{-# LANGUAGE CPP, BangPatterns, TypeFamilies, ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
#ifdef DEFAULT_SIGNATURES
{-# LANGUAGE DefaultSignatures #-}
#endif
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >=704
{-# LANGUAGE Safe #-}
#elif __GLASGOW_HASKELL__ >=702
{-# LANGUAGE Trustworthy #-}
#endif
module Data.Universe.Class
( Universe(..)
, Finite(..)
) where
import Data.Universe.Helpers
import Control.Applicative (Const (..))
import Control.Monad (liftM2, liftM3, liftM4, liftM5)
import Control.Monad.Trans.Identity (IdentityT (..))
import Control.Monad.Trans.Reader (ReaderT (..))
import Data.Functor.Compose (Compose (..))
import Data.Functor.Identity (Identity (..))
import Data.Functor.Product (Product (..))
import Data.Functor.Sum (Sum (..))
import Data.Int (Int, Int8, Int16, Int32, Int64)
import Data.List (genericLength)
import Data.List.NonEmpty (NonEmpty (..))
import Data.Map ((!), fromList)
import Data.Proxy (Proxy (..))
import Data.Ratio (Ratio, numerator, denominator, (%))
import Data.Tagged (Tagged (..), retag)
import Data.Void (Void)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import GHC.Real (Ratio (..))
import Numeric.Natural (Natural)
import qualified Data.Monoid as Mon
import qualified Data.Semigroup as Semi
import qualified Data.Set as Set
import qualified Data.Map as Map
class Universe a where
universe :: [a]
#ifdef DEFAULT_SIGNATURES
default universe :: (Enum a, Bounded a) => [a]
universe = [a]
forall a. (Bounded a, Enum a) => [a]
universeDef
#endif
class Universe a => Finite a where
universeF :: [a]
universeF = [a]
forall a. Universe a => [a]
universe
cardinality :: Tagged a Natural
cardinality = Natural -> Tagged a Natural
forall k (s :: k) b. b -> Tagged s b
Tagged ([a] -> Natural
forall i a. Num i => [a] -> i
genericLength ([a]
forall a. Finite a => [a]
universeF :: [a]))
instance Universe () where universe :: [()]
universe = [()]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Bool where universe :: [Bool]
universe = [Bool]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Char where universe :: [Char]
universe = [Char]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Ordering where universe :: [Ordering]
universe = [Ordering]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Integer where universe :: [Integer]
universe = [Integer
0, -Integer
1..] [Integer] -> [Integer] -> [Integer]
forall a. [a] -> [a] -> [a]
+++ [Integer
1..]
instance Universe Natural where universe :: [Natural]
universe = [Natural
0..]
instance Universe Int where universe :: [Int]
universe = [Int]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Int8 where universe :: [Int8]
universe = [Int8]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Int16 where universe :: [Int16]
universe = [Int16]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Int32 where universe :: [Int32]
universe = [Int32]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Int64 where universe :: [Int64]
universe = [Int64]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Word where universe :: [Word]
universe = [Word]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Word8 where universe :: [Word8]
universe = [Word8]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Word16 where universe :: [Word16]
universe = [Word16]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Word32 where universe :: [Word32]
universe = [Word32]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance Universe Word64 where universe :: [Word64]
universe = [Word64]
forall a. (Bounded a, Enum a) => [a]
universeDef
instance (Universe a, Universe b) => Universe (Either a b) where universe :: [Either a b]
universe = (a -> Either a b) -> [a] -> [Either a b]
forall a b. (a -> b) -> [a] -> [b]
map a -> Either a b
forall a b. a -> Either a b
Left [a]
forall a. Universe a => [a]
universe [Either a b] -> [Either a b] -> [Either a b]
forall a. [a] -> [a] -> [a]
+++ (b -> Either a b) -> [b] -> [Either a b]
forall a b. (a -> b) -> [a] -> [b]
map b -> Either a b
forall a b. b -> Either a b
Right [b]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Maybe a ) where universe :: [Maybe a]
universe = Maybe a
forall a. Maybe a
Nothing Maybe a -> [Maybe a] -> [Maybe a]
forall a. a -> [a] -> [a]
: (a -> Maybe a) -> [a] -> [Maybe a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Maybe a
forall a. a -> Maybe a
Just [a]
forall a. Universe a => [a]
universe
instance (Universe a, Universe b) => Universe (a, b) where universe :: [(a, b)]
universe = [a]
forall a. Universe a => [a]
universe [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [b]
forall a. Universe a => [a]
universe
instance (Universe a, Universe b, Universe c) => Universe (a, b, c) where universe :: [(a, b, c)]
universe = [(a
a,b
b,c
c) | ((a
a,b
b),c
c) <- [a]
forall a. Universe a => [a]
universe [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [b]
forall a. Universe a => [a]
universe [(a, b)] -> [c] -> [((a, b), c)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [c]
forall a. Universe a => [a]
universe]
instance (Universe a, Universe b, Universe c, Universe d) => Universe (a, b, c, d) where universe :: [(a, b, c, d)]
universe = [(a
a,b
b,c
c,d
d) | (((a
a,b
b),c
c),d
d) <- [a]
forall a. Universe a => [a]
universe [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [b]
forall a. Universe a => [a]
universe [(a, b)] -> [c] -> [((a, b), c)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [c]
forall a. Universe a => [a]
universe [((a, b), c)] -> [d] -> [(((a, b), c), d)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [d]
forall a. Universe a => [a]
universe]
instance (Universe a, Universe b, Universe c, Universe d, Universe e) => Universe (a, b, c, d, e) where universe :: [(a, b, c, d, e)]
universe = [(a
a,b
b,c
c,d
d,e
e) | ((((a
a,b
b),c
c),d
d),e
e) <- [a]
forall a. Universe a => [a]
universe [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [b]
forall a. Universe a => [a]
universe [(a, b)] -> [c] -> [((a, b), c)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [c]
forall a. Universe a => [a]
universe [((a, b), c)] -> [d] -> [(((a, b), c), d)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [d]
forall a. Universe a => [a]
universe [(((a, b), c), d)] -> [e] -> [((((a, b), c), d), e)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [e]
forall a. Universe a => [a]
universe]
instance Universe a => Universe [a] where
universe :: [[a]]
universe = [[[a]]] -> [[a]]
forall a. [[a]] -> [a]
diagonal ([[[a]]] -> [[a]]) -> [[[a]]] -> [[a]]
forall a b. (a -> b) -> a -> b
$ [[]] [[a]] -> [[[a]]] -> [[[a]]]
forall a. a -> [a] -> [a]
: [[a
ha -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
t | [a]
t <- [[a]]
forall a. Universe a => [a]
universe] | a
h <- [a]
forall a. Universe a => [a]
universe]
instance Universe a => Universe (NonEmpty a) where
universe :: [NonEmpty a]
universe = [[NonEmpty a]] -> [NonEmpty a]
forall a. [[a]] -> [a]
diagonal [[a
h a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [a]
t | [a]
t <- [[a]]
forall a. Universe a => [a]
universe] | a
h <- [a]
forall a. Universe a => [a]
universe]
instance Universe Mon.All where universe :: [All]
universe = (Bool -> All) -> [Bool] -> [All]
forall a b. (a -> b) -> [a] -> [b]
map Bool -> All
Mon.All [Bool]
forall a. Universe a => [a]
universe
instance Universe Mon.Any where universe :: [Any]
universe = (Bool -> Any) -> [Bool] -> [Any]
forall a b. (a -> b) -> [a] -> [b]
map Bool -> Any
Mon.Any [Bool]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Mon.Sum a) where universe :: [Sum a]
universe = (a -> Sum a) -> [a] -> [Sum a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Sum a
forall a. a -> Sum a
Mon.Sum [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Mon.Product a) where universe :: [Product a]
universe = (a -> Product a) -> [a] -> [Product a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Product a
forall a. a -> Product a
Mon.Product [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Mon.Dual a) where universe :: [Dual a]
universe = (a -> Dual a) -> [a] -> [Dual a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Dual a
forall a. a -> Dual a
Mon.Dual [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Mon.First a) where universe :: [First a]
universe = (Maybe a -> First a) -> [Maybe a] -> [First a]
forall a b. (a -> b) -> [a] -> [b]
map Maybe a -> First a
forall a. Maybe a -> First a
Mon.First [Maybe a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Mon.Last a) where universe :: [Last a]
universe = (Maybe a -> Last a) -> [Maybe a] -> [Last a]
forall a b. (a -> b) -> [a] -> [b]
map Maybe a -> Last a
forall a. Maybe a -> Last a
Mon.Last [Maybe a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Semi.Max a) where universe :: [Max a]
universe = (a -> Max a) -> [a] -> [Max a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Max a
forall a. a -> Max a
Semi.Max [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Semi.Min a) where universe :: [Min a]
universe = (a -> Min a) -> [a] -> [Min a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Min a
forall a. a -> Min a
Semi.Min [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Semi.First a) where universe :: [First a]
universe = (a -> First a) -> [a] -> [First a]
forall a b. (a -> b) -> [a] -> [b]
map a -> First a
forall a. a -> First a
Semi.First [a]
forall a. Universe a => [a]
universe
instance Universe a => Universe (Semi.Last a) where universe :: [Last a]
universe = (a -> Last a) -> [a] -> [Last a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Last a
forall a. a -> Last a
Semi.Last [a]
forall a. Universe a => [a]
universe
infixr 5 :<
data Stream a = !a :< Stream a
leftSideStream :: Integral a => Stream (Ratio a)
leftSideStream :: Stream (Ratio a)
leftSideStream = a
1 a -> a -> Ratio a
forall a. a -> a -> Ratio a
:% a
2 Ratio a -> Stream (Ratio a) -> Stream (Ratio a)
forall a. a -> Stream a -> Stream a
:< Stream (Ratio a) -> Stream (Ratio a)
forall a. Num a => Stream (Ratio a) -> Stream (Ratio a)
go Stream (Ratio a)
forall a. Integral a => Stream (Ratio a)
leftSideStream
where
go :: Stream (Ratio a) -> Stream (Ratio a)
go (Ratio a
x :< Stream (Ratio a)
xs) = Ratio a
lChild Ratio a -> Stream (Ratio a) -> Stream (Ratio a)
forall a. a -> Stream a -> Stream a
:< Ratio a
rChild Ratio a -> Stream (Ratio a) -> Stream (Ratio a)
forall a. a -> Stream a -> Stream a
:< Stream (Ratio a) -> Stream (Ratio a)
go Stream (Ratio a)
xs
where
nd :: a
nd = Ratio a -> a
forall a. Ratio a -> a
numerator Ratio a
x a -> a -> a
forall a. Num a => a -> a -> a
+ Ratio a -> a
forall a. Ratio a -> a
denominator Ratio a
x
!lChild :: Ratio a
lChild = Ratio a -> a
forall a. Ratio a -> a
numerator Ratio a
x a -> a -> Ratio a
forall a. a -> a -> Ratio a
:% a
nd
!rChild :: Ratio a
rChild = a
nd a -> a -> Ratio a
forall a. a -> a -> Ratio a
:% Ratio a -> a
forall a. Ratio a -> a
denominator Ratio a
x
instance RationalUniverse a => Universe (Ratio a) where
universe :: [Ratio a]
universe = [Ratio a]
forall a. RationalUniverse a => [Ratio a]
rationalUniverse
class RationalUniverse a where
rationalUniverse :: [Ratio a]
instance RationalUniverse Integer where
rationalUniverse :: [Ratio Integer]
rationalUniverse = Ratio Integer
0 Ratio Integer -> [Ratio Integer] -> [Ratio Integer]
forall a. a -> [a] -> [a]
: Ratio Integer
1 Ratio Integer -> [Ratio Integer] -> [Ratio Integer]
forall a. a -> [a] -> [a]
: (-Ratio Integer
1) Ratio Integer -> [Ratio Integer] -> [Ratio Integer]
forall a. a -> [a] -> [a]
: Stream (Ratio Integer) -> [Ratio Integer]
forall a. Integral a => Stream (Ratio a) -> [Ratio a]
go Stream (Ratio Integer)
forall a. Integral a => Stream (Ratio a)
leftSideStream
where
go :: Stream (Ratio a) -> [Ratio a]
go (x :: Ratio a
x@(a
xn :% a
xd) :< Stream (Ratio a)
xs) =
let !nx :: Ratio a
nx = -Ratio a
x
!rx :: Ratio a
rx = a
xd a -> a -> Ratio a
forall a. a -> a -> Ratio a
:% a
xn
!nrx :: Ratio a
nrx = -Ratio a
rx
in Ratio a
x Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Ratio a
rx Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Ratio a
nx Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Ratio a
nrx Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Stream (Ratio a) -> [Ratio a]
go Stream (Ratio a)
xs
instance RationalUniverse Natural where
rationalUniverse :: [Ratio Natural]
rationalUniverse = Ratio Natural
0 Ratio Natural -> [Ratio Natural] -> [Ratio Natural]
forall a. a -> [a] -> [a]
: Ratio Natural
1 Ratio Natural -> [Ratio Natural] -> [Ratio Natural]
forall a. a -> [a] -> [a]
: Stream (Ratio Natural) -> [Ratio Natural]
forall a. Stream (Ratio a) -> [Ratio a]
go Stream (Ratio Natural)
forall a. Integral a => Stream (Ratio a)
leftSideStream
where
go :: Stream (Ratio a) -> [Ratio a]
go (x :: Ratio a
x@(a
xn :% a
xd) :< Stream (Ratio a)
xs) =
let !rx :: Ratio a
rx = a
xd a -> a -> Ratio a
forall a. a -> a -> Ratio a
:% a
xn
in Ratio a
x Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Ratio a
rx Ratio a -> [Ratio a] -> [Ratio a]
forall a. a -> [a] -> [a]
: Stream (Ratio a) -> [Ratio a]
go Stream (Ratio a)
xs
instance (Finite a, Ord a, Universe b) => Universe (a -> b) where
universe :: [a -> b]
universe = ([b] -> a -> b) -> [[b]] -> [a -> b]
forall a b. (a -> b) -> [a] -> [b]
map [b] -> a -> b
tableToFunction [[b]]
tables where
tables :: [[b]]
tables = [[b]] -> [[b]]
forall a. [[a]] -> [[a]]
choices [[b]
forall a. Universe a => [a]
universe | a
_ <- [a]
monoUniverse]
tableToFunction :: [b] -> a -> b
tableToFunction = (!) (Map a b -> a -> b) -> ([b] -> Map a b) -> [b] -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(a, b)] -> Map a b
forall k a. Ord k => [(k, a)] -> Map k a
fromList ([(a, b)] -> Map a b) -> ([b] -> [(a, b)]) -> [b] -> Map a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
zip [a]
monoUniverse
monoUniverse :: [a]
monoUniverse = [a]
forall a. Finite a => [a]
universeF
instance Finite () where cardinality :: Tagged () Natural
cardinality = Tagged () Natural
1
instance Finite Bool where cardinality :: Tagged Bool Natural
cardinality = Tagged Bool Natural
2
instance Finite Char where cardinality :: Tagged Char Natural
cardinality = Tagged Char Natural
1114112
instance Finite Ordering where cardinality :: Tagged Ordering Natural
cardinality = Tagged Ordering Natural
3
instance Finite Int where cardinality :: Tagged Int Natural
cardinality = Int -> Tagged Int Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
forall a. Bounded a => a
maxBound :: Int) Tagged Int Natural -> Tagged Int Natural -> Tagged Int Natural
forall a. Num a => a -> a -> a
- Int -> Tagged Int Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int
forall a. Bounded a => a
minBound :: Int) Tagged Int Natural -> Tagged Int Natural -> Tagged Int Natural
forall a. Num a => a -> a -> a
+ Tagged Int Natural
1
instance Finite Int8 where cardinality :: Tagged Int8 Natural
cardinality = Tagged Int8 Natural
2Tagged Int8 Natural -> Integer -> Tagged Int8 Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
8
instance Finite Int16 where cardinality :: Tagged Int16 Natural
cardinality = Tagged Int16 Natural
2Tagged Int16 Natural -> Integer -> Tagged Int16 Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
16
instance Finite Int32 where cardinality :: Tagged Int32 Natural
cardinality = Tagged Int32 Natural
2Tagged Int32 Natural -> Integer -> Tagged Int32 Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
32
instance Finite Int64 where cardinality :: Tagged Int64 Natural
cardinality = Tagged Int64 Natural
2Tagged Int64 Natural -> Integer -> Tagged Int64 Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
64
instance Finite Word where cardinality :: Tagged Word Natural
cardinality = Word -> Tagged Word Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word
forall a. Bounded a => a
maxBound :: Word) Tagged Word Natural -> Tagged Word Natural -> Tagged Word Natural
forall a. Num a => a -> a -> a
- Word -> Tagged Word Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Word
forall a. Bounded a => a
minBound :: Word) Tagged Word Natural -> Tagged Word Natural -> Tagged Word Natural
forall a. Num a => a -> a -> a
+ Tagged Word Natural
1
instance Finite Word8 where cardinality :: Tagged Word8 Natural
cardinality = Natural -> Tagged Word8 Natural
forall k (s :: k) b. b -> Tagged s b
Tagged (Natural -> Tagged Word8 Natural)
-> Natural -> Tagged Word8 Natural
forall a b. (a -> b) -> a -> b
$ Natural
2Natural -> Integer -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
8
instance Finite Word16 where cardinality :: Tagged Word16 Natural
cardinality = Natural -> Tagged Word16 Natural
forall k (s :: k) b. b -> Tagged s b
Tagged (Natural -> Tagged Word16 Natural)
-> Natural -> Tagged Word16 Natural
forall a b. (a -> b) -> a -> b
$ Natural
2Natural -> Integer -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
16
instance Finite Word32 where cardinality :: Tagged Word32 Natural
cardinality = Natural -> Tagged Word32 Natural
forall k (s :: k) b. b -> Tagged s b
Tagged (Natural -> Tagged Word32 Natural)
-> Natural -> Tagged Word32 Natural
forall a b. (a -> b) -> a -> b
$ Natural
2Natural -> Integer -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
32
instance Finite Word64 where cardinality :: Tagged Word64 Natural
cardinality = Natural -> Tagged Word64 Natural
forall k (s :: k) b. b -> Tagged s b
Tagged (Natural -> Tagged Word64 Natural)
-> Natural -> Tagged Word64 Natural
forall a b. (a -> b) -> a -> b
$ Natural
2Natural -> Integer -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
64
instance Finite a => Finite (Maybe a ) where
cardinality :: Tagged (Maybe a) Natural
cardinality = (Natural -> Natural)
-> Tagged (Maybe a) Natural -> Tagged (Maybe a) Natural
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Natural -> Natural
forall a. Enum a => a -> a
succ (Tagged a Natural -> Tagged (Maybe a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
instance (Finite a, Finite b) => Finite (Either a b) where
universeF :: [Either a b]
universeF = (a -> Either a b) -> [a] -> [Either a b]
forall a b. (a -> b) -> [a] -> [b]
map a -> Either a b
forall a b. a -> Either a b
Left [a]
forall a. Universe a => [a]
universe [Either a b] -> [Either a b] -> [Either a b]
forall a. [a] -> [a] -> [a]
++ (b -> Either a b) -> [b] -> [Either a b]
forall a b. (a -> b) -> [a] -> [b]
map b -> Either a b
forall a b. b -> Either a b
Right [b]
forall a. Universe a => [a]
universe
cardinality :: Tagged (Either a b) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (Either a b) Natural
-> Tagged (Either a b) Natural
-> Tagged (Either a b) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (\Natural
a Natural
b -> Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
+ Natural
b)
(Tagged a Natural -> Tagged (Either a b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
(Tagged b Natural -> Tagged (Either a b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
instance (Finite a, Finite b) => Finite (a, b) where
universeF :: [(a, b)]
universeF = (a -> b -> (a, b)) -> [a] -> [b] -> [(a, b)]
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (,) [a]
forall a. Finite a => [a]
universeF [b]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (a, b) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (a, b) Natural
-> Tagged (a, b) Natural
-> Tagged (a, b) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (\Natural
a Natural
b -> Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
b)
(Tagged a Natural -> Tagged (a, b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
(Tagged b Natural -> Tagged (a, b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
instance (Finite a, Finite b, Finite c) => Finite (a, b, c) where
universeF :: [(a, b, c)]
universeF = (a -> b -> c -> (a, b, c)) -> [a] -> [b] -> [c] -> [(a, b, c)]
forall (m :: * -> *) a1 a2 a3 r.
Monad m =>
(a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM3 (,,) [a]
forall a. Finite a => [a]
universeF [b]
forall a. Finite a => [a]
universeF [c]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (a, b, c) Natural
cardinality = (Natural -> Natural -> Natural -> Natural)
-> Tagged (a, b, c) Natural
-> Tagged (a, b, c) Natural
-> Tagged (a, b, c) Natural
-> Tagged (a, b, c) Natural
forall (m :: * -> *) a1 a2 a3 r.
Monad m =>
(a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM3 (\Natural
a Natural
b Natural
c -> Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
b Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
c)
(Tagged a Natural -> Tagged (a, b, c) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
(Tagged b Natural -> Tagged (a, b, c) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
(Tagged c Natural -> Tagged (a, b, c) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged c Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged c Natural))
instance (Finite a, Finite b, Finite c, Finite d) => Finite (a, b, c, d) where
universeF :: [(a, b, c, d)]
universeF = (a -> b -> c -> d -> (a, b, c, d))
-> [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]
forall (m :: * -> *) a1 a2 a3 a4 r.
Monad m =>
(a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM4 (,,,) [a]
forall a. Finite a => [a]
universeF [b]
forall a. Finite a => [a]
universeF [c]
forall a. Finite a => [a]
universeF [d]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (a, b, c, d) Natural
cardinality = (Natural -> Natural -> Natural -> Natural -> Natural)
-> Tagged (a, b, c, d) Natural
-> Tagged (a, b, c, d) Natural
-> Tagged (a, b, c, d) Natural
-> Tagged (a, b, c, d) Natural
-> Tagged (a, b, c, d) Natural
forall (m :: * -> *) a1 a2 a3 a4 r.
Monad m =>
(a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM4 (\Natural
a Natural
b Natural
c Natural
d -> Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
b Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
c Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
d)
(Tagged a Natural -> Tagged (a, b, c, d) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
(Tagged b Natural -> Tagged (a, b, c, d) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
(Tagged c Natural -> Tagged (a, b, c, d) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged c Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged c Natural))
(Tagged d Natural -> Tagged (a, b, c, d) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged d Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged d Natural))
instance (Finite a, Finite b, Finite c, Finite d, Finite e) => Finite (a, b, c, d, e) where
universeF :: [(a, b, c, d, e)]
universeF = (a -> b -> c -> d -> e -> (a, b, c, d, e))
-> [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]
forall (m :: * -> *) a1 a2 a3 a4 a5 r.
Monad m =>
(a1 -> a2 -> a3 -> a4 -> a5 -> r)
-> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM5 (,,,,) [a]
forall a. Finite a => [a]
universeF [b]
forall a. Finite a => [a]
universeF [c]
forall a. Finite a => [a]
universeF [d]
forall a. Finite a => [a]
universeF [e]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (a, b, c, d, e) Natural
cardinality = (Natural -> Natural -> Natural -> Natural -> Natural -> Natural)
-> Tagged (a, b, c, d, e) Natural
-> Tagged (a, b, c, d, e) Natural
-> Tagged (a, b, c, d, e) Natural
-> Tagged (a, b, c, d, e) Natural
-> Tagged (a, b, c, d, e) Natural
-> Tagged (a, b, c, d, e) Natural
forall (m :: * -> *) a1 a2 a3 a4 a5 r.
Monad m =>
(a1 -> a2 -> a3 -> a4 -> a5 -> r)
-> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM5 (\Natural
a Natural
b Natural
c Natural
d Natural
e -> Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
b Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
c Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
d Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
e)
(Tagged a Natural -> Tagged (a, b, c, d, e) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
(Tagged b Natural -> Tagged (a, b, c, d, e) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
(Tagged c Natural -> Tagged (a, b, c, d, e) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged c Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged c Natural))
(Tagged d Natural -> Tagged (a, b, c, d, e) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged d Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged d Natural))
(Tagged e Natural -> Tagged (a, b, c, d, e) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged e Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged e Natural))
instance Finite Mon.All where universeF :: [All]
universeF = (Bool -> All) -> [Bool] -> [All]
forall a b. (a -> b) -> [a] -> [b]
map Bool -> All
Mon.All [Bool]
forall a. Finite a => [a]
universeF; cardinality :: Tagged All Natural
cardinality = Tagged All Natural
2
instance Finite Mon.Any where universeF :: [Any]
universeF = (Bool -> Any) -> [Bool] -> [Any]
forall a b. (a -> b) -> [a] -> [b]
map Bool -> Any
Mon.Any [Bool]
forall a. Finite a => [a]
universeF; cardinality :: Tagged Any Natural
cardinality = Tagged Any Natural
2
instance Finite a => Finite (Mon.Sum a) where universeF :: [Sum a]
universeF = (a -> Sum a) -> [a] -> [Sum a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Sum a
forall a. a -> Sum a
Mon.Sum [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Sum a) Natural
cardinality = (a -> Sum a) -> Tagged a Natural -> Tagged (Sum a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Sum a
forall a. a -> Sum a
Mon.Sum Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Mon.Product a) where universeF :: [Product a]
universeF = (a -> Product a) -> [a] -> [Product a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Product a
forall a. a -> Product a
Mon.Product [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Product a) Natural
cardinality = (a -> Product a) -> Tagged a Natural -> Tagged (Product a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Product a
forall a. a -> Product a
Mon.Product Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Mon.Dual a) where universeF :: [Dual a]
universeF = (a -> Dual a) -> [a] -> [Dual a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Dual a
forall a. a -> Dual a
Mon.Dual [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Dual a) Natural
cardinality = (a -> Dual a) -> Tagged a Natural -> Tagged (Dual a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Dual a
forall a. a -> Dual a
Mon.Dual Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Mon.First a) where universeF :: [First a]
universeF = (Maybe a -> First a) -> [Maybe a] -> [First a]
forall a b. (a -> b) -> [a] -> [b]
map Maybe a -> First a
forall a. Maybe a -> First a
Mon.First [Maybe a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (First a) Natural
cardinality = (Maybe a -> First a)
-> Tagged (Maybe a) Natural -> Tagged (First a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith Maybe a -> First a
forall a. Maybe a -> First a
Mon.First Tagged (Maybe a) Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Mon.Last a) where universeF :: [Last a]
universeF = (Maybe a -> Last a) -> [Maybe a] -> [Last a]
forall a b. (a -> b) -> [a] -> [b]
map Maybe a -> Last a
forall a. Maybe a -> Last a
Mon.Last [Maybe a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Last a) Natural
cardinality = (Maybe a -> Last a)
-> Tagged (Maybe a) Natural -> Tagged (Last a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith Maybe a -> Last a
forall a. Maybe a -> Last a
Mon.Last Tagged (Maybe a) Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Semi.Max a) where universeF :: [Max a]
universeF = (a -> Max a) -> [a] -> [Max a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Max a
forall a. a -> Max a
Semi.Max [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Max a) Natural
cardinality = (a -> Max a) -> Tagged a Natural -> Tagged (Max a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Max a
forall a. a -> Max a
Semi.Max Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Semi.Min a) where universeF :: [Min a]
universeF = (a -> Min a) -> [a] -> [Min a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Min a
forall a. a -> Min a
Semi.Min [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Min a) Natural
cardinality = (a -> Min a) -> Tagged a Natural -> Tagged (Min a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Min a
forall a. a -> Min a
Semi.Min Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Semi.First a) where universeF :: [First a]
universeF = (a -> First a) -> [a] -> [First a]
forall a b. (a -> b) -> [a] -> [b]
map a -> First a
forall a. a -> First a
Semi.First [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (First a) Natural
cardinality = (a -> First a) -> Tagged a Natural -> Tagged (First a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> First a
forall a. a -> First a
Semi.First Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite a => Finite (Semi.Last a) where universeF :: [Last a]
universeF = (a -> Last a) -> [a] -> [Last a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Last a
forall a. a -> Last a
Semi.Last [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Last a) Natural
cardinality = (a -> Last a) -> Tagged a Natural -> Tagged (Last a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Last a
forall a. a -> Last a
Semi.Last Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance (Ord a, Finite a, Finite b) => Finite (a -> b) where
universeF :: [a -> b]
universeF = ([b] -> a -> b) -> [[b]] -> [a -> b]
forall a b. (a -> b) -> [a] -> [b]
map [b] -> a -> b
tableToFunction [[b]]
tables where
tables :: [[b]]
tables = [[b]] -> [[b]]
forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [[b]
forall a. Finite a => [a]
universeF | a
_ <- [a]
monoUniverse]
tableToFunction :: [b] -> a -> b
tableToFunction = (!) (Map a b -> a -> b) -> ([b] -> Map a b) -> [b] -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(a, b)] -> Map a b
forall k a. Ord k => [(k, a)] -> Map k a
fromList ([(a, b)] -> Map a b) -> ([b] -> [(a, b)]) -> [b] -> Map a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [b] -> [(a, b)]
forall a b. [a] -> [b] -> [(a, b)]
zip [a]
monoUniverse
monoUniverse :: [a]
monoUniverse = [a]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (a -> b) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (a -> b) Natural
-> Tagged (a -> b) Natural
-> Tagged (a -> b) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 Natural -> Natural -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
(^)
(Tagged b Natural -> Tagged (a -> b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged b Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged b Natural))
(Tagged a Natural -> Tagged (a -> b) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
instance Universe Void where universe :: [Void]
universe = []
instance Finite Void where cardinality :: Tagged Void Natural
cardinality = Tagged Void Natural
0
instance Universe (Proxy a) where universe :: [Proxy a]
universe = [Proxy a
forall k (t :: k). Proxy t
Proxy]
instance Finite (Proxy a) where cardinality :: Tagged (Proxy a) Natural
cardinality = Tagged (Proxy a) Natural
1
instance Universe a => Universe (Tagged b a) where universe :: [Tagged b a]
universe = (a -> Tagged b a) -> [a] -> [Tagged b a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Tagged b a
forall k (s :: k) b. b -> Tagged s b
Tagged [a]
forall a. Universe a => [a]
universe
instance Finite a => Finite (Tagged b a) where cardinality :: Tagged (Tagged b a) Natural
cardinality = (a -> Tagged b a)
-> Tagged a Natural -> Tagged (Tagged b a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Tagged b a
forall k (s :: k) b. b -> Tagged s b
Tagged Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance (Ord a, Universe a) => Universe (Set.Set a) where
universe :: [Set a]
universe = Set a
forall a. Set a
Set.empty Set a -> [Set a] -> [Set a]
forall a. a -> [a] -> [a]
: [a] -> [Set a]
forall a. Ord a => [a] -> [Set a]
go [a]
forall a. Universe a => [a]
universe
where
go :: [a] -> [Set a]
go [] = []
go (a
x:[a]
xs) = a -> Set a
forall a. a -> Set a
Set.singleton a
x Set a -> [Set a] -> [Set a]
forall a. a -> [a] -> [a]
: [Set a] -> [Set a]
inter ([a] -> [Set a]
go [a]
xs)
where
inter :: [Set a] -> [Set a]
inter [] = []
inter (Set a
y:[Set a]
ys) = Set a
y Set a -> [Set a] -> [Set a]
forall a. a -> [a] -> [a]
: a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
Set.insert a
x Set a
y Set a -> [Set a] -> [Set a]
forall a. a -> [a] -> [a]
: [Set a] -> [Set a]
inter [Set a]
ys
instance (Ord a, Finite a) => Finite (Set.Set a) where
cardinality :: Tagged (Set a) Natural
cardinality = Tagged a Natural -> Tagged (Set a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag ((Natural -> Natural) -> Tagged a Natural -> Tagged a Natural
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Natural
2 Natural -> Natural -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^) (Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged a Natural))
instance (Ord k, Finite k, Universe v) => Universe (Map.Map k v) where
universe :: [Map k v]
universe = ([Maybe v] -> Map k v) -> [[Maybe v]] -> [Map k v]
forall a b. (a -> b) -> [a] -> [b]
map [Maybe v] -> Map k v
tableToFunction [[Maybe v]]
tables where
tables :: [[Maybe v]]
tables = [[Maybe v]] -> [[Maybe v]]
forall a. [[a]] -> [[a]]
choices [[Maybe v]
forall a. Universe a => [a]
universe | k
_ <- [k]
monoUniverse]
tableToFunction :: [Maybe v] -> Map k v
tableToFunction = [(k, Maybe v)] -> Map k v
forall k a. Ord k => [(k, Maybe a)] -> Map k a
fromList' ([(k, Maybe v)] -> Map k v)
-> ([Maybe v] -> [(k, Maybe v)]) -> [Maybe v] -> Map k v
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [k] -> [Maybe v] -> [(k, Maybe v)]
forall a b. [a] -> [b] -> [(a, b)]
zip [k]
monoUniverse
monoUniverse :: [k]
monoUniverse = [k]
forall a. Finite a => [a]
universeF
fromList' :: [(k, Maybe a)] -> Map k a
fromList' [(k, Maybe a)]
xs = [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList [ (k
k,a
v) | (k
k, Just a
v) <- [(k, Maybe a)]
xs ]
instance (Ord k, Finite k, Finite v) => Finite (Map.Map k v) where
universeF :: [Map k v]
universeF = ([Maybe v] -> Map k v) -> [[Maybe v]] -> [Map k v]
forall a b. (a -> b) -> [a] -> [b]
map [Maybe v] -> Map k v
tableToFunction [[Maybe v]]
tables where
tables :: [[Maybe v]]
tables = [[Maybe v]] -> [[Maybe v]]
forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [[Maybe v]
forall a. Finite a => [a]
universeF | k
_ <- [k]
monoUniverse]
tableToFunction :: [Maybe v] -> Map k v
tableToFunction = [(k, Maybe v)] -> Map k v
forall k a. Ord k => [(k, Maybe a)] -> Map k a
fromList' ([(k, Maybe v)] -> Map k v)
-> ([Maybe v] -> [(k, Maybe v)]) -> [Maybe v] -> Map k v
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [k] -> [Maybe v] -> [(k, Maybe v)]
forall a b. [a] -> [b] -> [(a, b)]
zip [k]
monoUniverse
monoUniverse :: [k]
monoUniverse = [k]
forall a. Finite a => [a]
universeF
fromList' :: [(k, Maybe a)] -> Map k a
fromList' [(k, Maybe a)]
xs = [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList [ (k
k,a
v) | (k
k, Just a
v) <- [(k, Maybe a)]
xs ]
cardinality :: Tagged (Map k v) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (Map k v) Natural
-> Tagged (Map k v) Natural
-> Tagged (Map k v) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (\Natural
b Natural
a -> (Natural
1 Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
+ Natural
b) Natural -> Natural -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
^ Natural
a)
(Tagged v Natural -> Tagged (Map k v) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged v Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged v Natural))
(Tagged k Natural -> Tagged (Map k v) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged k Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged k Natural))
instance Universe a => Universe (Const a b) where universe :: [Const a b]
universe = (a -> Const a b) -> [a] -> [Const a b]
forall a b. (a -> b) -> [a] -> [b]
map a -> Const a b
forall k a (b :: k). a -> Const a b
Const [a]
forall a. Universe a => [a]
universe
instance Finite a => Finite (Const a b) where universeF :: [Const a b]
universeF = (a -> Const a b) -> [a] -> [Const a b]
forall a b. (a -> b) -> [a] -> [b]
map a -> Const a b
forall k a (b :: k). a -> Const a b
Const [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Const a b) Natural
cardinality = (a -> Const a b) -> Tagged a Natural -> Tagged (Const a b) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Const a b
forall k a (b :: k). a -> Const a b
Const Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Universe a => Universe (Identity a) where universe :: [Identity a]
universe = (a -> Identity a) -> [a] -> [Identity a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Identity a
forall a. a -> Identity a
Identity [a]
forall a. Universe a => [a]
universe
instance Universe (f a) => Universe (IdentityT f a) where universe :: [IdentityT f a]
universe = (f a -> IdentityT f a) -> [f a] -> [IdentityT f a]
forall a b. (a -> b) -> [a] -> [b]
map f a -> IdentityT f a
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT [f a]
forall a. Universe a => [a]
universe
instance (Finite e, Ord e, Universe (m a)) => Universe (ReaderT e m a) where universe :: [ReaderT e m a]
universe = ((e -> m a) -> ReaderT e m a) -> [e -> m a] -> [ReaderT e m a]
forall a b. (a -> b) -> [a] -> [b]
map (e -> m a) -> ReaderT e m a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT [e -> m a]
forall a. Universe a => [a]
universe
instance Universe (f (g a)) => Universe (Compose f g a) where universe :: [Compose f g a]
universe = (f (g a) -> Compose f g a) -> [f (g a)] -> [Compose f g a]
forall a b. (a -> b) -> [a] -> [b]
map f (g a) -> Compose f g a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose [f (g a)]
forall a. Universe a => [a]
universe
instance (Universe (f a), Universe (g a)) => Universe (Product f g a) where universe :: [Product f g a]
universe = [f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
f g a
g | (f a
f, g a
g) <- [f a]
forall a. Universe a => [a]
universe [f a] -> [g a] -> [(f a, g a)]
forall a b. [a] -> [b] -> [(a, b)]
+*+ [g a]
forall a. Universe a => [a]
universe]
instance (Universe (f a), Universe (g a)) => Universe (Sum f g a) where universe :: [Sum f g a]
universe = (f a -> Sum f g a) -> [f a] -> [Sum f g a]
forall a b. (a -> b) -> [a] -> [b]
map f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL [f a]
forall a. Universe a => [a]
universe [Sum f g a] -> [Sum f g a] -> [Sum f g a]
forall a. [a] -> [a] -> [a]
+++ (g a -> Sum f g a) -> [g a] -> [Sum f g a]
forall a b. (a -> b) -> [a] -> [b]
map g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR [g a]
forall a. Universe a => [a]
universe
instance Finite a => Finite (Identity a) where universeF :: [Identity a]
universeF = (a -> Identity a) -> [a] -> [Identity a]
forall a b. (a -> b) -> [a] -> [b]
map a -> Identity a
forall a. a -> Identity a
Identity [a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Identity a) Natural
cardinality = (a -> Identity a)
-> Tagged a Natural -> Tagged (Identity a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith a -> Identity a
forall a. a -> Identity a
Identity Tagged a Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite (f a) => Finite (IdentityT f a) where universeF :: [IdentityT f a]
universeF = (f a -> IdentityT f a) -> [f a] -> [IdentityT f a]
forall a b. (a -> b) -> [a] -> [b]
map f a -> IdentityT f a
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT [f a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (IdentityT f a) Natural
cardinality = (f a -> IdentityT f a)
-> Tagged (f a) Natural -> Tagged (IdentityT f a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith f a -> IdentityT f a
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT Tagged (f a) Natural
forall a. Finite a => Tagged a Natural
cardinality
instance (Finite e, Ord e, Finite (m a)) => Finite (ReaderT e m a) where universeF :: [ReaderT e m a]
universeF = ((e -> m a) -> ReaderT e m a) -> [e -> m a] -> [ReaderT e m a]
forall a b. (a -> b) -> [a] -> [b]
map (e -> m a) -> ReaderT e m a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT [e -> m a]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (ReaderT e m a) Natural
cardinality = ((e -> m a) -> ReaderT e m a)
-> Tagged (e -> m a) Natural -> Tagged (ReaderT e m a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith (e -> m a) -> ReaderT e m a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT Tagged (e -> m a) Natural
forall a. Finite a => Tagged a Natural
cardinality
instance Finite (f (g a)) => Finite (Compose f g a) where universeF :: [Compose f g a]
universeF = (f (g a) -> Compose f g a) -> [f (g a)] -> [Compose f g a]
forall a b. (a -> b) -> [a] -> [b]
map f (g a) -> Compose f g a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose [f (g a)]
forall a. Finite a => [a]
universeF; cardinality :: Tagged (Compose f g a) Natural
cardinality = (f (g a) -> Compose f g a)
-> Tagged (f (g a)) Natural -> Tagged (Compose f g a) Natural
forall a b x. (a -> b) -> Tagged a x -> Tagged b x
retagWith f (g a) -> Compose f g a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose Tagged (f (g a)) Natural
forall a. Finite a => Tagged a Natural
cardinality
instance (Finite (f a), Finite (g a)) => Finite (Product f g a) where
universeF :: [Product f g a]
universeF = (f a -> g a -> Product f g a) -> [f a] -> [g a] -> [Product f g a]
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair [f a]
forall a. Finite a => [a]
universeF [g a]
forall a. Finite a => [a]
universeF
cardinality :: Tagged (Product f g a) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (Product f g a) Natural
-> Tagged (Product f g a) Natural
-> Tagged (Product f g a) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(*)
(Tagged (f a) Natural -> Tagged (Product f g a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged (f a) Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged (f a) Natural))
(Tagged (g a) Natural -> Tagged (Product f g a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged (g a) Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged (g a) Natural))
instance (Finite (f a), Finite (g a)) => Finite (Sum f g a) where
universeF :: [Sum f g a]
universeF = (f a -> Sum f g a) -> [f a] -> [Sum f g a]
forall a b. (a -> b) -> [a] -> [b]
map f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL [f a]
forall a. Universe a => [a]
universe [Sum f g a] -> [Sum f g a] -> [Sum f g a]
forall a. [a] -> [a] -> [a]
++ (g a -> Sum f g a) -> [g a] -> [Sum f g a]
forall a b. (a -> b) -> [a] -> [b]
map g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR [g a]
forall a. Universe a => [a]
universe
cardinality :: Tagged (Sum f g a) Natural
cardinality = (Natural -> Natural -> Natural)
-> Tagged (Sum f g a) Natural
-> Tagged (Sum f g a) Natural
-> Tagged (Sum f g a) Natural
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(+)
(Tagged (f a) Natural -> Tagged (Sum f g a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged (f a) Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged (f a) Natural))
(Tagged (g a) Natural -> Tagged (Sum f g a) Natural
forall k1 k2 (s :: k1) b (t :: k2). Tagged s b -> Tagged t b
retag (Tagged (g a) Natural
forall a. Finite a => Tagged a Natural
cardinality :: Tagged (g a) Natural))