{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedSums #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
{-# OPTIONS_HADDOCK not-home #-}
module Data.HashMap.Internal
(
HashMap(..)
, Leaf(..)
, empty
, singleton
, null
, size
, member
, lookup
, (!?)
, findWithDefault
, lookupDefault
, (!)
, insert
, insertWith
, unsafeInsert
, delete
, adjust
, update
, alter
, alterF
, isSubmapOf
, isSubmapOfBy
, union
, unionWith
, unionWithKey
, unions
, compose
, map
, mapWithKey
, traverseWithKey
, mapKeys
, difference
, differenceWith
, intersection
, intersectionWith
, intersectionWithKey
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, mapMaybe
, mapMaybeWithKey
, filter
, filterWithKey
, keys
, elems
, toList
, fromList
, fromListWith
, fromListWithKey
, Hash
, Bitmap
, bitmapIndexedOrFull
, collision
, hash
, mask
, index
, bitsPerSubkey
, fullNodeMask
, sparseIndex
, two
, unionArrayBy
, update32
, update32M
, update32With'
, updateOrConcatWithKey
, filterMapAux
, equalKeys
, equalKeys1
, lookupRecordCollision
, LookupRes(..)
, insert'
, delete'
, lookup'
, insertNewKey
, insertKeyExists
, deleteKeyExists
, insertModifying
, ptrEq
, adjust#
) where
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData (..), NFData1 (..), NFData2 (..))
import Control.Monad.ST (ST, runST)
import Data.Bifoldable (Bifoldable (..))
import Data.Bits (complement, popCount, unsafeShiftL,
unsafeShiftR, (.&.), (.|.), countTrailingZeros)
import Data.Coerce (coerce)
import Data.Data (Constr, Data (..), DataType)
import Data.Functor.Classes (Eq1 (..), Eq2 (..), Ord1 (..), Ord2 (..),
Read1 (..), Show1 (..), Show2 (..))
import Data.Functor.Identity (Identity (..))
import Data.HashMap.Internal.List (isPermutationBy, unorderedCompare)
import Data.Hashable (Hashable)
import Data.Hashable.Lifted (Hashable1, Hashable2)
import Data.Semigroup (Semigroup (..), stimesIdempotentMonoid)
import GHC.Exts (Int (..), Int#, TYPE, (==#))
import GHC.Stack (HasCallStack)
import Prelude hiding (filter, foldl, foldr, lookup, map,
null, pred)
import Text.Read hiding (step)
import qualified Data.Data as Data
import qualified Data.Foldable as Foldable
import qualified Data.Functor.Classes as FC
import qualified Data.HashMap.Internal.Array as A
import qualified Data.Hashable as H
import qualified Data.Hashable.Lifted as H
import qualified Data.List as List
import qualified GHC.Exts as Exts
import qualified Language.Haskell.TH.Syntax as TH
hash :: H.Hashable a => a -> Hash
hash :: a -> Hash
hash = Int -> Hash
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Hash) -> (a -> Int) -> a -> Hash
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Int
forall a. Hashable a => a -> Int
H.hash
data Leaf k v = L !k v
deriving (Leaf k v -> Leaf k v -> Bool
(Leaf k v -> Leaf k v -> Bool)
-> (Leaf k v -> Leaf k v -> Bool) -> Eq (Leaf k v)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
/= :: Leaf k v -> Leaf k v -> Bool
$c/= :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
== :: Leaf k v -> Leaf k v -> Bool
$c== :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
Eq)
instance (NFData k, NFData v) => NFData (Leaf k v) where
rnf :: Leaf k v -> ()
rnf (L k
k v
v) = k -> ()
forall a. NFData a => a -> ()
rnf k
k () -> () -> ()
`seq` v -> ()
forall a. NFData a => a -> ()
rnf v
v
instance (TH.Lift k, TH.Lift v) => TH.Lift (Leaf k v) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: Leaf k v -> Q (TExp (Leaf k v))
liftTyped (L k
k v
v) = [|| L k $! v ||]
#else
lift (L k v) = [| L k $! v |]
#endif
instance NFData k => NFData1 (Leaf k) where
liftRnf :: (a -> ()) -> Leaf k a -> ()
liftRnf = (k -> ()) -> (a -> ()) -> Leaf k a -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 k -> ()
forall a. NFData a => a -> ()
rnf
instance NFData2 Leaf where
liftRnf2 :: (a -> ()) -> (b -> ()) -> Leaf a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (L a
k b
v) = a -> ()
rnf1 a
k () -> () -> ()
`seq` b -> ()
rnf2 b
v
data HashMap k v
= Empty
| BitmapIndexed !Bitmap !(A.Array (HashMap k v))
| Leaf !Hash !(Leaf k v)
| Full !(A.Array (HashMap k v))
| Collision !Hash !(A.Array (Leaf k v))
type role HashMap nominal representational
deriving instance (TH.Lift k, TH.Lift v) => TH.Lift (HashMap k v)
instance (NFData k, NFData v) => NFData (HashMap k v) where
rnf :: HashMap k v -> ()
rnf HashMap k v
Empty = ()
rnf (BitmapIndexed Hash
_ Array (HashMap k v)
ary) = Array (HashMap k v) -> ()
forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Leaf Hash
_ Leaf k v
l) = Leaf k v -> ()
forall a. NFData a => a -> ()
rnf Leaf k v
l
rnf (Full Array (HashMap k v)
ary) = Array (HashMap k v) -> ()
forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Collision Hash
_ Array (Leaf k v)
ary) = Array (Leaf k v) -> ()
forall a. NFData a => a -> ()
rnf Array (Leaf k v)
ary
instance NFData k => NFData1 (HashMap k) where
liftRnf :: (a -> ()) -> HashMap k a -> ()
liftRnf = (k -> ()) -> (a -> ()) -> HashMap k a -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 k -> ()
forall a. NFData a => a -> ()
rnf
instance NFData2 HashMap where
liftRnf2 :: (a -> ()) -> (b -> ()) -> HashMap a b -> ()
liftRnf2 a -> ()
_ b -> ()
_ HashMap a b
Empty = ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (BitmapIndexed Hash
_ Array (HashMap a b)
ary) = (HashMap a b -> ()) -> Array (HashMap a b) -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Leaf Hash
_ Leaf a b
l) = (a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 Leaf a b
l
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Full Array (HashMap a b)
ary) = (HashMap a b -> ()) -> Array (HashMap a b) -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Collision Hash
_ Array (Leaf a b)
ary) = (Leaf a b -> ()) -> Array (Leaf a b) -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (Leaf a b)
ary
instance Functor (HashMap k) where
fmap :: (a -> b) -> HashMap k a -> HashMap k b
fmap = (a -> b) -> HashMap k a -> HashMap k b
forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map
instance Foldable.Foldable (HashMap k) where
foldMap :: (a -> m) -> HashMap k a -> m
foldMap a -> m
f = (k -> a -> m) -> HashMap k a -> m
forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ k
_k a
v -> a -> m
f a
v)
{-# INLINE foldMap #-}
foldr :: (a -> b -> b) -> b -> HashMap k a -> b
foldr = (a -> b -> b) -> b -> HashMap k a -> b
forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr
{-# INLINE foldr #-}
foldl :: (b -> a -> b) -> b -> HashMap k a -> b
foldl = (b -> a -> b) -> b -> HashMap k a -> b
forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl
{-# INLINE foldl #-}
foldr' :: (a -> b -> b) -> b -> HashMap k a -> b
foldr' = (a -> b -> b) -> b -> HashMap k a -> b
forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr'
{-# INLINE foldr' #-}
foldl' :: (b -> a -> b) -> b -> HashMap k a -> b
foldl' = (b -> a -> b) -> b -> HashMap k a -> b
forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl'
{-# INLINE foldl' #-}
null :: HashMap k a -> Bool
null = HashMap k a -> Bool
forall k a. HashMap k a -> Bool
null
{-# INLINE null #-}
length :: HashMap k a -> Int
length = HashMap k a -> Int
forall k a. HashMap k a -> Int
size
{-# INLINE length #-}
instance Bifoldable HashMap where
bifoldMap :: (a -> m) -> (b -> m) -> HashMap a b -> m
bifoldMap a -> m
f b -> m
g = (a -> b -> m) -> HashMap a b -> m
forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ a
k b
v -> a -> m
f a
k m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
v)
{-# INLINE bifoldMap #-}
bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> HashMap a b -> c
bifoldr a -> c -> c
f b -> c -> c
g = (a -> b -> c -> c) -> c -> HashMap a b -> c
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\ a
k b
v c
acc -> a
k a -> c -> c
`f` (b
v b -> c -> c
`g` c
acc))
{-# INLINE bifoldr #-}
bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> HashMap a b -> c
bifoldl c -> a -> c
f c -> b -> c
g = (c -> a -> b -> c) -> c -> HashMap a b -> c
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\ c
acc a
k b
v -> (c
acc c -> a -> c
`f` a
k) c -> b -> c
`g` b
v)
{-# INLINE bifoldl #-}
instance (Eq k, Hashable k) => Semigroup (HashMap k v) where
<> :: HashMap k v -> HashMap k v -> HashMap k v
(<>) = HashMap k v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
union
{-# INLINE (<>) #-}
stimes :: b -> HashMap k v -> HashMap k v
stimes = b -> HashMap k v -> HashMap k v
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
{-# INLINE stimes #-}
instance (Eq k, Hashable k) => Monoid (HashMap k v) where
mempty :: HashMap k v
mempty = HashMap k v
forall k v. HashMap k v
empty
{-# INLINE mempty #-}
mappend :: HashMap k v -> HashMap k v -> HashMap k v
mappend = HashMap k v -> HashMap k v -> HashMap k v
forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE mappend #-}
instance (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) where
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z HashMap k v
m = ([(k, v)] -> HashMap k v) -> c ([(k, v)] -> HashMap k v)
forall g. g -> c g
z [(k, v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList c ([(k, v)] -> HashMap k v) -> [(k, v)] -> c (HashMap k v)
forall d b. Data d => c (d -> b) -> d -> c b
`f` HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m
toConstr :: HashMap k v -> Constr
toConstr HashMap k v
_ = Constr
fromListConstr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HashMap k v)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
Data.constrIndex Constr
c of
Int
1 -> c ([(k, v)] -> HashMap k v) -> c (HashMap k v)
forall b r. Data b => c (b -> r) -> c r
k (([(k, v)] -> HashMap k v) -> c ([(k, v)] -> HashMap k v)
forall r. r -> c r
z [(k, v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList)
Int
_ -> [Char] -> c (HashMap k v)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: HashMap k v -> DataType
dataTypeOf HashMap k v
_ = DataType
hashMapDataType
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v))
dataCast1 forall d. Data d => c (t d)
f = c (t v) -> Maybe (c (HashMap k v))
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
(a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
Data.gcast1 c (t v)
forall d. Data d => c (t d)
f
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HashMap k v))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f = c (t k v) -> Maybe (c (HashMap k v))
forall k1 k2 k3 (c :: k1 -> *) (t :: k2 -> k3 -> k1)
(t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
Data.gcast2 c (t k v)
forall d e. (Data d, Data e) => c (t d e)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
Data.mkConstr DataType
hashMapDataType [Char]
"fromList" [] Fixity
Data.Prefix
hashMapDataType :: DataType
hashMapDataType :: DataType
hashMapDataType = [Char] -> [Constr] -> DataType
Data.mkDataType [Char]
"Data.HashMap.Internal.HashMap" [Constr
fromListConstr]
type Hash = Word
type Bitmap = Word
type Shift = Int
instance Show2 HashMap where
liftShowsPrec2 :: (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> HashMap a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv Int
d HashMap a b
m =
(Int -> [(a, b)] -> ShowS) -> [Char] -> Int -> [(a, b)] -> ShowS
forall a. (Int -> a -> ShowS) -> [Char] -> Int -> a -> ShowS
FC.showsUnaryWith ((Int -> (a, b) -> ShowS)
-> ([(a, b)] -> ShowS) -> Int -> [(a, b)] -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> (a, b) -> ShowS
sp [(a, b)] -> ShowS
sl) [Char]
"fromList" Int
d (HashMap a b -> [(a, b)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap a b
m)
where
sp :: Int -> (a, b) -> ShowS
sp = (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> (a, b)
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
sl :: [(a, b)] -> ShowS
sl = (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [(a, b)]
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [f a b]
-> ShowS
liftShowList2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
instance Show k => Show1 (HashMap k) where
liftShowsPrec :: (Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> HashMap k a -> ShowS
liftShowsPrec = (Int -> k -> ShowS)
-> ([k] -> ShowS)
-> (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> Int
-> HashMap k a
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> k -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec [k] -> ShowS
forall a. Show a => [a] -> ShowS
showList
instance (Eq k, Hashable k, Read k) => Read1 (HashMap k) where
liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (HashMap k a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = ([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a)
forall a. ([Char] -> ReadS a) -> Int -> ReadS a
FC.readsData (([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a))
-> ([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a)
forall a b. (a -> b) -> a -> b
$
(Int -> ReadS [(k, a)])
-> [Char]
-> ([(k, a)] -> HashMap k a)
-> [Char]
-> ReadS (HashMap k a)
forall a t.
(Int -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
FC.readsUnaryWith ((Int -> ReadS (k, a)) -> ReadS [(k, a)] -> Int -> ReadS [(k, a)]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (k, a)
rp' ReadS [(k, a)]
rl') [Char]
"fromList" [(k, a)] -> HashMap k a
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
where
rp' :: Int -> ReadS (k, a)
rp' = (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (k, a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(k, a)]
rl' = (Int -> ReadS a) -> ReadS [a] -> ReadS [(k, a)]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl
instance (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) where
readPrec :: ReadPrec (HashMap k e)
readPrec = ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (HashMap k e) -> ReadPrec (HashMap k e))
-> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (HashMap k e) -> ReadPrec (HashMap k e))
-> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[(k, e)] -> HashMap k e
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList ([(k, e)] -> HashMap k e)
-> ReadPrec [(k, e)] -> ReadPrec (HashMap k e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec [(k, e)]
forall a. Read a => ReadPrec a
readPrec
readListPrec :: ReadPrec [HashMap k e]
readListPrec = ReadPrec [HashMap k e]
forall a. Read a => ReadPrec [a]
readListPrecDefault
instance (Show k, Show v) => Show (HashMap k v) where
showsPrec :: Int -> HashMap k v -> ShowS
showsPrec Int
d HashMap k v
m = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(k, v)] -> ShowS
forall a. Show a => a -> ShowS
shows (HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m)
instance Traversable (HashMap k) where
traverse :: (a -> f b) -> HashMap k a -> f (HashMap k b)
traverse a -> f b
f = (k -> a -> f b) -> HashMap k a -> f (HashMap k b)
forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey ((a -> f b) -> k -> a -> f b
forall a b. a -> b -> a
const a -> f b
f)
{-# INLINABLE traverse #-}
instance Eq2 HashMap where
liftEq2 :: (a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
liftEq2 = (a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
equal2
instance Eq k => Eq1 (HashMap k) where
liftEq :: (a -> b -> Bool) -> HashMap k a -> HashMap k b -> Bool
liftEq = (a -> b -> Bool) -> HashMap k a -> HashMap k b -> Bool
forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1
instance (Eq k, Eq v) => Eq (HashMap k v) where
== :: HashMap k v -> HashMap k v -> Bool
(==) = (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 v -> v -> Bool
forall a. Eq a => a -> a -> Bool
(==)
equal1 :: Eq k
=> (v -> v' -> Bool)
-> HashMap k v -> HashMap k v' -> Bool
equal1 :: (v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 v -> v' -> Bool
eq = HashMap k v -> HashMap k v' -> Bool
go
where
go :: HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Hash
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Hash
bm2 Array (HashMap k v')
ary2)
= Hash
bm1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
bm2 Bool -> Bool -> Bool
&& (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Hash
h1 Leaf k v
l1) (Leaf Hash
h2 Leaf k v'
l2) = Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k v' -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Hash
h1 Array (Leaf k v)
ary1) (Collision Hash
h2 Array (Leaf k v')
ary2)
= Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 Bool -> Bool -> Bool
&& (Leaf k v -> Leaf k v' -> Bool)
-> [Leaf k v] -> [Leaf k v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k v') -> [Leaf k v']
forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf k v -> Leaf k v' -> Bool
leafEq (L k
k1 v
v1) (L k
k2 v'
v2) = k
k1 k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k2 Bool -> Bool -> Bool
&& v -> v' -> Bool
eq v
v1 v'
v2
equal2 :: (k -> k' -> Bool) -> (v -> v' -> Bool)
-> HashMap k v -> HashMap k' v' -> Bool
equal2 :: (k -> k' -> Bool)
-> (v -> v' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equal2 k -> k' -> Bool
eqk v -> v' -> Bool
eqv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Hash
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Hash
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Hash
k1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
k2 Bool -> Bool -> Bool
&&
Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Hash
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Hash
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Hash
k1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
k2 Bool -> Bool -> Bool
&&
Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
(Leaf k v -> Leaf k' v' -> Bool)
-> [Leaf k v] -> [Leaf k' v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Bool
eqk k
k k'
k' Bool -> Bool -> Bool
&& v -> v' -> Bool
eqv v
v v'
v'
instance Ord2 HashMap where
liftCompare2 :: (a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
liftCompare2 = (a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp
instance Ord k => Ord1 (HashMap k) where
liftCompare :: (a -> b -> Ordering) -> HashMap k a -> HashMap k b -> Ordering
liftCompare = (k -> k -> Ordering)
-> (a -> b -> Ordering) -> HashMap k a -> HashMap k b -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
instance (Ord k, Ord v) => Ord (HashMap k v) where
compare :: HashMap k v -> HashMap k v -> Ordering
compare = (k -> k -> Ordering)
-> (v -> v -> Ordering) -> HashMap k v -> HashMap k v -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare v -> v -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
cmp :: (k -> k' -> Ordering) -> (v -> v' -> Ordering)
-> HashMap k v -> HashMap k' v' -> Ordering
cmp :: (k -> k' -> Ordering)
-> (v -> v' -> Ordering)
-> HashMap k v
-> HashMap k' v'
-> Ordering
cmp k -> k' -> Ordering
cmpk v -> v' -> Ordering
cmpv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Ordering
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Ordering
go (Leaf Hash
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Hash
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
= Hash -> Hash -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Hash
k1 Hash
k2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
Leaf k v -> Leaf k' v' -> Ordering
leafCompare Leaf k v
l1 Leaf k' v'
l2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Hash
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Hash
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
= Hash -> Hash -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Hash
k1 Hash
k2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1) (Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
(Leaf k v -> Leaf k' v' -> Ordering)
-> [Leaf k v] -> [Leaf k' v'] -> Ordering
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
unorderedCompare Leaf k v -> Leaf k' v' -> Ordering
leafCompare (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Leaf Hash
_ Leaf k v
_ : [HashMap k v]
_) (Collision Hash
_ Array (Leaf k' v')
_ : [HashMap k' v']
_) = Ordering
LT
go (Collision Hash
_ Array (Leaf k v)
_ : [HashMap k v]
_) (Leaf Hash
_ Leaf k' v'
_ : [HashMap k' v']
_) = Ordering
GT
go [] [] = Ordering
EQ
go [] [HashMap k' v']
_ = Ordering
LT
go [HashMap k v]
_ [] = Ordering
GT
go [HashMap k v]
_ [HashMap k' v']
_ = [Char] -> Ordering
forall a. HasCallStack => [Char] -> a
error [Char]
"cmp: Should never happen, leavesAndCollisions includes non Leaf / Collision"
leafCompare :: Leaf k v -> Leaf k' v' -> Ordering
leafCompare (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Ordering
cmpk k
k k'
k' Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` v -> v' -> Ordering
cmpv v
v v'
v'
equalKeys1 :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 k -> k' -> Bool
eq HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Hash
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Hash
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Hash
k1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
k2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Hash
k1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Hash
k2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Hash
k1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
k2 Bool -> Bool -> Bool
&& Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
(Leaf k v -> Leaf k' v' -> Bool)
-> [Leaf k v] -> [Leaf k' v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
_) (L k'
k' v'
_) = k -> k' -> Bool
eq k
k k'
k'
equalKeys :: Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys :: HashMap k v -> HashMap k v' -> Bool
equalKeys = HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go
where
go :: Eq k => HashMap k v -> HashMap k v' -> Bool
go :: HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Hash
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Hash
bm2 Array (HashMap k v')
ary2)
= Hash
bm1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
bm2 Bool -> Bool -> Bool
&& (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Hash
h1 Leaf k v
l1) (Leaf Hash
h2 Leaf k v'
l2) = Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k v' -> Bool
forall a v v. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Hash
h1 Array (Leaf k v)
ary1) (Collision Hash
h2 Array (Leaf k v')
ary2)
= Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 Bool -> Bool -> Bool
&& (Leaf k v -> Leaf k v' -> Bool)
-> [Leaf k v] -> [Leaf k v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k v' -> Bool
forall a v v. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k v') -> [Leaf k v']
forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf a v -> Leaf a v -> Bool
leafEq (L a
k1 v
_) (L a
k2 v
_) = a
k1 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
k2
instance Hashable2 HashMap where
liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> HashMap a b -> Int
liftHashWithSalt2 Int -> a -> Int
hk Int -> b -> Int
hv Int
salt HashMap a b
hm = Int -> [HashMap a b] -> Int
go Int
salt (HashMap a b -> [HashMap a b] -> [HashMap a b]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap a b
hm [])
where
go :: Int -> [HashMap a b] -> Int
go Int
s [] = Int
s
go Int
s (Leaf Hash
_ Leaf a b
l : [HashMap a b]
tl)
= Int
s Int -> Leaf a b -> Int
`hashLeafWithSalt` Leaf a b
l Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (Collision Hash
h Array (Leaf a b)
a : [HashMap a b]
tl)
= (Int
s Int -> Hash -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Hash
h) Int -> Array (Leaf a b) -> Int
`hashCollisionWithSalt` Array (Leaf a b)
a Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (HashMap a b
_ : [HashMap a b]
tl) = Int
s Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
hashLeafWithSalt :: Int -> Leaf a b -> Int
hashLeafWithSalt Int
s (L a
k b
v) = (Int
s Int -> a -> Int
`hk` a
k) Int -> b -> Int
`hv` b
v
hashCollisionWithSalt :: Int -> Array (Leaf a b) -> Int
hashCollisionWithSalt Int
s
= (Int -> Int -> Int) -> Int -> [Int] -> Int
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s ([Int] -> Int)
-> (Array (Leaf a b) -> [Int]) -> Array (Leaf a b) -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s = [Int] -> [Int]
forall a. Ord a => [a] -> [a]
List.sort ([Int] -> [Int])
-> (Array (Leaf a b) -> [Int]) -> Array (Leaf a b) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Leaf a b -> Int) -> [Leaf a b] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf a b -> Int
hashLeafWithSalt Int
s) ([Leaf a b] -> [Int])
-> (Array (Leaf a b) -> [Leaf a b]) -> Array (Leaf a b) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array (Leaf a b) -> [Leaf a b]
forall a. Array a -> [a]
A.toList
instance (Hashable k) => Hashable1 (HashMap k) where
liftHashWithSalt :: (Int -> a -> Int) -> Int -> HashMap k a -> Int
liftHashWithSalt = (Int -> k -> Int) -> (Int -> a -> Int) -> Int -> HashMap k a -> Int
forall (t :: * -> * -> *) a b.
Hashable2 t =>
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> t a b -> Int
H.liftHashWithSalt2 Int -> k -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt
instance (Hashable k, Hashable v) => Hashable (HashMap k v) where
hashWithSalt :: Int -> HashMap k v -> Int
hashWithSalt Int
salt HashMap k v
hm = Int -> HashMap k v -> Int
go Int
salt HashMap k v
hm
where
go :: Int -> HashMap k v -> Int
go :: Int -> HashMap k v -> Int
go Int
s HashMap k v
Empty = Int
s
go Int
s (BitmapIndexed Hash
_ Array (HashMap k v)
a) = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Leaf Hash
h (L k
_ v
v))
= Int
s Int -> Hash -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Hash
h Int -> v -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
go Int
s (Full Array (HashMap k v)
a) = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Collision Hash
h Array (Leaf k v)
a)
= (Int
s Int -> Hash -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Hash
h) Int -> Array (Leaf k v) -> Int
`hashCollisionWithSalt` Array (Leaf k v)
a
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt Int
s (L k
k v
v) = Int
s Int -> k -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` k
k Int -> v -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
hashCollisionWithSalt :: Int -> Array (Leaf k v) -> Int
hashCollisionWithSalt Int
s
= (Int -> Int -> Int) -> Int -> [Int] -> Int
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s ([Int] -> Int)
-> (Array (Leaf k v) -> [Int]) -> Array (Leaf k v) -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
arrayHashesSorted :: Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s = [Int] -> [Int]
forall a. Ord a => [a] -> [a]
List.sort ([Int] -> [Int])
-> (Array (Leaf k v) -> [Int]) -> Array (Leaf k v) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Leaf k v -> Int) -> [Leaf k v] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf k v -> Int
hashLeafWithSalt Int
s) ([Leaf k v] -> [Int])
-> (Array (Leaf k v) -> [Leaf k v]) -> Array (Leaf k v) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList
leavesAndCollisions :: HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions :: HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions (BitmapIndexed Hash
_ Array (HashMap k v)
ary) [HashMap k v]
a = (HashMap k v -> [HashMap k v] -> [HashMap k v])
-> [HashMap k v] -> Array (HashMap k v) -> [HashMap k v]
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions (Full Array (HashMap k v)
ary) [HashMap k v]
a = (HashMap k v -> [HashMap k v] -> [HashMap k v])
-> [HashMap k v] -> Array (HashMap k v) -> [HashMap k v]
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions l :: HashMap k v
l@(Leaf Hash
_ Leaf k v
_) [HashMap k v]
a = HashMap k v
l HashMap k v -> [HashMap k v] -> [HashMap k v]
forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions c :: HashMap k v
c@(Collision Hash
_ Array (Leaf k v)
_) [HashMap k v]
a = HashMap k v
c HashMap k v -> [HashMap k v] -> [HashMap k v]
forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions HashMap k v
Empty [HashMap k v]
a = [HashMap k v]
a
isLeafOrCollision :: HashMap k v -> Bool
isLeafOrCollision :: HashMap k v -> Bool
isLeafOrCollision (Leaf Hash
_ Leaf k v
_) = Bool
True
isLeafOrCollision (Collision Hash
_ Array (Leaf k v)
_) = Bool
True
isLeafOrCollision HashMap k v
_ = Bool
False
empty :: HashMap k v
empty :: HashMap k v
empty = HashMap k v
forall k v. HashMap k v
Empty
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton :: k -> v -> HashMap k v
singleton k
k v
v = Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf (k -> Hash
forall a. Hashable a => a -> Hash
hash k
k) (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v)
null :: HashMap k v -> Bool
null :: HashMap k v -> Bool
null HashMap k v
Empty = Bool
True
null HashMap k v
_ = Bool
False
size :: HashMap k v -> Int
size :: HashMap k v -> Int
size HashMap k v
t = HashMap k v -> Int -> Int
forall k v. HashMap k v -> Int -> Int
go HashMap k v
t Int
0
where
go :: HashMap k v -> Int -> Int
go HashMap k v
Empty !Int
n = Int
n
go (Leaf Hash
_ Leaf k v
_) Int
n = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
go (BitmapIndexed Hash
_ Array (HashMap k v)
ary) Int
n = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' ((HashMap k v -> Int -> Int) -> Int -> HashMap k v -> Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) Int
n = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' ((HashMap k v -> Int -> Int) -> Int -> HashMap k v -> Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Collision Hash
_ Array (Leaf k v)
ary) Int
n = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool
member :: k -> HashMap k a -> Bool
member k
k HashMap k a
m = case k -> HashMap k a -> Maybe a
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k a
m of
Maybe a
Nothing -> Bool
False
Just a
_ -> Bool
True
{-# INLINABLE member #-}
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup :: k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m = case k -> HashMap k v -> (# (# #) | v #)
forall k v.
(Eq k, Hashable k) =>
k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m of
(# (# #) | #) -> Maybe v
forall a. Maybe a
Nothing
(# | v
a #) -> v -> Maybe v
forall a. a -> Maybe a
Just v
a
{-# INLINE lookup #-}
lookup# :: (Eq k, Hashable k) => k -> HashMap k v -> (# (# #) | v #)
lookup# :: k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m = ((# #) -> (# (# #) | v #))
-> (v -> Int -> (# (# #) | v #))
-> Hash
-> k
-> Int
-> HashMap k v
-> (# (# #) | v #)
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Hash -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v Int
_i -> (# | v
v #)) (k -> Hash
forall a. Hashable a => a -> Hash
hash k
k) k
k Int
0 HashMap k v
m
{-# INLINABLE lookup# #-}
lookup' :: Eq k => Hash -> k -> HashMap k v -> Maybe v
lookup' :: Hash -> k -> HashMap k v -> Maybe v
lookup' Hash
h k
k HashMap k v
m = case Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
forall k v.
Eq k =>
Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Hash
h k
k HashMap k v
m of
(# (# #) | #) -> Maybe v
forall a. Maybe a
Nothing
(# | (# v
a, Int#
_i #) #) -> v -> Maybe v
forall a. a -> Maybe a
Just v
a
{-# INLINE lookup' #-}
data LookupRes a = Absent | Present a !Int
lookupRecordCollision :: Eq k => Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision :: Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Hash
h k
k HashMap k v
m = case Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
forall k v.
Eq k =>
Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Hash
h k
k HashMap k v
m of
(# (# #) | #) -> LookupRes v
forall a. LookupRes a
Absent
(# | (# v
a, Int#
i #) #) -> v -> Int -> LookupRes v
forall a. a -> Int -> LookupRes a
Present v
a (Int# -> Int
I# Int#
i)
{-# INLINE lookupRecordCollision #-}
lookupRecordCollision# :: Eq k => Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# :: Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Hash
h k
k HashMap k v
m =
((# #) -> (# (# #) | (# v, Int# #) #))
-> (v -> Int -> (# (# #) | (# v, Int# #) #))
-> Hash
-> k
-> Int
-> HashMap k v
-> (# (# #) | (# v, Int# #) #)
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Hash -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v (I# Int#
i) -> (# | (# v
v, Int#
i #) #)) Hash
h k
k Int
0 HashMap k v
m
{-# INLINABLE lookupRecordCollision# #-}
lookupCont ::
forall rep (r :: TYPE rep) k v.
Eq k
=> ((# #) -> r)
-> (v -> Int -> r)
-> Hash
-> k
-> Int
-> HashMap k v -> r
lookupCont :: ((# #) -> r)
-> (v -> Int -> r) -> Hash -> k -> Int -> HashMap k v -> r
lookupCont (# #) -> r
absent v -> Int -> r
present !Hash
h0 !k
k0 !Int
s0 !HashMap k v
m0 = Eq k => Hash -> k -> Int -> HashMap k v -> r
Hash -> k -> Int -> HashMap k v -> r
go Hash
h0 k
k0 Int
s0 HashMap k v
m0
where
go :: Eq k => Hash -> k -> Int -> HashMap k v -> r
go :: Hash -> k -> Int -> HashMap k v -> r
go !Hash
_ !k
_ !Int
_ HashMap k v
Empty = (# #) -> r
absent (# #)
go Hash
h k
k Int
_ (Leaf Hash
hx (L k
kx v
x))
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hx Bool -> Bool -> Bool
&& k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx = v -> Int -> r
present v
x (-Int
1)
| Bool
otherwise = (# #) -> r
absent (# #)
go Hash
h k
k Int
s (BitmapIndexed Hash
b Array (HashMap k v)
v)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = (# #) -> r
absent (# #)
| Bool
otherwise =
Eq k => Hash -> k -> Int -> HashMap k v -> r
Hash -> k -> Int -> HashMap k v -> r
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) (Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Hash -> Hash -> Int
sparseIndex Hash
b Hash
m))
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
go Hash
h k
k Int
s (Full Array (HashMap k v)
v) =
Eq k => Hash -> k -> Int -> HashMap k v -> r
Hash -> k -> Int -> HashMap k v -> r
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) (Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Hash -> Int -> Int
index Hash
h Int
s))
go Hash
h k
k Int
_ (Collision Hash
hx Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hx = ((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k Array (Leaf k v)
v
| Bool
otherwise = (# #) -> r
absent (# #)
{-# INLINE lookupCont #-}
(!?) :: (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!? :: HashMap k v -> k -> Maybe v
(!?) HashMap k v
m k
k = k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m
{-# INLINE (!?) #-}
findWithDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
findWithDefault :: v -> k -> HashMap k v -> v
findWithDefault v
def k
k HashMap k v
t = case k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
t of
Just v
v -> v
v
Maybe v
_ -> v
def
{-# INLINABLE findWithDefault #-}
lookupDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
lookupDefault :: v -> k -> HashMap k v -> v
lookupDefault = v -> k -> HashMap k v -> v
forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
findWithDefault
{-# INLINE lookupDefault #-}
(!) :: (Eq k, Hashable k, HasCallStack) => HashMap k v -> k -> v
(!) HashMap k v
m k
k = case k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m of
Just v
v -> v
v
Maybe v
Nothing -> [Char] -> v
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.Internal.(!): key not found"
{-# INLINABLE (!) #-}
infixl 9 !
collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h !Leaf k v
e1 !Leaf k v
e2 =
let v :: Array (Leaf k v)
v = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do MArray s (Leaf k v)
mary <- Int -> Leaf k v -> ST s (MArray s (Leaf k v))
forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 Leaf k v
e1
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
1 Leaf k v
e2
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
in Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h Array (Leaf k v)
v
{-# INLINE collision #-}
bitmapIndexedOrFull :: Bitmap -> A.Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull :: Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Hash
b !Array (HashMap k v)
ary
| Hash
b Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
fullNodeMask = Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary
| Bool
otherwise = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b Array (HashMap k v)
ary
{-# INLINE bitmapIndexedOrFull #-}
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert :: k -> v -> HashMap k v -> HashMap k v
insert k
k v
v HashMap k v
m = Hash -> k -> v -> HashMap k v -> HashMap k v
forall k v. Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' (k -> Hash
forall a. Hashable a => a -> Hash
hash k
k) k
k v
v HashMap k v
m
{-# INLINABLE insert #-}
insert' :: Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' :: Hash -> k -> v -> HashMap k v -> HashMap k v
insert' Hash
h0 k
k0 v
v0 HashMap k v
m0 = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
forall k v.
Eq k =>
Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h0 k
k0 v
v0 Int
0 HashMap k v
m0
where
go :: Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go !Hash
h !k
k v
x !Int
_ HashMap k v
Empty = Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Hash
hy l :: Leaf k v
l@(L k
ky v
y))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then if v
x v -> v -> Bool
forall a. a -> a -> Bool
`ptrEq` v
y
then HashMap k v
t
else Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
else Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two Int
s Hash
h k
k v
x Hash
hy HashMap k v
t)
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 =
let !ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h ((v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\v
a v
_ -> (# v
a #)) k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x Int
s (HashMap k v -> HashMap k v) -> HashMap k v -> HashMap k v
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash -> Int -> Hash
mask Hash
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE insert' #-}
insertNewKey :: Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey :: Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey !Hash
h0 !k
k0 v
x0 !HashMap k v
m0 = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
forall k v. Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h0 k
k0 v
x0 Int
0 HashMap k v
m0
where
go :: Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go !Hash
h !k
k v
x !Int
_ HashMap k v
Empty = Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Hash
hy Leaf k v
l)
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h = Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two Int
s Hash
h k
k v
x Hash
hy HashMap k v
t)
go Hash
h k
k v
x Int
s (BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 =
let !ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k v
x Int
s (Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Leaf k v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v. Leaf k v -> Array (Leaf k v) -> Array (Leaf k v)
snocNewLeaf (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x) Array (Leaf k v)
v)
| Bool
otherwise =
Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k v
x Int
s (HashMap k v -> HashMap k v) -> HashMap k v -> HashMap k v
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash -> Int -> Hash
mask Hash
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
where
snocNewLeaf :: Leaf k v -> A.Array (Leaf k v) -> A.Array (Leaf k v)
snocNewLeaf :: Leaf k v -> Array (Leaf k v) -> Array (Leaf k v)
snocNewLeaf Leaf k v
leaf Array (Leaf k v)
ary = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do
let n :: Int
n = Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary
MArray s (Leaf k v)
mary <- Int -> ST s (MArray s (Leaf k v))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
Array (Leaf k v)
-> Int -> MArray s (Leaf k v) -> Int -> Int -> ST s ()
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary Int
0 MArray s (Leaf k v)
mary Int
0 Int
n
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
n Leaf k v
leaf
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
{-# NOINLINE insertNewKey #-}
insertKeyExists :: Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists :: Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists !Int
collPos0 !Hash
h0 !k
k0 v
x0 !HashMap k v
m0 = Int -> Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
forall k v.
Int -> Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Int
collPos0 Hash
h0 k
k0 v
x0 Int
0 HashMap k v
m0
where
go :: Int -> Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go !Int
_collPos !Hash
h !k
k v
x !Int
_s (Leaf Hash
_hy Leaf k v
_kx)
= Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Int
collPos Hash
h k
k v
x Int
s (BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 =
let !ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Int
collPos Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Int
collPos Hash
h k
k v
x Int
s (Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Hash -> k -> v -> Int -> HashMap k v -> HashMap k v
go Int
collPos Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Int
collPos Hash
h k
k v
x Int
_s (Collision Hash
_hy Array (Leaf k v)
v)
| Int
collPos Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v. Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
collPos k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = HashMap k v
forall k v. HashMap k v
Empty
go Int
_ Hash
_ k
_ v
_ Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
{-# NOINLINE insertKeyExists #-}
setAtPosition :: Int -> k -> v -> A.Array (Leaf k v) -> A.Array (Leaf k v)
setAtPosition :: Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
i k
k v
x Array (Leaf k v)
ary = Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
{-# INLINE setAtPosition #-}
unsafeInsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
unsafeInsert :: k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k0 v
v0 HashMap k v
m0 = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Eq k =>
Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Hash
h0 = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k0
go :: Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go !Hash
h !k
k v
x !Int
_ HashMap k v
Empty = HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Hash
hy l :: Leaf k v
l@(L k
ky v
y))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then if v
x v -> v -> Bool
forall a. a -> a -> Bool
`ptrEq` v
y
then HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
else HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
else HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two Int
s Hash
h k
k v
x Hash
hy HashMap k v
t
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = do
Array (HashMap k v)
ary' <- Array (HashMap k v)
-> Int -> HashMap k v -> ST s (Array (HashMap k v))
forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap k v)
ary Int
i (HashMap k v -> ST s (Array (HashMap k v)))
-> HashMap k v -> ST s (Array (HashMap k v))
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h ((v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\v
a v
_ -> (# v
a #)) k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x Int
s (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash -> Int -> Hash
mask Hash
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE unsafeInsert #-}
two :: Shift -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two :: Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two = Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
go
where
go :: Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
go Int
s Hash
h1 k
k1 v
v1 Hash
h2 HashMap k v
t2
| Hash
bp1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
bp2 = do
HashMap k v
st <- Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) Hash
h1 k
k1 v
v1 Hash
h2 HashMap k v
t2
Array (HashMap k v)
ary <- HashMap k v -> ST s (Array (HashMap k v))
forall a s. a -> ST s (Array a)
A.singletonM HashMap k v
st
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
bp1 Array (HashMap k v)
ary
| Bool
otherwise = do
MArray s (HashMap k v)
mary <- Int -> HashMap k v -> ST s (MArray s (HashMap k v))
forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 (HashMap k v -> ST s (MArray s (HashMap k v)))
-> HashMap k v -> ST s (MArray s (HashMap k v))
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k1 v
v1)
MArray s (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v)
mary Int
idx2 HashMap k v
t2
Array (HashMap k v)
ary <- MArray s (HashMap k v) -> ST s (Array (HashMap k v))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (HashMap k v)
mary
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash
bp1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
bp2) Array (HashMap k v)
ary
where
bp1 :: Hash
bp1 = Hash -> Int -> Hash
mask Hash
h1 Int
s
bp2 :: Hash
bp2 = Hash -> Int -> Hash
mask Hash
h2 Int
s
idx2 :: Int
idx2 | Hash -> Int -> Int
index Hash
h1 Int
s Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Hash -> Int -> Int
index Hash
h2 Int
s = Int
1
| Bool
otherwise = Int
0
{-# INLINE two #-}
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
insertWith :: (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
insertWith v -> v -> v
f k
k v
new HashMap k v
m = v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
new (\v
old -> (# v -> v -> v
f v
new v
old #)) k
k HashMap k v
m
{-# INLINE insertWith #-}
insertModifying :: (Eq k, Hashable k) => v -> (v -> (# v #)) -> k -> HashMap k v
-> HashMap k v
insertModifying :: v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
x v -> (# v #)
f k
k0 HashMap k v
m0 = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h0 k
k0 Int
0 HashMap k v
m0
where
!h0 :: Hash
h0 = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k0
go :: Hash -> k -> Int -> HashMap k v -> HashMap k v
go !Hash
h !k
k !Int
_ HashMap k v
Empty = Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Hash
h k
k Int
s t :: HashMap k v
t@(Leaf Hash
hy l :: Leaf k v
l@(L k
ky v
y))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then case v -> (# v #)
f v
y of
(# v
v' #) | v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
v' -> HashMap k v
t
| Bool
otherwise -> Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v')
else Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two Int
s Hash
h k
k v
x Hash
hy HashMap k v
t)
go Hash
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 =
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b Array (HashMap k v)
ary'
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k Int
s t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy =
let !v' :: Array (Leaf k v)
v' = v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k Array (Leaf k v)
v
in if Array (Leaf k v) -> Array (Leaf k v) -> Bool
forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h Array (Leaf k v)
v'
| Bool
otherwise = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k Int
s (HashMap k v -> HashMap k v) -> HashMap k v -> HashMap k v
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash -> Int -> Hash
mask Hash
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE insertModifying #-}
insertModifyingArr :: Eq k => v -> (v -> (# v #)) -> k -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
insertModifyingArr :: v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v)
mary <- Int -> ST s (MArray s (Leaf k v))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
Array (Leaf k v)
-> Int -> MArray s (Leaf k v) -> Int -> Int -> ST s ()
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary Int
0 MArray s (Leaf k v)
mary Int
0 Int
n
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
n (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #) -> if v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y'
then Array (Leaf k v)
ary
else Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE insertModifyingArr #-}
unsafeInsertWith :: forall k v. (Eq k, Hashable k)
=> (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWith :: (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k0 v
v0 HashMap k v
m0 = (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
_ v
a v
b -> (# v -> v -> v
f v
a v
b #)) k
k0 v
v0 HashMap k v
m0
{-# INLINABLE unsafeInsertWith #-}
unsafeInsertWithKey :: forall k v. (Eq k, Hashable k)
=> (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWithKey :: (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 HashMap k v
m0 = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Hash
h0 = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k0
go :: Hash -> k -> v -> Shift -> HashMap k v -> ST s (HashMap k v)
go :: Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go !Hash
h !k
k v
x !Int
_ HashMap k v
Empty = HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Hash
hy l :: Leaf k v
l@(L k
ky v
y))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then case k -> v -> v -> (# v #)
f k
k v
x v
y of
(# v
v #) -> HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v)
else HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two Int
s Hash
h k
k v
x Hash
hy HashMap k v
t
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = do
Array (HashMap k v)
ary' <- Array (HashMap k v)
-> Int -> HashMap k v -> ST s (Array (HashMap k v))
forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap k v)
ary Int
i (HashMap k v -> ST s (Array (HashMap k v)))
-> HashMap k v -> ST s (Array (HashMap k v))
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m) Array (HashMap k v)
ary'
| Bool
otherwise = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k v
x Int
s t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = HashMap k v -> ST s (HashMap k v)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Hash -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Hash
h k
k v
x Int
s (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash -> Int -> Hash
mask Hash
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE unsafeInsertWithKey #-}
delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete :: k -> HashMap k v -> HashMap k v
delete k
k HashMap k v
m = Hash -> k -> HashMap k v -> HashMap k v
forall k v. Eq k => Hash -> k -> HashMap k v -> HashMap k v
delete' (k -> Hash
forall a. Hashable a => a -> Hash
hash k
k) k
k HashMap k v
m
{-# INLINABLE delete #-}
delete' :: Eq k => Hash -> k -> HashMap k v -> HashMap k v
delete' :: Hash -> k -> HashMap k v -> HashMap k v
delete' Hash
h0 k
k0 HashMap k v
m0 = Hash -> k -> Int -> HashMap k v -> HashMap k v
forall k v. Eq k => Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h0 k
k0 Int
0 HashMap k v
m0
where
go :: Hash -> k -> Int -> HashMap k v -> HashMap k v
go !Hash
_ !k
_ !Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
go Hash
h k
k Int
_ t :: HashMap k v
t@(Leaf Hash
hy (L k
ky v
_))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h Bool -> Bool -> Bool
&& k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k = HashMap k v
forall k v. HashMap k v
Empty
| Bool
otherwise = HashMap k v
t
go Hash
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = HashMap k v
t
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty | Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
forall k v. HashMap k v
Empty
| Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement Hash
m) (Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Hash
bm = Hash
fullNodeMask Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement (Hash
1 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
bm Array (HashMap k v)
ary'
HashMap k v
_ -> Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Hash
h k
k Int
_ t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = case k -> Array (Leaf k v) -> Maybe Int
forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
v of
Just Int
i
| Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
if Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise -> Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Array (Leaf k v) -> Int -> Array (Leaf k v)
forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
i)
Maybe Int
Nothing -> HashMap k v
t
| Bool
otherwise = HashMap k v
t
{-# INLINABLE delete' #-}
deleteKeyExists :: Int -> Hash -> k -> HashMap k v -> HashMap k v
deleteKeyExists :: Int -> Hash -> k -> HashMap k v -> HashMap k v
deleteKeyExists !Int
collPos0 !Hash
h0 !k
k0 !HashMap k v
m0 = Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
forall k v. Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos0 Hash
h0 k
k0 Int
0 HashMap k v
m0
where
go :: Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go :: Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go !Int
_collPos !Hash
_h !k
_k !Int
_s (Leaf Hash
_ Leaf k v
_) = HashMap k v
forall k v. HashMap k v
Empty
go Int
collPos Hash
h k
k Int
s (BitmapIndexed Hash
b Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
forall k v. Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty | Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
forall k v. HashMap k v
Empty
| Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement Hash
m) (Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Int
collPos Hash
h k
k Int
s (Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
forall k v. Int -> Hash -> k -> Int -> HashMap k v -> HashMap k v
go Int
collPos Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Hash
bm = Hash
fullNodeMask Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement (Hash
1 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
bm Array (HashMap k v)
ary'
HashMap k v
_ -> Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
go Int
collPos Hash
h k
_ Int
_ (Collision Hash
_hy Array (Leaf k v)
v)
| Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2
= if Int
collPos Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Array (Leaf k v) -> Int -> Array (Leaf k v)
forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
collPos)
go !Int
_ !Hash
_ !k
_ !Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
{-# NOINLINE deleteKeyExists #-}
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
adjust :: (v -> v) -> k -> HashMap k v -> HashMap k v
adjust v -> v
f k
k HashMap k v
m = (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# (\v
v -> (# v -> v
f v
v #)) k
k HashMap k v
m
{-# INLINE adjust #-}
adjust# :: (Eq k, Hashable k) => (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# :: (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# v -> (# v #)
f k
k0 HashMap k v
m0 = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h0 k
k0 Int
0 HashMap k v
m0
where
h0 :: Hash
h0 = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k0
go :: Hash -> k -> Int -> HashMap k v -> HashMap k v
go !Hash
_ !k
_ !Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
go Hash
h k
k Int
_ t :: HashMap k v
t@(Leaf Hash
hy (L k
ky v
y))
| Hash
hy Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h Bool -> Bool -> Bool
&& k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k = case v -> (# v #)
f v
y of
(# v
y' #) | v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y' -> HashMap k v
t
| Bool
otherwise -> Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise = HashMap k v
t
go Hash
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Hash
b Array (HashMap k v)
ary)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = HashMap k v
t
| Bool
otherwise = let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b Array (HashMap k v)
ary'
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b Hash
m
go Hash
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let i :: Int
i = Hash -> Int -> Int
index Hash
h Int
s
!st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Hash -> k -> Int -> HashMap k v -> HashMap k v
go Hash
h k
k (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Hash
h k
k Int
_ t :: HashMap k v
t@(Collision Hash
hy Array (Leaf k v)
v)
| Hash
h Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
hy = let !v' :: Array (Leaf k v)
v' = (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k Array (Leaf k v)
v
in if Array (Leaf k v) -> Array (Leaf k v) -> Bool
forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h Array (Leaf k v)
v'
| Bool
otherwise = HashMap k v
t
{-# INLINABLE adjust# #-}
update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update :: (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update a -> Maybe a
f = (Maybe a -> Maybe a) -> k -> HashMap k a -> HashMap k a
forall k v.
(Eq k, Hashable k) =>
(Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter (Maybe a -> (a -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Maybe a
f)
{-# INLINABLE update #-}
alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter :: (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter Maybe v -> Maybe v
f k
k HashMap k v
m =
case Maybe v -> Maybe v
f (k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m) of
Maybe v
Nothing -> k -> HashMap k v -> HashMap k v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete k
k HashMap k v
m
Just v
v -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
insert k
k v
v HashMap k v
m
{-# INLINABLE alter #-}
alterF :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF :: (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF Maybe v -> f (Maybe v)
f = \ !k
k !HashMap k v
m ->
let
!h :: Hash
h = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k
mv :: Maybe v
mv = Hash -> k -> HashMap k v -> Maybe v
forall k v. Eq k => Hash -> k -> HashMap k v -> Maybe v
lookup' Hash
h k
k HashMap k v
m
in ((Maybe v -> HashMap k v) -> f (Maybe v) -> f (HashMap k v)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) ((Maybe v -> HashMap k v) -> f (HashMap k v))
-> (Maybe v -> HashMap k v) -> f (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> HashMap k v -> (v -> HashMap k v) -> Maybe v -> HashMap k v
forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (HashMap k v -> v -> HashMap k v
forall a b. a -> b -> a
const (Hash -> k -> HashMap k v -> HashMap k v
forall k v. Eq k => Hash -> k -> HashMap k v -> HashMap k v
delete' Hash
h k
k HashMap k v
m)) Maybe v
mv
Just v
v' -> Hash -> k -> v -> HashMap k v -> HashMap k v
forall k v. Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' Hash
h k
k v
v' HashMap k v
m
{-# INLINABLE [0] alterF #-}
test_bottom :: a
test_bottom :: a
test_bottom = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit test_bottom"
bogus# :: (# #) -> (# a #)
bogus# :: (# #) -> (# a #)
bogus# (# #)
_ = [Char] -> (# a #)
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit bogus#"
{-# RULES
-- We probe the behavior of @f@ by applying it to Nothing and to
-- Just test_bottom. Based on the results, and how they relate to
-- each other, we choose the best implementation.
"alterFWeird" forall f. alterF f =
alterFWeird (f Nothing) (f (Just test_bottom)) f
-- This rule covers situations where alterF is used to simply insert or
-- delete in Identity (most likely via Control.Lens.At). We recognize here
-- (through the repeated @x@ on the LHS) that
--
-- @f Nothing = f (Just bottom)@,
--
-- which guarantees that @f@ doesn't care what its argument is, so
-- we don't have to either.
--
-- Why only Identity? A variant of this rule is actually valid regardless of
-- the functor, but for some functors (e.g., []), it can lead to the
-- same keys being compared multiple times, which is bad if they're
-- ugly things like strings. This is unfortunate, since the rule is likely
-- a good idea for almost all realistic uses, but I don't like nasty
-- edge cases.
"alterFconstant" forall (f :: Maybe a -> Identity (Maybe a)) x.
alterFWeird x x f = \ !k !m ->
Identity (case runIdentity x of {Nothing -> delete k m; Just a -> insert k a m})
-- This rule handles the case where 'alterF' is used to do 'insertWith'-like
-- things. Whenever possible, GHC will get rid of the Maybe nonsense for us.
-- We delay this rule to stage 1 so alterFconstant has a chance to fire.
"alterFinsertWith" [1] forall (f :: Maybe a -> Identity (Maybe a)) x y.
alterFWeird (coerce (Just x)) (coerce (Just y)) f =
coerce (insertModifying x (\mold -> case runIdentity (f (Just mold)) of
Nothing -> bogus# (# #)
Just new -> (# new #)))
-- Handle the case where someone uses 'alterF' instead of 'adjust'. This
-- rule is kind of picky; it will only work if the function doesn't
-- do anything between case matching on the Maybe and producing a result.
"alterFadjust" forall (f :: Maybe a -> Identity (Maybe a)) _y.
alterFWeird (coerce Nothing) (coerce (Just _y)) f =
coerce (adjust# (\x -> case runIdentity (f (Just x)) of
Just x' -> (# x' #)
Nothing -> bogus# (# #)))
-- The simple specialization to Const; in this case we can look up
-- the key without caring what position it's in. This is only a tiny
-- optimization.
"alterFlookup" forall _ign1 _ign2 (f :: Maybe a -> Const r (Maybe a)).
alterFWeird _ign1 _ign2 f = \ !k !m -> Const (getConst (f (lookup k m)))
#-}
alterFWeird
:: (Functor f, Eq k, Hashable k)
=> f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFWeird :: f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v))
-> k
-> HashMap k v
-> f (HashMap k v)
alterFWeird f (Maybe v)
_ f (Maybe v)
_ Maybe v -> f (Maybe v)
f = (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f
{-# INLINE [0] alterFWeird #-}
alterFEager :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager :: (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f !k
k HashMap k v
m = ((Maybe v -> HashMap k v) -> f (Maybe v) -> f (HashMap k v)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) ((Maybe v -> HashMap k v) -> f (HashMap k v))
-> (Maybe v -> HashMap k v) -> f (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> case LookupRes v
lookupRes of
LookupRes v
Absent -> HashMap k v
m
Present v
_ Int
collPos -> Int -> Hash -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Hash -> k -> HashMap k v -> HashMap k v
deleteKeyExists Int
collPos Hash
h k
k HashMap k v
m
Just v
v' -> case LookupRes v
lookupRes of
LookupRes v
Absent -> Hash -> k -> v -> HashMap k v -> HashMap k v
forall k v. Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey Hash
h k
k v
v' HashMap k v
m
Present v
v Int
collPos ->
if v
v v -> v -> Bool
forall a. a -> a -> Bool
`ptrEq` v
v'
then HashMap k v
m
else Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
forall k v. Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists Int
collPos Hash
h k
k v
v' HashMap k v
m
where !h :: Hash
h = k -> Hash
forall a. Hashable a => a -> Hash
hash k
k
!lookupRes :: LookupRes v
lookupRes = Hash -> k -> HashMap k v -> LookupRes v
forall k v. Eq k => Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Hash
h k
k HashMap k v
m
!mv :: Maybe v
mv = case LookupRes v
lookupRes of
LookupRes v
Absent -> Maybe v
forall a. Maybe a
Nothing
Present v
v Int
_ -> v -> Maybe v
forall a. a -> Maybe a
Just v
v
{-# INLINABLE alterFEager #-}
isSubmapOf :: (Eq k, Hashable k, Eq v) => HashMap k v -> HashMap k v -> Bool
isSubmapOf :: HashMap k v -> HashMap k v -> Bool
isSubmapOf = ((v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool)
-> (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall a. a -> a
Exts.inline (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall k v1 v2.
(Eq k, Hashable k) =>
(v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy v -> v -> Bool
forall a. Eq a => a -> a -> Bool
(==)
{-# INLINABLE isSubmapOf #-}
isSubmapOfBy :: (Eq k, Hashable k) => (v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy :: (v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy v1 -> v2 -> Bool
comp !HashMap k v1
m1 !HashMap k v2
m2 = Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
0 HashMap k v1
m1 HashMap k v2
m2
where
go :: Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
_ HashMap k v1
Empty HashMap k v2
_ = Bool
True
go Int
_ HashMap k v1
_ HashMap k v2
Empty = Bool
False
go Int
s (Leaf Hash
h1 (L k
k1 v1
v1)) HashMap k v2
t2 = ((# #) -> Bool)
-> (v2 -> Int -> Bool) -> Hash -> k -> Int -> HashMap k v2 -> Bool
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Hash -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
comp v1
v1 v2
v2) Hash
h1 k
k1 Int
s HashMap k v2
t2
go Int
_ (Collision Hash
h1 Array (Leaf k v1)
ls1) (Collision Hash
h2 Array (Leaf k v2)
ls2) =
Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 Bool -> Bool -> Bool
&& (v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
forall k v1 v2.
Eq k =>
(v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
comp Array (Leaf k v1)
ls1 Array (Leaf k v2)
ls2
go Int
s t1 :: HashMap k v1
t1@(Collision Hash
h1 Array (Leaf k v1)
_) (BitmapIndexed Hash
b Array (HashMap k v2)
ls2)
| Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = Bool
False
| Bool
otherwise =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Hash -> Hash -> Int
sparseIndex Hash
b Hash
m))
where m :: Hash
m = Hash -> Int -> Hash
mask Hash
h1 Int
s
go Int
s t1 :: HashMap k v1
t1@(Collision Hash
h1 Array (Leaf k v1)
_) (Full Array (HashMap k v2)
ls2) =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Hash -> Int -> Int
index Hash
h1 Int
s))
go Int
s (BitmapIndexed Hash
b1 Array (HashMap k v1)
ls1) (BitmapIndexed Hash
b2 Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
b1 Array (HashMap k v1)
ls1 Hash
b2 Array (HashMap k v2)
ls2
go Int
s (BitmapIndexed Hash
b1 Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
b1 Array (HashMap k v1)
ls1 Hash
fullNodeMask Array (HashMap k v2)
ls2
go Int
s (Full Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
fullNodeMask Array (HashMap k v1)
ls1 Hash
fullNodeMask Array (HashMap k v2)
ls2
go Int
_ (Collision {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Leaf {}) = Bool
False
go Int
_ (Full {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (BitmapIndexed {}) = Bool
False
{-# INLINABLE isSubmapOfBy #-}
submapBitmapIndexed :: (HashMap k v1 -> HashMap k v2 -> Bool) -> Bitmap -> A.Array (HashMap k v1) -> Bitmap -> A.Array (HashMap k v2) -> Bool
submapBitmapIndexed :: (HashMap k v1 -> HashMap k v2 -> Bool)
-> Hash
-> Array (HashMap k v1)
-> Hash
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed HashMap k v1 -> HashMap k v2 -> Bool
comp !Hash
b1 !Array (HashMap k v1)
ary1 !Hash
b2 !Array (HashMap k v2)
ary2 = Bool
subsetBitmaps Bool -> Bool -> Bool
&& Int -> Int -> Hash -> Bool
go Int
0 Int
0 (Hash
b1Orb2 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Num a => a -> a
negate Hash
b1Orb2)
where
go :: Int -> Int -> Bitmap -> Bool
go :: Int -> Int -> Hash -> Bool
go !Int
i !Int
j !Hash
m
| Hash
m Hash -> Hash -> Bool
forall a. Ord a => a -> a -> Bool
> Hash
b1Orb2 = Bool
True
| Hash
b1Andb2 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
/= Hash
0 = HashMap k v1 -> HashMap k v2 -> Bool
comp (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
j) Bool -> Bool -> Bool
&&
Int -> Int -> Hash -> Bool
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Hash
m Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Hash
b2 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
/= Hash
0 = Int -> Int -> Hash -> Bool
go Int
i (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Hash
m Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Bool
otherwise = Int -> Int -> Hash -> Bool
go Int
i Int
j (Hash
m Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
b1Andb2 :: Hash
b1Andb2 = Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
b2
b1Orb2 :: Hash
b1Orb2 = Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
b2
subsetBitmaps :: Bool
subsetBitmaps = Hash
b1Orb2 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
b2
{-# INLINABLE submapBitmapIndexed #-}
union :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k v
union :: HashMap k v -> HashMap k v -> HashMap k v
union = (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith v -> v -> v
forall a b. a -> b -> a
const
{-# INLINABLE union #-}
unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWith :: (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith v -> v -> v
f = (k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey ((v -> v -> v) -> k -> v -> v -> v
forall a b. a -> b -> a
const v -> v -> v
f)
{-# INLINE unionWith #-}
unionWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWithKey :: (k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey k -> v -> v -> v
f = Int -> HashMap k v -> HashMap k v -> HashMap k v
go Int
0
where
go :: Int -> HashMap k v -> HashMap k v -> HashMap k v
go !Int
_ HashMap k v
t1 HashMap k v
Empty = HashMap k v
t1
go Int
_ HashMap k v
Empty HashMap k v
t2 = HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Hash
h1 l1 :: Leaf k v
l1@(L k
k1 v
v1)) t2 :: HashMap k v
t2@(Leaf Hash
h2 l2 :: Leaf k v
l2@(L k
k2 v
v2))
| Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 = if k
k1 k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k2
then Hash -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k1 (k -> v -> v -> v
f k
k1 v
v1 v
v2))
else Hash -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision Hash
h1 Leaf k v
l1 Leaf k v
l2
| Bool
otherwise = Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Hash
h1 (L k
k1 v
v1)) t2 :: HashMap k v
t2@(Collision Hash
h2 Array (Leaf k v)
ls2)
| Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h1 ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) k
k1 v
v1 Array (Leaf k v)
ls2)
| Bool
otherwise = Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Hash
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Leaf Hash
h2 (L k
k2 v
v2))
| Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h1 ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
b v
a #)) k
k2 v
v2 Array (Leaf k v)
ls1)
| Bool
otherwise = Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Hash
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Collision Hash
h2 Array (Leaf k v)
ls2)
| Hash
h1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
h2 = Hash -> Array (Leaf k v) -> HashMap k v
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h1 ((k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) Array (Leaf k v)
ls1 Array (Leaf k v)
ls2)
| Bool
otherwise = Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2
go Int
s (BitmapIndexed Hash
b1 Array (HashMap k v)
ary1) (BitmapIndexed Hash
b2 Array (HashMap k v)
ary2) =
let b' :: Hash
b' = Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
b2
ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Hash
-> Hash
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Hash -> Hash -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
b1 Hash
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Hash
b' Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Hash
b1 Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Hash
-> Hash
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Hash -> Hash -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
b1 Hash
fullNodeMask Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (BitmapIndexed Hash
b2 Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Hash
-> Hash
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Hash -> Hash -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
fullNodeMask Hash
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Hash
-> Hash
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Hash -> Hash -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey)) Hash
fullNodeMask Hash
fullNodeMask
Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Hash
b1 Array (HashMap k v)
ary1) HashMap k v
t2
| Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m2 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary1 Int
i HashMap k v
t2
b' :: Hash
b' = Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m2
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Hash
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary1 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st1 HashMap k v
t2
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b1 Array (HashMap k v)
ary'
where
h2 :: Hash
h2 = HashMap k v -> Hash
forall k v. HashMap k v -> Hash
leafHashCode HashMap k v
t2
m2 :: Hash
m2 = Hash -> Int -> Hash
mask Hash
h2 Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b1 Hash
m2
go Int
s HashMap k v
t1 (BitmapIndexed Hash
b2 Array (HashMap k v)
ary2)
| Hash
b2 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary2 Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
t1
b' :: Hash
b' = Hash
b2 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m1
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Hash
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary2 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
t1 HashMap k v
st2
in Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b2 Array (HashMap k v)
ary'
where
h1 :: Hash
h1 = HashMap k v -> Hash
forall k v. HashMap k v -> Hash
leafHashCode HashMap k v
t1
m1 :: Hash
m1 = Hash -> Int -> Hash
mask Hash
h1 Int
s
i :: Int
i = Hash -> Hash -> Int
sparseIndex Hash
b2 Hash
m1
go Int
s (Full Array (HashMap k v)
ary1) HashMap k v
t2 =
let h2 :: Hash
h2 = HashMap k v -> Hash
forall k v. HashMap k v -> Hash
leafHashCode HashMap k v
t2
i :: Int
i = Hash -> Int -> Int
index Hash
h2 Int
s
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary1 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
st1 HashMap k v
t2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s HashMap k v
t1 (Full Array (HashMap k v)
ary2) =
let h1 :: Hash
h1 = HashMap k v -> Hash
forall k v. HashMap k v -> Hash
leafHashCode HashMap k v
t1
i :: Int
i = Hash -> Int -> Int
index Hash
h1 Int
s
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary2 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) HashMap k v
t1 HashMap k v
st2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
leafHashCode :: HashMap k v -> Hash
leafHashCode (Leaf Hash
h Leaf k v
_) = Hash
h
leafHashCode (Collision Hash
h Array (Leaf k v)
_) = Hash
h
leafHashCode HashMap k v
_ = [Char] -> Hash
forall a. HasCallStack => [Char] -> a
error [Char]
"leafHashCode"
goDifferentHash :: Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2
| Hash
m1 Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
m2 = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
m1 (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Int -> Hash -> Hash -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
bitsPerSubkey) Hash
h1 Hash
h2 HashMap k v
t1 HashMap k v
t2)
| Hash
m1 Hash -> Hash -> Bool
forall a. Ord a => a -> a -> Bool
< Hash
m2 = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash
m1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m2) (HashMap k v -> HashMap k v -> Array (HashMap k v)
forall a. a -> a -> Array a
A.pair HashMap k v
t1 HashMap k v
t2)
| Bool
otherwise = Hash -> Array (HashMap k v) -> HashMap k v
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Hash
m1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
m2) (HashMap k v -> HashMap k v -> Array (HashMap k v)
forall a. a -> a -> Array a
A.pair HashMap k v
t2 HashMap k v
t1)
where
m1 :: Hash
m1 = Hash -> Int -> Hash
mask Hash
h1 Int
s
m2 :: Hash
m2 = Hash -> Int -> Hash
mask Hash
h2 Int
s
{-# INLINE unionWithKey #-}
unionArrayBy :: (a -> a -> a) -> Bitmap -> Bitmap -> A.Array a -> A.Array a
-> A.Array a
unionArrayBy :: (a -> a -> a) -> Hash -> Hash -> Array a -> Array a -> Array a
unionArrayBy a -> a -> a
f !Hash
b1 !Hash
b2 !Array a
ary1 !Array a
ary2 = (forall s. ST s (MArray s a)) -> Array a
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s a)) -> Array a)
-> (forall s. ST s (MArray s a)) -> Array a
forall a b. (a -> b) -> a -> b
$ do
let bCombined :: Hash
bCombined = Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.|. Hash
b2
MArray s a
mary <- Int -> ST s (MArray s a)
forall s a. Int -> ST s (MArray s a)
A.new_ (Hash -> Int
forall a. Bits a => a -> Int
popCount Hash
bCombined)
let go :: Int -> Int -> Int -> Hash -> ST s ()
go !Int
i !Int
i1 !Int
i2 !Hash
b
| Hash
b Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Hash -> Bool
testBit (Hash
b1 Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
b2) = do
a
x1 <- Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
a
x2 <- Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> a -> ST s ()
forall a b. (a -> b) -> a -> b
$! a -> a -> a
f a
x1 a
x2
Int -> Int -> Int -> Hash -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Hash
b'
| Hash -> Bool
testBit Hash
b1 = do
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> ST s a -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
Int -> Int -> Int -> Hash -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
i2 Hash
b'
| Bool
otherwise = do
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> ST s a -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
Int -> Int -> Int -> Hash -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
i1 (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Hash
b'
where
m :: Hash
m = Hash
1 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` (Hash -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Hash
b)
testBit :: Hash -> Bool
testBit Hash
x = Hash
x Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
m Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
/= Hash
0
b' :: Hash
b' = Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement Hash
m
Int -> Int -> Int -> Hash -> ST s ()
go Int
0 Int
0 Int
0 Hash
bCombined
MArray s a -> ST s (MArray s a)
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s a
mary
{-# INLINE unionArrayBy #-}
unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k v
unions :: [HashMap k v] -> HashMap k v
unions = (HashMap k v -> HashMap k v -> HashMap k v)
-> HashMap k v -> [HashMap k v] -> HashMap k v
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' HashMap k v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
union HashMap k v
forall k v. HashMap k v
empty
{-# INLINE unions #-}
compose :: (Eq b, Hashable b) => HashMap b c -> HashMap a b -> HashMap a c
compose :: HashMap b c -> HashMap a b -> HashMap a c
compose HashMap b c
bc !HashMap a b
ab
| HashMap b c -> Bool
forall k a. HashMap k a -> Bool
null HashMap b c
bc = HashMap a c
forall k v. HashMap k v
empty
| Bool
otherwise = (b -> Maybe c) -> HashMap a b -> HashMap a c
forall v1 v2 k. (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe (HashMap b c
bc HashMap b c -> b -> Maybe c
forall k v. (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!?) HashMap a b
ab
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey k -> v1 -> v2
f = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = HashMap k v2
forall k v. HashMap k v
Empty
go (Leaf Hash
h (L k
k v1
v)) = Hash -> Leaf k v2 -> HashMap k v2
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Leaf k v2 -> HashMap k v2) -> Leaf k v2 -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)
go (BitmapIndexed Hash
b Array (HashMap k v1)
ary) = Hash -> Array (HashMap k v2) -> HashMap k v2
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v2) -> HashMap k v2)
-> Array (HashMap k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ (HashMap k v1 -> HashMap k v2)
-> Array (HashMap k v1) -> Array (HashMap k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v2) -> HashMap k v2)
-> Array (HashMap k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ (HashMap k v1 -> HashMap k v2)
-> Array (HashMap k v1) -> Array (HashMap k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Collision Hash
h Array (Leaf k v1)
ary) = Hash -> Array (Leaf k v2) -> HashMap k v2
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Array (Leaf k v2) -> HashMap k v2)
-> Array (Leaf k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$
(Leaf k v1 -> Leaf k v2) -> Array (Leaf k v1) -> Array (Leaf k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map' (\ (L k
k v1
v) -> k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)) Array (Leaf k v1)
ary
{-# INLINE mapWithKey #-}
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map v1 -> v2
f = (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey ((v1 -> v2) -> k -> v1 -> v2
forall a b. a -> b -> a
const v1 -> v2
f)
{-# INLINE map #-}
traverseWithKey
:: Applicative f
=> (k -> v1 -> f v2)
-> HashMap k v1 -> f (HashMap k v2)
traverseWithKey :: (k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey k -> v1 -> f v2
f = HashMap k v1 -> f (HashMap k v2)
go
where
go :: HashMap k v1 -> f (HashMap k v2)
go HashMap k v1
Empty = HashMap k v2 -> f (HashMap k v2)
forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v2
forall k v. HashMap k v
Empty
go (Leaf Hash
h (L k
k v1
v)) = Hash -> Leaf k v2 -> HashMap k v2
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (Leaf k v2 -> HashMap k v2)
-> (v2 -> Leaf k v2) -> v2 -> HashMap k v2
forall b c a. (b -> c) -> (a -> b) -> a -> c
. k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (v2 -> HashMap k v2) -> f v2 -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v
go (BitmapIndexed Hash
b Array (HashMap k v1)
ary) = Hash -> Array (HashMap k v2) -> HashMap k v2
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v2) -> HashMap k v2)
-> f (Array (HashMap k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (HashMap k v1 -> f (HashMap k v2))
-> Array (HashMap k v1) -> f (Array (HashMap k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v2) -> HashMap k v2)
-> f (Array (HashMap k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (HashMap k v1 -> f (HashMap k v2))
-> Array (HashMap k v1) -> f (Array (HashMap k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Collision Hash
h Array (Leaf k v1)
ary) =
Hash -> Array (Leaf k v2) -> HashMap k v2
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h (Array (Leaf k v2) -> HashMap k v2)
-> f (Array (Leaf k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Leaf k v1 -> f (Leaf k v2))
-> Array (Leaf k v1) -> f (Array (Leaf k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse' (\ (L k
k v1
v) -> k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (v2 -> Leaf k v2) -> f v2 -> f (Leaf k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v) Array (Leaf k v1)
ary
{-# INLINE traverseWithKey #-}
mapKeys :: (Eq k2, Hashable k2) => (k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys :: (k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys k1 -> k2
f = [(k2, v)] -> HashMap k2 v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList ([(k2, v)] -> HashMap k2 v)
-> (HashMap k1 v -> [(k2, v)]) -> HashMap k1 v -> HashMap k2 v
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k1 -> v -> [(k2, v)] -> [(k2, v)])
-> [(k2, v)] -> HashMap k1 v -> [(k2, v)]
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\k1
k v
x [(k2, v)]
xs -> (k1 -> k2
f k1
k, v
x) (k2, v) -> [(k2, v)] -> [(k2, v)]
forall a. a -> [a] -> [a]
: [(k2, v)]
xs) []
difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
difference :: HashMap k v -> HashMap k w -> HashMap k v
difference HashMap k v
a HashMap k w
b = (HashMap k v -> k -> v -> HashMap k v)
-> HashMap k v -> HashMap k v -> HashMap k v
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go HashMap k v
forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case k -> HashMap k w -> Maybe w
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Maybe w
_ -> HashMap k v
m
{-# INLINABLE difference #-}
differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith :: (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith v -> w -> Maybe v
f HashMap k v
a HashMap k w
b = (HashMap k v -> k -> v -> HashMap k v)
-> HashMap k v -> HashMap k v -> HashMap k v
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go HashMap k v
forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case k -> HashMap k w -> Maybe w
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Just w
w -> HashMap k v -> (v -> HashMap k v) -> Maybe v -> HashMap k v
forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (\v
y -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
y HashMap k v
m) (v -> w -> Maybe v
f v
v w
w)
{-# INLINABLE differenceWith #-}
intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
intersection :: HashMap k v -> HashMap k w -> HashMap k v
intersection HashMap k v
a HashMap k w
b = (HashMap k v -> k -> v -> HashMap k v)
-> HashMap k v -> HashMap k v -> HashMap k v
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go HashMap k v
forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case k -> HashMap k w -> Maybe w
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Just w
_ -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Maybe w
_ -> HashMap k v
m
{-# INLINABLE intersection #-}
intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1
-> HashMap k v2 -> HashMap k v3
intersectionWith :: (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith v1 -> v2 -> v3
f HashMap k v1
a HashMap k v2
b = (HashMap k v3 -> k -> v1 -> HashMap k v3)
-> HashMap k v3 -> HashMap k v1 -> HashMap k v3
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v3 -> k -> v1 -> HashMap k v3
go HashMap k v3
forall k v. HashMap k v
empty HashMap k v1
a
where
go :: HashMap k v3 -> k -> v1 -> HashMap k v3
go HashMap k v3
m k
k v1
v = case k -> HashMap k v2 -> Maybe v2
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v2
b of
Just v2
w -> k -> v3 -> HashMap k v3 -> HashMap k v3
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k (v1 -> v2 -> v3
f v1
v v2
w) HashMap k v3
m
Maybe v2
_ -> HashMap k v3
m
{-# INLINABLE intersectionWith #-}
intersectionWithKey :: (Eq k, Hashable k) => (k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey :: (k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey k -> v1 -> v2 -> v3
f HashMap k v1
a HashMap k v2
b = (HashMap k v3 -> k -> v1 -> HashMap k v3)
-> HashMap k v3 -> HashMap k v1 -> HashMap k v3
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v3 -> k -> v1 -> HashMap k v3
go HashMap k v3
forall k v. HashMap k v
empty HashMap k v1
a
where
go :: HashMap k v3 -> k -> v1 -> HashMap k v3
go HashMap k v3
m k
k v1
v = case k -> HashMap k v2 -> Maybe v2
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v2
b of
Just v2
w -> k -> v3 -> HashMap k v3 -> HashMap k v3
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k (k -> v1 -> v2 -> v3
f k
k v1
v v2
w) HashMap k v3
m
Maybe v2
_ -> HashMap k v3
m
{-# INLINABLE intersectionWithKey #-}
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a
foldl' a -> v -> a
f = (a -> k -> v -> a) -> a -> HashMap k v -> a
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' (\ a
z k
_ v
v -> a -> v -> a
f a
z v
v)
{-# INLINE foldl' #-}
foldr' :: (v -> a -> a) -> a -> HashMap k v -> a
foldr' :: (v -> a -> a) -> a -> HashMap k v -> a
foldr' v -> a -> a
f = (k -> v -> a -> a) -> a -> HashMap k v -> a
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' (\ k
_ v
v a
z -> v -> a -> a
f v
v a
z)
{-# INLINE foldr' #-}
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go !a
z HashMap k v
Empty = a
z
go a
z (Leaf Hash
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Hash
_ Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Hash
_ Array (Leaf k v)
ary) = (a -> Leaf k v -> a) -> a -> Array (Leaf k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey' #-}
foldrWithKey' :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' k -> v -> a -> a
f = (HashMap k v -> a -> a) -> a -> HashMap k v -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Hash
_ (L k
k v
v)) !a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Hash
_ Array (HashMap k v)
ary) !a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) !a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Hash
_ Array (Leaf k v)
ary) !a
z = (Leaf k v -> a -> a) -> a -> Array (Leaf k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey' #-}
foldr :: (v -> a -> a) -> a -> HashMap k v -> a
foldr :: (v -> a -> a) -> a -> HashMap k v -> a
foldr v -> a -> a
f = (k -> v -> a -> a) -> a -> HashMap k v -> a
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey ((v -> a -> a) -> k -> v -> a -> a
forall a b. a -> b -> a
const v -> a -> a
f)
{-# INLINE foldr #-}
foldl :: (a -> v -> a) -> a -> HashMap k v -> a
foldl :: (a -> v -> a) -> a -> HashMap k v -> a
foldl a -> v -> a
f = (a -> k -> v -> a) -> a -> HashMap k v -> a
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\a
a k
_k v
v -> a -> v -> a
f a
a v
v)
{-# INLINE foldl #-}
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey k -> v -> a -> a
f = (HashMap k v -> a -> a) -> a -> HashMap k v -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Hash
_ (L k
k v
v)) a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Hash
_ Array (HashMap k v)
ary) a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Hash
_ Array (Leaf k v)
ary) a
z = (Leaf k v -> a -> a) -> a -> Array (Leaf k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey #-}
foldlWithKey :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go a
z HashMap k v
Empty = a
z
go a
z (Leaf Hash
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Hash
_ Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Hash
_ Array (Leaf k v)
ary) = (a -> Leaf k v -> a) -> a -> Array (Leaf k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey #-}
foldMapWithKey :: Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey :: (k -> v -> m) -> HashMap k v -> m
foldMapWithKey k -> v -> m
f = HashMap k v -> m
go
where
go :: HashMap k v -> m
go HashMap k v
Empty = m
forall a. Monoid a => a
mempty
go (Leaf Hash
_ (L k
k v
v)) = k -> v -> m
f k
k v
v
go (BitmapIndexed Hash
_ Array (HashMap k v)
ary) = (HashMap k v -> m) -> Array (HashMap k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) = (HashMap k v -> m) -> Array (HashMap k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Collision Hash
_ Array (Leaf k v)
ary) = (Leaf k v -> m) -> Array (Leaf k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap (\ (L k
k v
v) -> k -> v -> m
f k
k v
v) Array (Leaf k v)
ary
{-# INLINE foldMapWithKey #-}
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey k -> v1 -> Maybe v2
f = (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl
where onLeaf :: HashMap k v1 -> Maybe (HashMap k v2)
onLeaf (Leaf Hash
h (L k
k v1
v)) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = HashMap k v2 -> Maybe (HashMap k v2)
forall a. a -> Maybe a
Just (Hash -> Leaf k v2 -> HashMap k v2
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h (k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k v2
v'))
onLeaf HashMap k v1
_ = Maybe (HashMap k v2)
forall a. Maybe a
Nothing
onColl :: Leaf k v1 -> Maybe (Leaf k v2)
onColl (L k
k v1
v) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = Leaf k v2 -> Maybe (Leaf k v2)
forall a. a -> Maybe a
Just (k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k v2
v')
| Bool
otherwise = Maybe (Leaf k v2)
forall a. Maybe a
Nothing
{-# INLINE mapMaybeWithKey #-}
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe v1 -> Maybe v2
f = (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
forall k v1 v2.
(k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey ((v1 -> Maybe v2) -> k -> v1 -> Maybe v2
forall a b. a -> b -> a
const v1 -> Maybe v2
f)
{-# INLINE mapMaybe #-}
filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey :: (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey k -> v -> Bool
pred = (HashMap k v -> Maybe (HashMap k v))
-> (Leaf k v -> Maybe (Leaf k v)) -> HashMap k v -> HashMap k v
forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v -> Maybe (HashMap k v)
onLeaf Leaf k v -> Maybe (Leaf k v)
onColl
where onLeaf :: HashMap k v -> Maybe (HashMap k v)
onLeaf t :: HashMap k v
t@(Leaf Hash
_ (L k
k v
v)) | k -> v -> Bool
pred k
k v
v = HashMap k v -> Maybe (HashMap k v)
forall a. a -> Maybe a
Just HashMap k v
t
onLeaf HashMap k v
_ = Maybe (HashMap k v)
forall a. Maybe a
Nothing
onColl :: Leaf k v -> Maybe (Leaf k v)
onColl el :: Leaf k v
el@(L k
k v
v) | k -> v -> Bool
pred k
k v
v = Leaf k v -> Maybe (Leaf k v)
forall a. a -> Maybe a
Just Leaf k v
el
onColl Leaf k v
_ = Maybe (Leaf k v)
forall a. Maybe a
Nothing
{-# INLINE filterWithKey #-}
filterMapAux :: forall k v1 v2
. (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2))
-> HashMap k v1
-> HashMap k v2
filterMapAux :: (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = HashMap k v2
forall k v. HashMap k v
Empty
go t :: HashMap k v1
t@Leaf{}
| Just HashMap k v2
t' <- HashMap k v1 -> Maybe (HashMap k v2)
onLeaf HashMap k v1
t = HashMap k v2
t'
| Bool
otherwise = HashMap k v2
forall k v. HashMap k v
Empty
go (BitmapIndexed Hash
b Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Hash -> HashMap k v2
filterA Array (HashMap k v1)
ary Hash
b
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Hash -> HashMap k v2
filterA Array (HashMap k v1)
ary Hash
fullNodeMask
go (Collision Hash
h Array (Leaf k v1)
ary) = Array (Leaf k v1) -> Hash -> HashMap k v2
filterC Array (Leaf k v1)
ary Hash
h
filterA :: Array (HashMap k v1) -> Hash -> HashMap k v2
filterA Array (HashMap k v1)
ary0 Hash
b0 =
let !n :: Int
n = Array (HashMap k v1) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v1)
ary0
in (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v2)) -> HashMap k v2)
-> (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ do
MArray s (HashMap k v2)
mary <- Int -> ST s (MArray s (HashMap k v2))
forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary0 MArray s (HashMap k v2)
mary Hash
b0 Int
0 Int
0 Hash
1 Int
n
where
step :: A.Array (HashMap k v1) -> A.MArray s (HashMap k v2)
-> Bitmap -> Int -> Int -> Bitmap -> Int
-> ST s (HashMap k v2)
step :: Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
step !Array (HashMap k v1)
ary !MArray s (HashMap k v2)
mary !Hash
b Int
i !Int
j !Hash
bi Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
forall k v. HashMap k v
Empty
Int
1 -> do
HashMap k v2
ch <- MArray s (HashMap k v2) -> Int -> ST s (HashMap k v2)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (HashMap k v2)
mary Int
0
case HashMap k v2
ch of
HashMap k v2
t | HashMap k v2 -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v2
t -> HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
t
HashMap k v2
_ -> Hash -> Array (HashMap k v2) -> HashMap k v2
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b (Array (HashMap k v2) -> HashMap k v2)
-> ST s (Array (HashMap k v2)) -> ST s (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MArray s (HashMap k v2) -> Int -> ST s (Array (HashMap k v2))
forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (HashMap k v2)
mary Int
1
Int
_ -> do
Array (HashMap k v2)
ary2 <- MArray s (HashMap k v2) -> Int -> ST s (Array (HashMap k v2))
forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (HashMap k v2)
mary Int
j
HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! if Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxChildren
then Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v2)
ary2
else Hash -> Array (HashMap k v2) -> HashMap k v2
forall k v. Hash -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Hash
b Array (HashMap k v2)
ary2
| Hash
bi Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
b Hash -> Hash -> Bool
forall a. Eq a => a -> a -> Bool
== Hash
0 = Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Hash
b Int
i Int
j (Hash
bi Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
| Bool
otherwise = case HashMap k v1 -> HashMap k v2
go (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary Int
i) of
HashMap k v2
Empty -> Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash -> Hash
forall a. Bits a => a -> a
complement Hash
bi) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j
(Hash
bi Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
HashMap k v2
t -> do MArray s (HashMap k v2) -> Int -> HashMap k v2 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v2)
mary Int
j HashMap k v2
t
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Hash
-> Int
-> Int
-> Hash
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Hash
b (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Hash
bi Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
filterC :: Array (Leaf k v1) -> Hash -> HashMap k v2
filterC Array (Leaf k v1)
ary0 Hash
h =
let !n :: Int
n = Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary0
in (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v2)) -> HashMap k v2)
-> (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v2)
mary <- Int -> ST s (MArray s (Leaf k v2))
forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary0 MArray s (Leaf k v2)
mary Int
0 Int
0 Int
n
where
step :: A.Array (Leaf k v1) -> A.MArray s (Leaf k v2)
-> Int -> Int -> Int
-> ST s (HashMap k v2)
step :: Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step !Array (Leaf k v1)
ary !MArray s (Leaf k v2)
mary Int
i !Int
j Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
forall k v. HashMap k v
Empty
Int
1 -> do Leaf k v2
l <- MArray s (Leaf k v2) -> Int -> ST s (Leaf k v2)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf k v2)
mary Int
0
HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Hash -> Leaf k v2 -> HashMap k v2
forall k v. Hash -> Leaf k v -> HashMap k v
Leaf Hash
h Leaf k v2
l
Int
_ | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j -> do Array (Leaf k v2)
ary2 <- MArray s (Leaf k v2) -> ST s (Array (Leaf k v2))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (Leaf k v2)
mary
HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (Leaf k v2) -> HashMap k v2
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h Array (Leaf k v2)
ary2
| Bool
otherwise -> do Array (Leaf k v2)
ary2 <- MArray s (Leaf k v2) -> Int -> ST s (Array (Leaf k v2))
forall s a. MArray s a -> Int -> ST s (Array a)
A.trim MArray s (Leaf k v2)
mary Int
j
HashMap k v2 -> ST s (HashMap k v2)
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Hash -> Array (Leaf k v2) -> HashMap k v2
forall k v. Hash -> Array (Leaf k v) -> HashMap k v
Collision Hash
h Array (Leaf k v2)
ary2
| Just Leaf k v2
el <- Leaf k v1 -> Maybe (Leaf k v2)
onColl (Leaf k v1 -> Maybe (Leaf k v2)) -> Leaf k v1 -> Maybe (Leaf k v2)
forall a b. (a -> b) -> a -> b
$! Array (Leaf k v1) -> Int -> Leaf k v1
forall a. Array a -> Int -> a
A.index Array (Leaf k v1)
ary Int
i
= MArray s (Leaf k v2) -> Int -> Leaf k v2 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v2)
mary Int
j Leaf k v2
el ST s () -> ST s (HashMap k v2) -> ST s (HashMap k v2)
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
| Bool
otherwise = Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j Int
n
{-# INLINE filterMapAux #-}
filter :: (v -> Bool) -> HashMap k v -> HashMap k v
filter :: (v -> Bool) -> HashMap k v -> HashMap k v
filter v -> Bool
p = (k -> v -> Bool) -> HashMap k v -> HashMap k v
forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey (\k
_ v
v -> v -> Bool
p v
v)
{-# INLINE filter #-}
keys :: HashMap k v -> [k]
keys :: HashMap k v -> [k]
keys = ((k, v) -> k) -> [(k, v)] -> [k]
forall a b. (a -> b) -> [a] -> [b]
List.map (k, v) -> k
forall a b. (a, b) -> a
fst ([(k, v)] -> [k])
-> (HashMap k v -> [(k, v)]) -> HashMap k v -> [k]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE keys #-}
elems :: HashMap k v -> [v]
elems :: HashMap k v -> [v]
elems = ((k, v) -> v) -> [(k, v)] -> [v]
forall a b. (a -> b) -> [a] -> [b]
List.map (k, v) -> v
forall a b. (a, b) -> b
snd ([(k, v)] -> [v])
-> (HashMap k v -> [(k, v)]) -> HashMap k v -> [v]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE elems #-}
toList :: HashMap k v -> [(k, v)]
toList :: HashMap k v -> [(k, v)]
toList HashMap k v
t = (forall b. ((k, v) -> b -> b) -> b -> b) -> [(k, v)]
forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
Exts.build (\ (k, v) -> b -> b
c b
z -> (k -> v -> b -> b) -> b -> HashMap k v -> b
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (((k, v) -> b -> b) -> k -> v -> b -> b
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (k, v) -> b -> b
c) b
z HashMap k v
t)
{-# INLINE toList #-}
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList :: [(k, v)] -> HashMap k v
fromList = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINABLE fromList #-}
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith :: (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith v -> v -> v
f = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINE fromListWith #-}
fromListWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey :: (k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey k -> v -> v -> v
f = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
k' v
a v
b -> (# k -> v -> v -> v
f k
k' v
a v
b #)) k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINE fromListWithKey #-}
lookupInArrayCont ::
forall rep (r :: TYPE rep) k v.
Eq k => ((# #) -> r) -> (v -> Int -> r) -> k -> A.Array (Leaf k v) -> r
lookupInArrayCont :: ((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> r
Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: Eq k => k -> A.Array (Leaf k v) -> Int -> Int -> r
go :: k -> Array (Leaf k v) -> Int -> Int -> r
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = (# #) -> r
absent (# #)
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
v)
| k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> v -> Int -> r
present v
v Int
i
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> r
Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE lookupInArrayCont #-}
indexOf :: Eq k => k -> A.Array (Leaf k v) -> Maybe Int
indexOf :: k -> Array (Leaf k v) -> Maybe Int
indexOf k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Maybe Int
forall t v.
Eq t =>
t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go !t
k !Array (Leaf t v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Maybe Int
forall a. Maybe a
Nothing
| Bool
otherwise = case Array (Leaf t v) -> Int -> Leaf t v
forall a. Array a -> Int -> a
A.index Array (Leaf t v)
ary Int
i of
(L t
kx v
_)
| t
k t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
kx -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
i
| Bool
otherwise -> t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go t
k Array (Leaf t v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE indexOf #-}
updateWith# :: Eq k => (v -> (# v #)) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateWith# :: (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Array (Leaf k v)
ary
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #)
| v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y' -> Array (Leaf k v)
ary
| Bool
otherwise -> Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateWith# #-}
updateOrSnocWith :: Eq k => (v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWith :: (v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith v -> v -> (# v #)
f = (k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey ((v -> v -> (# v #)) -> k -> v -> v -> (# v #)
forall a b. a -> b -> a
const v -> v -> (# v #)
f)
{-# INLINABLE updateOrSnocWith #-}
updateOrSnocWithKey :: Eq k => (k -> v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWithKey :: (k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 Array (Leaf k v)
ary0 = k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 v
v0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k v
v !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v)
mary <- Int -> ST s (MArray s (Leaf k v))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
Array (Leaf k v)
-> Int -> MArray s (Leaf k v) -> Int -> Int -> ST s ()
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary Int
0 MArray s (Leaf k v)
mary Int
0 Int
n
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
n (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v)
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
| L k
kx v
y <- Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i
, k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx
, (# v
v2 #) <- k -> v -> v -> (# v #)
f k
k v
v v
y
= Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v2)
| Bool
otherwise
= k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k v
v Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateOrSnocWithKey #-}
updateOrConcatWithKey :: Eq k => (k -> v -> v -> (# v #)) -> A.Array (Leaf k v) -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateOrConcatWithKey :: (k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey k -> v -> v -> (# v #)
f Array (Leaf k v)
ary1 Array (Leaf k v)
ary2 = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do
let indices :: Array (Maybe Int)
indices = (Leaf k v -> Maybe Int) -> Array (Leaf k v) -> Array (Maybe Int)
forall a b. (a -> b) -> Array a -> Array b
A.map' (\(L k
k v
_) -> k -> Array (Leaf k v) -> Maybe Int
forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
ary1) Array (Leaf k v)
ary2
let nOnly2 :: Int
nOnly2 = (Int -> Maybe Int -> Int) -> Int -> Array (Maybe Int) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\Int
n -> Int -> (Int -> Int) -> Maybe Int -> Int
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int -> Int -> Int
forall a b. a -> b -> a
const Int
n)) Int
0 Array (Maybe Int)
indices
let n1 :: Int
n1 = Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1
let n2 :: Int
n2 = Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary2
MArray s (Leaf k v)
mary <- Int -> ST s (MArray s (Leaf k v))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
nOnly2)
Array (Leaf k v)
-> Int -> MArray s (Leaf k v) -> Int -> Int -> ST s ()
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary1 Int
0 MArray s (Leaf k v)
mary Int
0 Int
n1
let go :: Int -> Int -> ST s ()
go !Int
iEnd !Int
i2
| Int
i2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n2 = () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = case Array (Maybe Int) -> Int -> Maybe Int
forall a. Array a -> Int -> a
A.index Array (Maybe Int)
indices Int
i2 of
Just Int
i1 -> do
L k
k v
v1 <- Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary1 Int
i1
L k
_ v
v2 <- Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
case k -> v -> v -> (# v #)
f k
k v
v1 v
v2 of (# v
v3 #) -> MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
i1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v3)
Int -> Int -> ST s ()
go Int
iEnd (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
Maybe Int
Nothing -> do
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
iEnd (Leaf k v -> ST s ()) -> ST s (Leaf k v) -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
Int -> Int -> ST s ()
go (Int
iEndInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
Int -> Int -> ST s ()
go Int
n1 Int
0
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
{-# INLINABLE updateOrConcatWithKey #-}
subsetArray :: Eq k => (v1 -> v2 -> Bool) -> A.Array (Leaf k v1) -> A.Array (Leaf k v2) -> Bool
subsetArray :: (v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
cmpV Array (Leaf k v1)
ary1 Array (Leaf k v2)
ary2 = Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Array (Leaf k v2) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2 Bool -> Bool -> Bool
&& (Leaf k v1 -> Bool) -> Array (Leaf k v1) -> Bool
forall a. (a -> Bool) -> Array a -> Bool
A.all Leaf k v1 -> Bool
inAry2 Array (Leaf k v1)
ary1
where
inAry2 :: Leaf k v1 -> Bool
inAry2 (L k
k1 v1
v1) = ((# #) -> Bool)
-> (v2 -> Int -> Bool) -> k -> Array (Leaf k v2) -> Bool
forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
cmpV v1
v1 v2
v2) k
k1 Array (Leaf k v2)
ary2
{-# INLINE inAry2 #-}
update32 :: A.Array e -> Int -> e -> A.Array e
update32 :: Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx e
b = (forall s. ST s (Array e)) -> Array e
forall a. (forall s. ST s a) -> a
runST (Array e -> Int -> e -> ST s (Array e)
forall e s. Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b)
{-# INLINE update32 #-}
update32M :: A.Array e -> Int -> e -> ST s (A.Array e)
update32M :: Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b = do
MArray s e
mary <- Array e -> ST s (MArray s e)
forall e s. Array e -> ST s (MArray s e)
clone Array e
ary
MArray s e -> Int -> e -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s e
mary Int
idx e
b
MArray s e -> ST s (Array e)
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s e
mary
{-# INLINE update32M #-}
update32With' :: A.Array e -> Int -> (e -> e) -> A.Array e
update32With' :: Array e -> Int -> (e -> e) -> Array e
update32With' Array e
ary Int
idx e -> e
f
| (# e
x #) <- Array e -> Int -> (# e #)
forall a. Array a -> Int -> (# a #)
A.index# Array e
ary Int
idx
= Array e -> Int -> e -> Array e
forall e. Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx (e -> Array e) -> e -> Array e
forall a b. (a -> b) -> a -> b
$! e -> e
f e
x
{-# INLINE update32With' #-}
clone :: A.Array e -> ST s (A.MArray s e)
clone :: Array e -> ST s (MArray s e)
clone Array e
ary =
Array e -> Int -> Int -> ST s (MArray s e)
forall e s. Array e -> Int -> Int -> ST s (MArray s e)
A.thaw Array e
ary Int
0 (Int
2Int -> Int -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^Int
bitsPerSubkey)
bitsPerSubkey :: Int
bitsPerSubkey :: Int
bitsPerSubkey = Int
5
maxChildren :: Int
maxChildren :: Int
maxChildren = Int
1 Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey
subkeyMask :: Bitmap
subkeyMask :: Hash
subkeyMask = Hash
1 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey Hash -> Hash -> Hash
forall a. Num a => a -> a -> a
- Hash
1
sparseIndex :: Bitmap -> Bitmap -> Int
sparseIndex :: Hash -> Hash -> Int
sparseIndex Hash
b Hash
m = Hash -> Int
forall a. Bits a => a -> Int
popCount (Hash
b Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. (Hash
m Hash -> Hash -> Hash
forall a. Num a => a -> a -> a
- Hash
1))
{-# INLINE sparseIndex #-}
mask :: Word -> Shift -> Bitmap
mask :: Hash -> Int -> Hash
mask Hash
w Int
s = Hash
1 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Hash -> Int -> Int
index Hash
w Int
s
{-# INLINE mask #-}
index :: Hash -> Shift -> Int
index :: Hash -> Int -> Int
index Hash
w Int
s = Hash -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Hash -> Int) -> Hash -> Int
forall a b. (a -> b) -> a -> b
$ Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
unsafeShiftR Hash
w Int
s Hash -> Hash -> Hash
forall a. Bits a => a -> a -> a
.&. Hash
subkeyMask
{-# INLINE index #-}
fullNodeMask :: Bitmap
fullNodeMask :: Hash
fullNodeMask = Hash -> Hash
forall a. Bits a => a -> a
complement (Hash -> Hash
forall a. Bits a => a -> a
complement Hash
0 Hash -> Int -> Hash
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
maxChildren)
{-# INLINE fullNodeMask #-}
ptrEq :: a -> a -> Bool
ptrEq :: a -> a -> Bool
ptrEq a
x a
y = Int# -> Bool
Exts.isTrue# (a -> a -> Int#
forall a. a -> a -> Int#
Exts.reallyUnsafePtrEquality# a
x a
y Int# -> Int# -> Int#
==# Int#
1#)
{-# INLINE ptrEq #-}
instance (Eq k, Hashable k) => Exts.IsList (HashMap k v) where
type Item (HashMap k v) = (k, v)
fromList :: [Item (HashMap k v)] -> HashMap k v
fromList = [Item (HashMap k v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
toList :: HashMap k v -> [Item (HashMap k v)]
toList = HashMap k v -> [Item (HashMap k v)]
forall k v. HashMap k v -> [(k, v)]
toList