{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Vec.Lazy.Inline (
Vec (..),
empty,
singleton,
toPull,
fromPull,
toList,
fromList,
fromListPrefix,
reifyList,
(!),
tabulate,
cons,
snoc,
head,
tail,
(++),
split,
concatMap,
concat,
chunks,
reverse,
foldMap,
foldMap1,
ifoldMap,
ifoldMap1,
foldr,
ifoldr,
length,
null,
sum,
product,
map,
imap,
traverse,
#ifdef MIN_VERSION_semigroupoids
traverse1,
#endif
itraverse,
itraverse_,
zipWith,
izipWith,
repeat,
bind,
join,
universe,
VecEach (..)
) where
import Prelude (Int, Maybe (..), Num (..), const, flip, id, ($), (.))
import Control.Applicative (Applicative (pure, (*>)), liftA2, (<$>))
import Data.Fin (Fin (..))
import Data.Monoid (Monoid (..))
import Data.Nat (Nat (..))
import Data.Semigroup (Semigroup (..))
import Data.Vec.Lazy
(Vec (..), VecEach (..), cons, empty, head, null, reifyList, singleton,
tail)
#ifdef MIN_VERSION_semigroupoids
import Data.Functor.Apply (Apply, liftF2)
#endif
import qualified Data.Fin as F
import qualified Data.Type.Nat as N
import qualified Data.Vec.Pull as P
toPull :: forall n a. N.InlineInduction n => Vec n a -> P.Vec n a
toPull = getToPull (N.inlineInduction1 start step) where
start :: ToPull 'Z a
start = ToPull $ \_ -> P.Vec F.absurd
step :: ToPull m a -> ToPull ('S m) a
step (ToPull f) = ToPull $ \(x ::: xs) -> P.Vec $ \i -> case i of
FZ -> x
FS i' -> P.unVec (f xs) i'
newtype ToPull n a = ToPull { getToPull :: Vec n a -> P.Vec n a }
fromPull :: forall n a. N.InlineInduction n => P.Vec n a -> Vec n a
fromPull = getFromPull (N.inlineInduction1 start step) where
start :: FromPull 'Z a
start = FromPull $ const VNil
step :: FromPull m a -> FromPull ('S m) a
step (FromPull f) = FromPull $ \(P.Vec v) -> v FZ ::: f (P.Vec (v . FS))
newtype FromPull n a = FromPull { getFromPull :: P.Vec n a -> Vec n a }
toList :: forall n a. N.InlineInduction n => Vec n a -> [a]
toList = getToList (N.inlineInduction1 start step) where
start :: ToList 'Z a
start = ToList (const [])
step :: ToList m a -> ToList ('S m) a
step (ToList f) = ToList $ \(x ::: xs) -> x : f xs
newtype ToList n a = ToList { getToList :: Vec n a -> [a] }
fromList :: N.InlineInduction n => [a] -> Maybe (Vec n a)
fromList = getFromList (N.inlineInduction1 start step) where
start :: FromList 'Z a
start = FromList $ \xs -> case xs of
[] -> Just VNil
(_ : _) -> Nothing
step :: FromList n a -> FromList ('N.S n) a
step (FromList f) = FromList $ \xs -> case xs of
[] -> Nothing
(x : xs') -> (x :::) <$> f xs'
newtype FromList n a = FromList { getFromList :: [a] -> Maybe (Vec n a) }
fromListPrefix :: N.InlineInduction n => [a] -> Maybe (Vec n a)
fromListPrefix = getFromList (N.inlineInduction1 start step) where
start :: FromList 'Z a
start = FromList $ \_ -> Just VNil
step :: FromList n a -> FromList ('N.S n) a
step (FromList f) = FromList $ \xs -> case xs of
[] -> Nothing
(x : xs') -> (x :::) <$> f xs'
flipIndex :: N.InlineInduction n => Fin n -> Vec n a -> a
flipIndex = getIndex (N.inlineInduction1 start step) where
start :: Index 'Z a
start = Index F.absurd
step :: Index m a-> Index ('N.S m) a
step (Index go) = Index $ \n (x ::: xs) -> case n of
FZ -> x
FS m -> go m xs
newtype Index n a = Index { getIndex :: Fin n -> Vec n a -> a }
(!) :: N.InlineInduction n => Vec n a -> Fin n -> a
(!) = flip flipIndex
tabulate :: N.InlineInduction n => (Fin n -> a) -> Vec n a
tabulate = fromPull . P.tabulate
snoc :: forall n a. N.InlineInduction n => Vec n a -> a -> Vec ('S n) a
snoc xs x = getSnoc (N.inlineInduction1 start step) xs where
start :: Snoc 'Z a
start = Snoc $ \ys -> x ::: ys
step :: Snoc m a -> Snoc ('S m) a
step (Snoc rec) = Snoc $ \(y ::: ys) -> y ::: rec ys
newtype Snoc n a = Snoc { getSnoc :: Vec n a -> Vec ('S n) a }
reverse :: forall n a. N.InlineInduction n => Vec n a -> Vec n a
reverse = getReverse (N.inlineInduction1 start step) where
start :: Reverse 'Z a
start = Reverse $ \_ -> VNil
step :: N.InlineInduction m => Reverse m a -> Reverse ('S m) a
step (Reverse rec) = Reverse $ \(x ::: xs) -> snoc (rec xs) x
newtype Reverse n a = Reverse { getReverse :: Vec n a -> Vec n a }
infixr 5 ++
(++) :: forall n m a. N.InlineInduction n => Vec n a -> Vec m a -> Vec (N.Plus n m) a
as ++ ys = getAppend (N.inlineInduction1 start step) as where
start :: Append m 'Z a
start = Append $ \_ -> ys
step :: Append m p a -> Append m ('S p) a
step (Append f) = Append $ \(x ::: xs) -> x ::: f xs
newtype Append m n a = Append { getAppend :: Vec n a -> Vec (N.Plus n m) a }
split :: N.InlineInduction n => Vec (N.Plus n m) a -> (Vec n a, Vec m a)
split = appSplit (N.inlineInduction1 start step) where
start :: Split m 'Z a
start = Split $ \xs -> (VNil, xs)
step :: Split m n a -> Split m ('S n) a
step (Split f) = Split $ \(x ::: xs) -> case f xs of
(ys, zs) -> (x ::: ys, zs)
newtype Split m n a = Split { appSplit :: Vec (N.Plus n m) a -> (Vec n a, Vec m a) }
concatMap :: forall a b n m. (N.InlineInduction m, N.InlineInduction n) => (a -> Vec m b) -> Vec n a -> Vec (N.Mult n m) b
concatMap f = getConcatMap $ N.inlineInduction1 start step where
start :: ConcatMap m a 'Z b
start = ConcatMap $ \_ -> VNil
step :: ConcatMap m a p b -> ConcatMap m a ('S p) b
step (ConcatMap g) = ConcatMap $ \(x ::: xs) -> f x ++ g xs
newtype ConcatMap m a n b = ConcatMap { getConcatMap :: Vec n a -> Vec (N.Mult n m) b }
concat :: (N.InlineInduction m, N.InlineInduction n) => Vec n (Vec m a) -> Vec (N.Mult n m) a
concat = concatMap id
chunks :: (N.InlineInduction n, N.InlineInduction m) => Vec (N.Mult n m) a -> Vec n (Vec m a)
chunks = getChunks $ N.induction1 start step where
start :: Chunks m 'Z a
start = Chunks $ \_ -> VNil
step :: forall m n a. N.InlineInduction m => Chunks m n a -> Chunks m ('S n) a
step (Chunks go) = Chunks $ \xs ->
let (ys, zs) = split xs :: (Vec m a, Vec (N.Mult n m) a)
in ys ::: go zs
newtype Chunks m n a = Chunks { getChunks :: Vec (N.Mult n m) a -> Vec n (Vec m a) }
map :: forall a b n. N.InlineInduction n => (a -> b) -> Vec n a -> Vec n b
map f = getMap $ N.inlineInduction1 start step where
start :: Map a 'Z b
start = Map $ \_ -> VNil
step :: Map a m b -> Map a ('S m) b
step (Map go) = Map $ \(x ::: xs) -> f x ::: go xs
newtype Map a n b = Map { getMap :: Vec n a -> Vec n b }
imap :: N.InlineInduction n => (Fin n -> a -> b) -> Vec n a -> Vec n b
imap = getIMap $ N.inlineInduction1 start step where
start :: IMap a 'Z b
start = IMap $ \_ _ -> VNil
step :: IMap a m b -> IMap a ('S m) b
step (IMap go) = IMap $ \f (x ::: xs) -> f FZ x ::: go (f . FS) xs
newtype IMap a n b = IMap { getIMap :: (Fin n -> a -> b) -> Vec n a -> Vec n b }
traverse :: forall n f a b. (Applicative f, N.InlineInduction n) => (a -> f b) -> Vec n a -> f (Vec n b)
traverse f = getTraverse $ N.inlineInduction1 start step where
start :: Traverse f a 'Z b
start = Traverse $ \_ -> pure VNil
step :: Traverse f a m b -> Traverse f a ('S m) b
step (Traverse go) = Traverse $ \(x ::: xs) -> liftA2 (:::) (f x) (go xs)
newtype Traverse f a n b = Traverse { getTraverse :: Vec n a -> f (Vec n b) }
#ifdef MIN_VERSION_semigroupoids
traverse1 :: forall n f a b. (Apply f, N.InlineInduction n) => (a -> f b) -> Vec ('S n) a -> f (Vec ('S n) b)
traverse1 f = getTraverse1 $ N.inlineInduction1 start step where
start :: Traverse1 f a 'Z b
start = Traverse1 $ \(x ::: _) -> (::: VNil) <$> f x
step :: Traverse1 f a m b -> Traverse1 f a ('S m) b
step (Traverse1 go) = Traverse1 $ \(x ::: xs) -> liftF2 (:::) (f x) (go xs)
newtype Traverse1 f a n b = Traverse1 { getTraverse1 :: Vec ('S n) a -> f (Vec ('S n) b) }
#endif
itraverse :: forall n f a b. (Applicative f, N.InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f (Vec n b)
itraverse = getITraverse $ N.inlineInduction1 start step where
start :: ITraverse f a 'Z b
start = ITraverse $ \_ _ -> pure VNil
step :: ITraverse f a m b -> ITraverse f a ('S m) b
step (ITraverse go) = ITraverse $ \f (x ::: xs) -> liftA2 (:::) (f FZ x) (go (f . FS) xs)
newtype ITraverse f a n b = ITraverse { getITraverse :: (Fin n -> a -> f b) -> Vec n a -> f (Vec n b) }
itraverse_ :: forall n f a b. (Applicative f, N.InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f ()
itraverse_ = getITraverse_ $ N.inlineInduction1 start step where
start :: ITraverse_ f a 'Z b
start = ITraverse_ $ \_ _ -> pure ()
step :: ITraverse_ f a m b -> ITraverse_ f a ('S m) b
step (ITraverse_ go) = ITraverse_ $ \f (x ::: xs) -> f FZ x *> go (f . FS) xs
newtype ITraverse_ f a n b = ITraverse_ { getITraverse_ :: (Fin n -> a -> f b) -> Vec n a -> f () }
foldMap :: (Monoid m, N.InlineInduction n) => (a -> m) -> Vec n a -> m
foldMap f = getFold $ N.inlineInduction1 (Fold (const mempty)) $ \(Fold go) ->
Fold $ \(x ::: xs) -> f x `mappend` go xs
newtype Fold a n b = Fold { getFold :: Vec n a -> b }
foldMap1 :: forall s a n. (Semigroup s, N.InlineInduction n) => (a -> s) -> Vec ('S n) a -> s
foldMap1 f = getFold1 $ N.inlineInduction1 start step where
start :: Fold1 a 'Z s
start = Fold1 $ \(x ::: _) -> f x
step :: Fold1 a m s -> Fold1 a ('S m) s
step (Fold1 g) = Fold1 $ \(x ::: xs) -> f x <> g xs
newtype Fold1 a n b = Fold1 { getFold1 :: Vec ('S n) a -> b }
ifoldMap :: forall a n m. (Monoid m, N.InlineInduction n) => (Fin n -> a -> m) -> Vec n a -> m
ifoldMap = getIFoldMap $ N.inlineInduction1 start step where
start :: IFoldMap a 'Z m
start = IFoldMap $ \_ _ -> mempty
step :: IFoldMap a p m -> IFoldMap a ('S p) m
step (IFoldMap go) = IFoldMap $ \f (x ::: xs) -> f FZ x `mappend` go (f . FS) xs
newtype IFoldMap a n m = IFoldMap { getIFoldMap :: (Fin n -> a -> m) -> Vec n a -> m }
ifoldMap1 :: forall a n s. (Semigroup s, N.InlineInduction n) => (Fin ('S n) -> a -> s) -> Vec ('S n) a -> s
ifoldMap1 = getIFoldMap1 $ N.inlineInduction1 start step where
start :: IFoldMap1 a 'Z s
start = IFoldMap1 $ \f (x ::: _) -> f FZ x
step :: IFoldMap1 a p s -> IFoldMap1 a ('S p) s
step (IFoldMap1 go) = IFoldMap1 $ \f (x ::: xs) -> f FZ x <> go (f . FS) xs
newtype IFoldMap1 a n m = IFoldMap1 { getIFoldMap1 :: (Fin ('S n) -> a -> m) -> Vec ('S n) a -> m }
foldr :: forall a b n. N.InlineInduction n => (a -> b -> b) -> b -> Vec n a -> b
foldr f z = getFold $ N.inlineInduction1 start step where
start :: Fold a 'Z b
start = Fold $ \_ -> z
step :: Fold a m b -> Fold a ('S m) b
step (Fold go) = Fold $ \(x ::: xs) -> f x (go xs)
ifoldr :: forall a b n. N.InlineInduction n => (Fin n -> a -> b -> b) -> b -> Vec n a -> b
ifoldr = getIFoldr $ N.inlineInduction1 start step where
start :: IFoldr a 'Z b
start = IFoldr $ \_ z _ -> z
step :: IFoldr a m b -> IFoldr a ('S m) b
step (IFoldr go) = IFoldr $ \f z (x ::: xs) -> f FZ x (go (f . FS) z xs)
newtype IFoldr a n b = IFoldr { getIFoldr :: (Fin n -> a -> b -> b) -> b -> Vec n a -> b }
length :: forall n a. N.InlineInduction n => Vec n a -> Int
length _ = getLength l where
l :: Length n
l = N.inlineInduction (Length 0) $ \(Length n) -> Length (1 + n)
newtype Length (n :: Nat) = Length { getLength :: Int }
sum :: (Num a, N.InlineInduction n) => Vec n a -> a
sum = getFold $ N.inlineInduction1 start step where
start :: Num a => Fold a 'Z a
start = Fold $ \_ -> 0
step :: Num a => Fold a m a -> Fold a ('S m) a
step (Fold f) = Fold $ \(x ::: xs) -> x + f xs
product :: (Num a, N.InlineInduction n) => Vec n a -> a
product = getFold $ N.inlineInduction1 start step where
start :: Num a => Fold a 'Z a
start = Fold $ \_ -> 0
step :: Num a => Fold a m a -> Fold a ('S m) a
step (Fold f) = Fold $ \(x ::: xs) -> x + f xs
zipWith :: forall a b c n. N.InlineInduction n => (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
zipWith f = getZipWith $ N.inlineInduction start step where
start :: ZipWith a b c 'Z
start = ZipWith $ \_ _ -> VNil
step :: ZipWith a b c m -> ZipWith a b c ('S m)
step (ZipWith go) = ZipWith $ \(x ::: xs) (y ::: ys) -> f x y ::: go xs ys
newtype ZipWith a b c n = ZipWith { getZipWith :: Vec n a -> Vec n b -> Vec n c }
izipWith :: N.InlineInduction n => (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
izipWith = getIZipWith $ N.inlineInduction start step where
start :: IZipWith a b c 'Z
start = IZipWith $ \_ _ _ -> VNil
step :: IZipWith a b c m -> IZipWith a b c ('S m)
step (IZipWith go) = IZipWith $ \f (x ::: xs) (y ::: ys) -> f FZ x y ::: go (f . FS) xs ys
newtype IZipWith a b c n = IZipWith { getIZipWith :: (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c }
repeat :: N.InlineInduction n => x -> Vec n x
repeat x = N.inlineInduction1 VNil (x :::)
bind :: N.InlineInduction n => Vec n a -> (a -> Vec n b) -> Vec n b
bind = getBind $ N.inlineInduction1 start step where
start :: Bind a 'Z b
start = Bind $ \_ _ -> VNil
step :: Bind a m b -> Bind a ('S m) b
step (Bind go) = Bind $ \(x ::: xs) f -> head (f x) ::: go xs (tail . f)
newtype Bind a n b = Bind { getBind :: Vec n a -> (a -> Vec n b) -> Vec n b }
join :: N.InlineInduction n => Vec n (Vec n a) -> Vec n a
join = getJoin $ N.inlineInduction1 start step where
start :: Join 'Z a
start = Join $ \_ -> VNil
step :: N.InlineInduction m => Join m a -> Join ('S m) a
step (Join go) = Join $ \(x ::: xs) -> head x ::: go (map tail xs)
newtype Join n a = Join { getJoin :: Vec n (Vec n a) -> Vec n a }
universe :: N.InlineInduction n => Vec n (Fin n)
universe = getUniverse (N.inlineInduction first step) where
first :: Universe 'Z
first = Universe VNil
step :: N.InlineInduction m => Universe m -> Universe ('S m)
step (Universe go) = Universe (FZ ::: map FS go)
newtype Universe n = Universe { getUniverse :: Vec n (Fin n) }