseInt n = Nth (toInteger n) fromInteger
class UnfolderTransformer t where
lift :: Unfolder f => f a -> t f a
ala :: (UnfolderTransformer t, Unfolder f) => (t f b -> f b) -> (t f a -> t f b) -> f a -> f b
ala lower f = lower . f . lift
ala2 :: (UnfolderTransformer t, Unfolder f) => (t f c -> f c) -> (t f a -> t f b -> t f c) -> f a -> f b -> f c
ala2 lower f = ala lower . f . lift
ala3 :: (UnfolderTransformer t, Unfolder f) => (t f d -> f d) -> (t f a -> t f b -> t f c -> t f d) -> f a -> f b -> f c -> f d
ala3 lower f = ala2 lower . f . lift
newtype DualA f a = DualA { getDualA :: f a }
deriving (Eq, Show, Functor, Applicative)
instance Alternative f => Alternative (DualA f) where
empty = DualA empty
DualA a <|> DualA b = DualA (b <|> a)
instance Unfolder f => Unfolder (DualA f) where
chooseMap f = DualA . chooseMap (getDualA . f) . reverse
chooseInt n = DualA $ (\x -> n - 1 - x) <$> chooseInt n
instance UnfolderTransformer DualA where
lift = DualA
data NT f g = NT { getNT :: forall a. f a -> g a }
newtype WithRec f a = WithRec { getWithRec :: ReaderT (Int -> NT f f) f a }
deriving (Functor, Applicative, Alternative)
instance Unfolder f => Unfolder (WithRec f) where
chooseMap h as = WithRec . ReaderT $ \f ->
getNT (f 0) $ chooseMap (withRec (f . succ) . h) as
instance UnfolderTransformer WithRec where
lift = WithRec . ReaderT . const
withRec :: (Int -> NT f f) -> WithRec f a -> f a
withRec f = (`runReaderT` f) . getWithRec
limitDepth :: Unfolder f => Int -> WithRec f a -> f a
limitDepth m = withRec (\d -> NT $ if d == m then const empty else id)
newtype BFS f x = BFS { getBFS :: (Int, Split) -> Maybe [f x] }
type Split = Int -> [(Int, Int)]
instance Functor f => Functor (BFS f) where
fmap f = BFS . (fmap (map (fmap f)) .) . getBFS
instance Applicative f => Applicative (BFS f) where
pure = packBFS . pure
BFS ff <*> BFS fx = BFS $ \(d, split) -> flattenBFS $
[ liftA2 (liftA2 (<*>)) (ff (i, split)) (fx (j, split)) | (i, j) <- split d ]
instance Applicative f => Alternative (BFS f) where
empty = BFS $ \(d, _) -> if d == 0 then Just [] else Nothing
BFS fa <|> BFS fb = BFS $ \d -> flattenBFS [fa d, fb d]
instance Applicative f => Unfolder (BFS f) where
chooseMap f as = BFS $ \(d, split) -> if d == 0 then Just [] else flattenBFS (map (\a -> f a `getBFS` (d - 1, split)) as)
instance UnfolderTransformer BFS where
lift = packBFS
bySum :: Split
bySum d = [(i, d - i)| i <- [0 .. d]]
byMax :: Split
byMax d = [(i, d)| i <- [0 .. d - 1]] ++ [(d, i)| i <- [0 .. d]]
bfsBy :: Unfolder f => Split -> BFS f x -> f x
bfsBy split (BFS f) = choose (loop 0) where loop d = maybe [] (++ loop (d + 1)) (f (d, split))
bfs :: Unfolder f => BFS f x -> f x
bfs = bfsBy byMax
bfsBySum :: Unfolder f => BFS f x -> f x
bfsBySum = bfsBy bySum
packBFS :: f x -> BFS f x
packBFS r = BFS $ \(d, _) -> if d == 0 then Just [r] else Nothing
flattenBFS :: [Maybe [a]] -> Maybe [a]
flattenBFS ms = case catMaybes ms of
[] -> Nothing
ms' -> Just (concat ms')