{-# LANGUAGE TypeOperators, CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.AdditiveGroup
(
AdditiveGroup(..), sumV
, Sum(..), inSum, inSum2
) where
import Prelude hiding (foldr)
import Control.Applicative
#if !(MIN_VERSION_base(4,8,0))
import Data.Monoid (Monoid(..))
import Data.Foldable (Foldable)
#endif
import Data.Foldable (foldr)
import Data.Complex hiding (magnitude)
import Data.Ratio
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup(..))
#endif
import Foreign.C.Types (CSChar, CInt, CShort, CLong, CLLong, CIntMax, CFloat, CDouble)
import Data.MemoTrie
import Data.VectorSpace.Generic
import qualified GHC.Generics as Gnrx
import GHC.Generics (Generic, (:*:)(..))
infixl 6 ^+^, ^-^
class AdditiveGroup v where
zeroV :: v
default zeroV :: (Generic v, AdditiveGroup (VRep v)) => v
zeroV = Gnrx.to (zeroV :: VRep v)
(^+^) :: v -> v -> v
default (^+^) :: (Generic v, AdditiveGroup (VRep v)) => v -> v -> v
v ^+^ v' = Gnrx.to (Gnrx.from v ^+^ Gnrx.from v' :: VRep v)
negateV :: v -> v
default negateV :: (Generic v, AdditiveGroup (VRep v)) => v -> v
negateV v = Gnrx.to (negateV $ Gnrx.from v :: VRep v)
(^-^) :: v -> v -> v
v ^-^ v' = v ^+^ negateV v'
sumV :: (Foldable f, AdditiveGroup v) => f v -> v
sumV = foldr (^+^) zeroV
instance AdditiveGroup () where
zeroV = ()
() ^+^ () = ()
negateV = id
#define ScalarTypeCon(con,t) \
instance con => AdditiveGroup (t) where {zeroV=0; (^+^) = (+); negateV = negate}
#define ScalarType(t) ScalarTypeCon((),t)
ScalarType(Int)
ScalarType(Integer)
ScalarType(Float)
ScalarType(Double)
ScalarType(CSChar)
ScalarType(CInt)
ScalarType(CShort)
ScalarType(CLong)
ScalarType(CLLong)
ScalarType(CIntMax)
ScalarType(CFloat)
ScalarType(CDouble)
ScalarTypeCon(Integral a,Ratio a)
instance (RealFloat v, AdditiveGroup v) => AdditiveGroup (Complex v) where
zeroV = zeroV :+ zeroV
(^+^) = (+)
negateV = negate
instance (AdditiveGroup u,AdditiveGroup v) => AdditiveGroup (u,v) where
zeroV = (zeroV,zeroV)
(u,v) ^+^ (u',v') = (u^+^u',v^+^v')
negateV (u,v) = (negateV u,negateV v)
instance (AdditiveGroup u,AdditiveGroup v,AdditiveGroup w)
=> AdditiveGroup (u,v,w) where
zeroV = (zeroV,zeroV,zeroV)
(u,v,w) ^+^ (u',v',w') = (u^+^u',v^+^v',w^+^w')
negateV (u,v,w) = (negateV u,negateV v,negateV w)
instance (AdditiveGroup u,AdditiveGroup v,AdditiveGroup w,AdditiveGroup x)
=> AdditiveGroup (u,v,w,x) where
zeroV = (zeroV,zeroV,zeroV,zeroV)
(u,v,w,x) ^+^ (u',v',w',x') = (u^+^u',v^+^v',w^+^w',x^+^x')
negateV (u,v,w,x) = (negateV u,negateV v,negateV w,negateV x)
instance AdditiveGroup v => AdditiveGroup (a -> v) where
zeroV = pure zeroV
(^+^) = liftA2 (^+^)
negateV = fmap negateV
instance AdditiveGroup a => AdditiveGroup (Maybe a) where
zeroV = Nothing
Nothing ^+^ b' = b'
a' ^+^ Nothing = a'
Just a' ^+^ Just b' = Just (a' ^+^ b')
negateV = fmap negateV
instance (HasTrie u, AdditiveGroup v) => AdditiveGroup (u :->: v) where
zeroV = pure zeroV
(^+^) = liftA2 (^+^)
negateV = fmap negateV
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)
instance Functor Sum where
fmap f (Sum a) = Sum (f a)
instance Applicative Sum where
pure = Sum
(<*>) = inSum2 ($)
instance AdditiveGroup a => Semigroup (Sum a) where
(<>) = liftA2 (^+^)
instance AdditiveGroup a => Monoid (Sum a) where
mempty = Sum zeroV
#if !(MIN_VERSION_base(4,11,0))
mappend = (<>)
#endif
inSum :: (a -> b) -> (Sum a -> Sum b)
inSum = getSum ~> Sum
inSum2 :: (a -> b -> c) -> (Sum a -> Sum b -> Sum c)
inSum2 = getSum ~> inSum
instance AdditiveGroup a => AdditiveGroup (Sum a) where
zeroV = mempty
(^+^) = mappend
negateV = inSum negateV
(~>) :: (a' -> a) -> (b -> b') -> ((a -> b) -> (a' -> b'))
(i ~> o) f = o . f . i
instance AdditiveGroup a => AdditiveGroup (Gnrx.Rec0 a s) where
zeroV = Gnrx.K1 zeroV
negateV (Gnrx.K1 v) = Gnrx.K1 $ negateV v
Gnrx.K1 v ^+^ Gnrx.K1 w = Gnrx.K1 $ v ^+^ w
Gnrx.K1 v ^-^ Gnrx.K1 w = Gnrx.K1 $ v ^-^ w
instance AdditiveGroup (f p) => AdditiveGroup (Gnrx.M1 i c f p) where
zeroV = Gnrx.M1 zeroV
negateV (Gnrx.M1 v) = Gnrx.M1 $ negateV v
Gnrx.M1 v ^+^ Gnrx.M1 w = Gnrx.M1 $ v ^+^ w
Gnrx.M1 v ^-^ Gnrx.M1 w = Gnrx.M1 $ v ^-^ w
instance (AdditiveGroup (f p), AdditiveGroup (g p)) => AdditiveGroup ((f :*: g) p) where
zeroV = zeroV :*: zeroV
negateV (x:*:y) = negateV x :*: negateV y
(x:*:y) ^+^ (ξ:*:υ) = (x^+^ξ) :*: (y^+^υ)
(x:*:y) ^-^ (ξ:*:υ) = (x^-^ξ) :*: (y^-^υ)