{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE StrictData #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -funbox-strict-fields #-}
#include <MachDeps.h>
module Data.WideWord.Word128
( Word128 (..)
, byteSwapWord128
, showHexWord128
, zeroWord128
) where
import Control.DeepSeq (NFData (..))
import Data.Bits (Bits (..), FiniteBits (..), shiftL)
import Data.Data (Data, Typeable)
import Data.Ix (Ix)
#if ! MIN_VERSION_base(4,11,0)
import Data.Semigroup ((<>))
#endif
import Data.WideWord.Word64
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Storable (Storable (..))
import GHC.Base (Int (..))
import GHC.Enum (predError, succError)
import GHC.Exts ((*#), (+#), Int#, State#, ByteArray#, MutableByteArray#, Addr#)
import GHC.Generics (Generic)
import GHC.Real ((%), divZeroError)
import GHC.Word (Word32, Word64, byteSwap64)
import Numeric (showHex)
import Data.Primitive.Types (Prim (..), defaultSetByteArray#, defaultSetOffAddr#)
import Data.Hashable (Hashable, hashWithSalt)
import Data.Binary (Binary (get, put))
data Word128 = Word128
{ Word128 -> Word64
word128Hi64 :: !Word64
, Word128 -> Word64
word128Lo64 :: !Word64
}
deriving (Word128 -> Word128 -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Word128 -> Word128 -> Bool
$c/= :: Word128 -> Word128 -> Bool
== :: Word128 -> Word128 -> Bool
$c== :: Word128 -> Word128 -> Bool
Eq, Typeable Word128
Word128 -> DataType
Word128 -> Constr
(forall b. Data b => b -> b) -> Word128 -> Word128
forall a.
Typeable a
-> (forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Word128 -> u
forall u. (forall d. Data d => d -> u) -> Word128 -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word128
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Word128 -> c Word128
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Word128)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word128)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Word128 -> m Word128
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Word128 -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Word128 -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> Word128 -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Word128 -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Word128 -> r
gmapT :: (forall b. Data b => b -> b) -> Word128 -> Word128
$cgmapT :: (forall b. Data b => b -> b) -> Word128 -> Word128
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word128)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word128)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Word128)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Word128)
dataTypeOf :: Word128 -> DataType
$cdataTypeOf :: Word128 -> DataType
toConstr :: Word128 -> Constr
$ctoConstr :: Word128 -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word128
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word128
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Word128 -> c Word128
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Word128 -> c Word128
Data, forall x. Rep Word128 x -> Word128
forall x. Word128 -> Rep Word128 x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep Word128 x -> Word128
$cfrom :: forall x. Word128 -> Rep Word128 x
Generic, Ord Word128
(Word128, Word128) -> Int
(Word128, Word128) -> [Word128]
(Word128, Word128) -> Word128 -> Bool
(Word128, Word128) -> Word128 -> Int
forall a.
Ord a
-> ((a, a) -> [a])
-> ((a, a) -> a -> Int)
-> ((a, a) -> a -> Int)
-> ((a, a) -> a -> Bool)
-> ((a, a) -> Int)
-> ((a, a) -> Int)
-> Ix a
unsafeRangeSize :: (Word128, Word128) -> Int
$cunsafeRangeSize :: (Word128, Word128) -> Int
rangeSize :: (Word128, Word128) -> Int
$crangeSize :: (Word128, Word128) -> Int
inRange :: (Word128, Word128) -> Word128 -> Bool
$cinRange :: (Word128, Word128) -> Word128 -> Bool
unsafeIndex :: (Word128, Word128) -> Word128 -> Int
$cunsafeIndex :: (Word128, Word128) -> Word128 -> Int
index :: (Word128, Word128) -> Word128 -> Int
$cindex :: (Word128, Word128) -> Word128 -> Int
range :: (Word128, Word128) -> [Word128]
$crange :: (Word128, Word128) -> [Word128]
Ix, Typeable)
instance Hashable Word128 where
hashWithSalt :: Int -> Word128 -> Int
hashWithSalt Int
s (Word128 Word64
a1 Word64
a2) = Int
s forall a. Hashable a => Int -> a -> Int
`hashWithSalt` Word64
a1 forall a. Hashable a => Int -> a -> Int
`hashWithSalt` Word64
a2
instance Binary Word128 where
put :: Word128 -> Put
put (Word128 Word64
a1 Word64
a2) = forall t. Binary t => t -> Put
put Word64
a1 forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall t. Binary t => t -> Put
put Word64
a2
get :: Get Word128
get = Word64 -> Word64 -> Word128
Word128 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall t. Binary t => Get t
get forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall t. Binary t => Get t
get
byteSwapWord128 :: Word128 -> Word128
byteSwapWord128 :: Word128 -> Word128
byteSwapWord128 (Word128 Word64
a1 Word64
a0) = Word64 -> Word64 -> Word128
Word128 (Word64 -> Word64
byteSwap64 Word64
a0) (Word64 -> Word64
byteSwap64 Word64
a1)
showHexWord128 :: Word128 -> String
showHexWord128 :: Word128 -> String
showHexWord128 (Word128 Word64
a1 Word64
a0)
| Word64
a1 forall a. Eq a => a -> a -> Bool
== Word64
0 = forall a. (Integral a, Show a) => a -> ShowS
showHex Word64
a0 String
""
| Bool
otherwise = forall a. (Integral a, Show a) => a -> ShowS
showHex Word64
a1 String
zeros forall a. [a] -> [a] -> [a]
++ forall a. (Integral a, Show a) => a -> ShowS
showHex Word64
a0 String
""
where
h0 :: String
h0 = forall a. (Integral a, Show a) => a -> ShowS
showHex Word64
a0 String
""
zeros :: String
zeros = forall a. Int -> a -> [a]
replicate (Int
16 forall a. Num a => a -> a -> a
- forall (t :: * -> *) a. Foldable t => t a -> Int
length String
h0) Char
'0'
instance Show Word128 where
show :: Word128 -> String
show = forall a. Show a => a -> String
show forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word128 -> Integer
toInteger128
instance Read Word128 where
readsPrec :: Int -> ReadS Word128
readsPrec Int
p String
s = [(Integer -> Word128
fromInteger128 (Integer
x :: Integer), String
r) | (Integer
x, String
r) <- forall a. Read a => Int -> ReadS a
readsPrec Int
p String
s]
instance Ord Word128 where
compare :: Word128 -> Word128 -> Ordering
compare = Word128 -> Word128 -> Ordering
compare128
instance Bounded Word128 where
minBound :: Word128
minBound = Word128
zeroWord128
maxBound :: Word128
maxBound = Word64 -> Word64 -> Word128
Word128 forall a. Bounded a => a
maxBound forall a. Bounded a => a
maxBound
instance Enum Word128 where
succ :: Word128 -> Word128
succ = Word128 -> Word128
succ128
pred :: Word128 -> Word128
pred = Word128 -> Word128
pred128
toEnum :: Int -> Word128
toEnum = Int -> Word128
toEnum128
fromEnum :: Word128 -> Int
fromEnum = Word128 -> Int
fromEnum128
instance Num Word128 where
+ :: Word128 -> Word128 -> Word128
(+) = Word128 -> Word128 -> Word128
plus128
(-) = Word128 -> Word128 -> Word128
minus128
* :: Word128 -> Word128 -> Word128
(*) = Word128 -> Word128 -> Word128
times128
negate :: Word128 -> Word128
negate = Word128 -> Word128
negate128
abs :: Word128 -> Word128
abs = forall a. a -> a
id
signum :: Word128 -> Word128
signum = Word128 -> Word128
signum128
fromInteger :: Integer -> Word128
fromInteger = Integer -> Word128
fromInteger128
instance Bits Word128 where
.&. :: Word128 -> Word128 -> Word128
(.&.) = Word128 -> Word128 -> Word128
and128
.|. :: Word128 -> Word128 -> Word128
(.|.) = Word128 -> Word128 -> Word128
or128
xor :: Word128 -> Word128 -> Word128
xor = Word128 -> Word128 -> Word128
xor128
complement :: Word128 -> Word128
complement = Word128 -> Word128
complement128
shiftL :: Word128 -> Int -> Word128
shiftL = Word128 -> Int -> Word128
shiftL128
unsafeShiftL :: Word128 -> Int -> Word128
unsafeShiftL = Word128 -> Int -> Word128
shiftL128
shiftR :: Word128 -> Int -> Word128
shiftR = Word128 -> Int -> Word128
shiftR128
unsafeShiftR :: Word128 -> Int -> Word128
unsafeShiftR = Word128 -> Int -> Word128
shiftR128
rotateL :: Word128 -> Int -> Word128
rotateL = Word128 -> Int -> Word128
rotateL128
rotateR :: Word128 -> Int -> Word128
rotateR = Word128 -> Int -> Word128
rotateR128
bitSize :: Word128 -> Int
bitSize Word128
_ = Int
128
bitSizeMaybe :: Word128 -> Maybe Int
bitSizeMaybe Word128
_ = forall a. a -> Maybe a
Just Int
128
isSigned :: Word128 -> Bool
isSigned Word128
_ = Bool
False
testBit :: Word128 -> Int -> Bool
testBit = Word128 -> Int -> Bool
testBit128
bit :: Int -> Word128
bit = Int -> Word128
bit128
popCount :: Word128 -> Int
popCount = Word128 -> Int
popCount128
instance FiniteBits Word128 where
finiteBitSize :: Word128 -> Int
finiteBitSize Word128
_ = Int
128
countLeadingZeros :: Word128 -> Int
countLeadingZeros = Word128 -> Int
countLeadingZeros128
countTrailingZeros :: Word128 -> Int
countTrailingZeros = Word128 -> Int
countTrailingZeros128
instance Real Word128 where
toRational :: Word128 -> Rational
toRational Word128
x = Word128 -> Integer
toInteger128 Word128
x forall a. Integral a => a -> a -> Ratio a
% Integer
1
instance Integral Word128 where
quot :: Word128 -> Word128 -> Word128
quot Word128
n Word128
d = forall a b. (a, b) -> a
fst (Word128 -> Word128 -> (Word128, Word128)
quotRem128 Word128
n Word128
d)
rem :: Word128 -> Word128 -> Word128
rem Word128
n Word128
d = forall a b. (a, b) -> b
snd (Word128 -> Word128 -> (Word128, Word128)
quotRem128 Word128
n Word128
d)
div :: Word128 -> Word128 -> Word128
div Word128
n Word128
d = forall a b. (a, b) -> a
fst (Word128 -> Word128 -> (Word128, Word128)
quotRem128 Word128
n Word128
d)
mod :: Word128 -> Word128 -> Word128
mod Word128
n Word128
d = forall a b. (a, b) -> b
snd (Word128 -> Word128 -> (Word128, Word128)
quotRem128 Word128
n Word128
d)
quotRem :: Word128 -> Word128 -> (Word128, Word128)
quotRem = Word128 -> Word128 -> (Word128, Word128)
quotRem128
divMod :: Word128 -> Word128 -> (Word128, Word128)
divMod = Word128 -> Word128 -> (Word128, Word128)
quotRem128
toInteger :: Word128 -> Integer
toInteger = Word128 -> Integer
toInteger128
instance Storable Word128 where
sizeOf :: Word128 -> Int
sizeOf Word128
w = Int# -> Int
I# (Word128 -> Int#
sizeOf128# Word128
w)
alignment :: Word128 -> Int
alignment Word128
w = Int# -> Int
I# (Word128 -> Int#
alignment128# Word128
w)
peek :: Ptr Word128 -> IO Word128
peek = Ptr Word128 -> IO Word128
peek128
peekElemOff :: Ptr Word128 -> Int -> IO Word128
peekElemOff = Ptr Word128 -> Int -> IO Word128
peekElemOff128
poke :: Ptr Word128 -> Word128 -> IO ()
poke = Ptr Word128 -> Word128 -> IO ()
poke128
pokeElemOff :: Ptr Word128 -> Int -> Word128 -> IO ()
pokeElemOff = Ptr Word128 -> Int -> Word128 -> IO ()
pokeElemOff128
instance NFData Word128 where
rnf :: Word128 -> ()
rnf !Word128
_ = ()
instance Prim Word128 where
sizeOf# :: Word128 -> Int#
sizeOf# = Word128 -> Int#
sizeOf128#
alignment# :: Word128 -> Int#
alignment# = Word128 -> Int#
alignment128#
indexByteArray# :: ByteArray# -> Int# -> Word128
indexByteArray# = ByteArray# -> Int# -> Word128
indexByteArray128#
readByteArray# :: forall s.
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word128 #)
readByteArray# = forall s.
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word128 #)
readByteArray128#
writeByteArray# :: forall s.
MutableByteArray# s -> Int# -> Word128 -> State# s -> State# s
writeByteArray# = forall s.
MutableByteArray# s -> Int# -> Word128 -> State# s -> State# s
writeByteArray128#
setByteArray# :: forall s.
MutableByteArray# s
-> Int# -> Int# -> Word128 -> State# s -> State# s
setByteArray# = forall s.
MutableByteArray# s
-> Int# -> Int# -> Word128 -> State# s -> State# s
setByteArray128#
indexOffAddr# :: Addr# -> Int# -> Word128
indexOffAddr# = Addr# -> Int# -> Word128
indexOffAddr128#
readOffAddr# :: forall s. Addr# -> Int# -> State# s -> (# State# s, Word128 #)
readOffAddr# = forall s. Addr# -> Int# -> State# s -> (# State# s, Word128 #)
readOffAddr128#
writeOffAddr# :: forall s. Addr# -> Int# -> Word128 -> State# s -> State# s
writeOffAddr# = forall s. Addr# -> Int# -> Word128 -> State# s -> State# s
writeOffAddr128#
setOffAddr# :: forall s. Addr# -> Int# -> Int# -> Word128 -> State# s -> State# s
setOffAddr# = forall s. Addr# -> Int# -> Int# -> Word128 -> State# s -> State# s
setOffAddr128#
{-# INLINE sizeOf# #-}
{-# INLINE alignment# #-}
{-# INLINE indexByteArray# #-}
{-# INLINE readByteArray# #-}
{-# INLINE writeByteArray# #-}
{-# INLINE setByteArray# #-}
{-# INLINE indexOffAddr# #-}
{-# INLINE readOffAddr# #-}
{-# INLINE writeOffAddr# #-}
{-# INLINE setOffAddr# #-}
{-# RULES
"fromIntegral :: Word128 -> Word128" fromIntegral = id :: Word128 -> Word128
"fromIntegral :: Int -> Word128" fromIntegral = fromInt
"fromIntegral :: Word -> Word128" fromIntegral = fromWord
"fromIntegral :: Word32 -> Word128" fromIntegral = fromWord32
"fromIntegral :: Word64 -> Word128" fromIntegral = Word128 0
"fromIntegral :: Word128 -> Int" fromIntegral = toInt
"fromIntegral :: Word128 -> Word" fromIntegral = toWord
"fromIntegral :: Word128 -> Word32" fromIntegral = toWord32
"fromIntegral :: Word128 -> Word64" fromIntegral = \(Word128 _ w) -> w
#-}
{-# INLINE fromInt #-}
fromInt :: Int -> Word128
fromInt :: Int -> Word128
fromInt = Word64 -> Word64 -> Word128
Word128 Word64
0 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE fromWord #-}
fromWord :: Word -> Word128
fromWord :: Word -> Word128
fromWord = Word64 -> Word64 -> Word128
Word128 Word64
0 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE fromWord32 #-}
fromWord32 :: Word32 -> Word128
fromWord32 :: Word32 -> Word128
fromWord32 = Word64 -> Word64 -> Word128
Word128 Word64
0 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE toInt #-}
toInt :: Word128 -> Int
toInt :: Word128 -> Int
toInt (Word128 Word64
_ Word64
w) = forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
w
{-# INLINE toWord #-}
toWord :: Word128 -> Word
toWord :: Word128 -> Word
toWord (Word128 Word64
_ Word64
w) = forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
w
{-# INLINE toWord32 #-}
toWord32 :: Word128 -> Word32
toWord32 :: Word128 -> Word32
toWord32 (Word128 Word64
_ Word64
w) = forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
w
compare128 :: Word128 -> Word128 -> Ordering
compare128 :: Word128 -> Word128 -> Ordering
compare128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
forall a. Ord a => a -> a -> Ordering
compare Word64
a1 Word64
b1 forall a. Semigroup a => a -> a -> a
<> forall a. Ord a => a -> a -> Ordering
compare Word64
a0 Word64
b0
succ128 :: Word128 -> Word128
succ128 :: Word128 -> Word128
succ128 (Word128 Word64
a1 Word64
a0)
| Word64
a0 forall a. Eq a => a -> a -> Bool
== forall a. Bounded a => a
maxBound = if Word64
a1 forall a. Eq a => a -> a -> Bool
== forall a. Bounded a => a
maxBound
then forall a. String -> a
succError String
"Word128"
else Word64 -> Word64 -> Word128
Word128 (Word64
a1 forall a. Num a => a -> a -> a
+ Word64
1) Word64
0
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
a1 (Word64
a0 forall a. Num a => a -> a -> a
+ Word64
1)
pred128 :: Word128 -> Word128
pred128 :: Word128 -> Word128
pred128 (Word128 Word64
a1 Word64
a0)
| Word64
a0 forall a. Eq a => a -> a -> Bool
== Word64
0 = if Word64
a1 forall a. Eq a => a -> a -> Bool
== Word64
0
then forall a. String -> a
predError String
"Word128"
else Word64 -> Word64 -> Word128
Word128 (Word64
a1 forall a. Num a => a -> a -> a
- Word64
1) forall a. Bounded a => a
maxBound
| Bool
otherwise = Word64 -> Word64 -> Word128
Word128 Word64
a1 (Word64
a0 forall a. Num a => a -> a -> a
- Word64
1)
{-# INLINABLE toEnum128 #-}
toEnum128 :: Int -> Word128
toEnum128 :: Int -> Word128
toEnum128 Int
i = Word64 -> Word64 -> Word128
Word128 Word64
0 (forall a. Enum a => Int -> a
toEnum Int
i)
{-# INLINABLE fromEnum128 #-}
fromEnum128 :: Word128 -> Int
(Word128 Word64
_ Word64
a0) = forall a. Enum a => a -> Int
fromEnum Word64
a0
{-# INLINABLE plus128 #-}
plus128 :: Word128 -> Word128 -> Word128
plus128 :: Word128 -> Word128 -> Word128
plus128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 Word64
s1 Word64
s0
where
!(Word64
c1, Word64
s0) = Word64 -> Word64 -> (Word64, Word64)
plusCarrySum Word64
a0 Word64
b0
!s1 :: Word64
s1 = Word64
a1 forall a. Num a => a -> a -> a
+ Word64
b1 forall a. Num a => a -> a -> a
+ Word64
c1
{-# INLINABLE minus128 #-}
minus128 :: Word128 -> Word128 -> Word128
minus128 :: Word128 -> Word128 -> Word128
minus128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 Word64
d1 Word64
d0
where
!(Word64
c1, Word64
d0) = Word64 -> Word64 -> (Word64, Word64)
subCarryDiff Word64
a0 Word64
b0
!d1 :: Word64
d1 = Word64
a1 forall a. Num a => a -> a -> a
- Word64
c1 forall a. Num a => a -> a -> a
- Word64
b1
times128 :: Word128 -> Word128 -> Word128
times128 :: Word128 -> Word128 -> Word128
times128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) =
Word64 -> Word64 -> Word128
Word128 Word64
p1 Word64
p0
where
!(Word64
c1, Word64
p0) = Word64 -> Word64 -> (Word64, Word64)
timesCarryProd Word64
a0 Word64
b0
!p1a :: Word64
p1a = Word64
a1 forall a. Num a => a -> a -> a
* Word64
b0
!p1b :: Word64
p1b = Word64
a0 forall a. Num a => a -> a -> a
* Word64
b1
!p1c :: Word64
p1c = Word64
p1a forall a. Num a => a -> a -> a
+ Word64
p1b
!p1 :: Word64
p1 = Word64
p1c forall a. Num a => a -> a -> a
+ Word64
c1
{-# INLINABLE negate128 #-}
negate128 :: Word128 -> Word128
negate128 :: Word128 -> Word128
negate128 (Word128 Word64
a1 Word64
a0) =
case Word64 -> Word64 -> (Word64, Word64)
plusCarrySum (forall a. Bits a => a -> a
complement Word64
a0) Word64
1 of
(Word64
c, Word64
s) -> Word64 -> Word64 -> Word128
Word128 (forall a. Bits a => a -> a
complement Word64
a1 forall a. Num a => a -> a -> a
+ Word64
c) Word64
s
{-# INLINABLE signum128 #-}
signum128 :: Word128 -> Word128
signum128 :: Word128 -> Word128
signum128 (Word128 Word64
a Word64
b) =
if Word64
a forall a. Eq a => a -> a -> Bool
== Word64
0 Bool -> Bool -> Bool
&& Word64
b forall a. Eq a => a -> a -> Bool
== Word64
0
then Word128
zeroWord128
else Word128
oneWord128
fromInteger128 :: Integer -> Word128
fromInteger128 :: Integer -> Word128
fromInteger128 Integer
i =
Word64 -> Word64 -> Word128
Word128 (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ Integer
i forall a. Bits a => a -> Int -> a
`shiftR` Int
64) (forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
i)
{-# INLINABLE and128 #-}
and128 :: Word128 -> Word128 -> Word128
and128 :: Word128 -> Word128 -> Word128
and128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) = Word64 -> Word64 -> Word128
Word128 (Word64
a1 forall a. Bits a => a -> a -> a
.&. Word64
b1) (Word64
a0 forall a. Bits a => a -> a -> a
.&. Word64
b0)
{-# INLINABLE or128 #-}
or128 :: Word128 -> Word128 -> Word128
or128 :: Word128 -> Word128 -> Word128
or128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) = Word64 -> Word64 -> Word128
Word128 (Word64
a1 forall a. Bits a => a -> a -> a
.|. Word64
b1) (Word64
a0 forall a. Bits a => a -> a -> a
.|. Word64
b0)
{-# INLINABLE xor128 #-}
xor128 :: Word128 -> Word128 -> Word128
xor128 :: Word128 -> Word128 -> Word128
xor128 (Word128 Word64
a1 Word64
a0) (Word128 Word64
b1 Word64
b0) = Word64 -> Word64 -> Word128
Word128 (forall a. Bits a => a -> a -> a
xor Word64
a1 Word64
b1) (forall a. Bits a => a -> a -> a
xor Word64
a0 Word64
b0)
{-# INLINABLE complement128 #-}
complement128 :: Word128 -> Word128
complement128 :: Word128 -> Word128
complement128 (Word128 Word64
a1 Word64
a0) = Word64 -> Word64 -> Word128
Word128 (forall a. Bits a => a -> a
complement Word64
a1) (forall a. Bits a => a -> a
complement Word64
a0)
shiftL128 :: Word128 -> Int -> Word128
shiftL128 :: Word128 -> Int -> Word128
shiftL128 w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
s
| Int
s forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
s forall a. Ord a => a -> a -> Bool
< Int
0 = Word128 -> Int -> Word128
shiftL128 Word128
w (Int
128 forall a. Num a => a -> a -> a
- (forall a. Num a => a -> a
abs Int
s forall a. Integral a => a -> a -> a
`mod` Int
128))
| Int
s forall a. Ord a => a -> a -> Bool
>= Int
128 = Word128
zeroWord128
| Int
s forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
0
| Int
s forall a. Ord a => a -> a -> Bool
> Int
64 = Word64 -> Word64 -> Word128
Word128 (Word64
a0 forall a. Bits a => a -> Int -> a
`shiftL` (Int
s forall a. Num a => a -> a -> a
- Int
64)) Word64
0
| Bool
otherwise =
Word64 -> Word64 -> Word128
Word128 Word64
s1 Word64
s0
where
s0 :: Word64
s0 = Word64
a0 forall a. Bits a => a -> Int -> a
`shiftL` Int
s
s1 :: Word64
s1 = Word64
a1 forall a. Bits a => a -> Int -> a
`shiftL` Int
s forall a. Num a => a -> a -> a
+ Word64
a0 forall a. Bits a => a -> Int -> a
`shiftR` (Int
64 forall a. Num a => a -> a -> a
- Int
s)
shiftR128 :: Word128 -> Int -> Word128
shiftR128 :: Word128 -> Int -> Word128
shiftR128 w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
s
| Int
s forall a. Ord a => a -> a -> Bool
< Int
0 = Word128
zeroWord128
| Int
s forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
s forall a. Ord a => a -> a -> Bool
>= Int
128 = Word128
zeroWord128
| Int
s forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
a1
| Int
s forall a. Ord a => a -> a -> Bool
> Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
0 (Word64
a1 forall a. Bits a => a -> Int -> a
`shiftR` (Int
s forall a. Num a => a -> a -> a
- Int
64))
| Bool
otherwise =
Word64 -> Word64 -> Word128
Word128 Word64
s1 Word64
s0
where
s1 :: Word64
s1 = Word64
a1 forall a. Bits a => a -> Int -> a
`shiftR` Int
s
s0 :: Word64
s0 = Word64
a0 forall a. Bits a => a -> Int -> a
`shiftR` Int
s forall a. Num a => a -> a -> a
+ Word64
a1 forall a. Bits a => a -> Int -> a
`shiftL` (Int
64 forall a. Num a => a -> a -> a
- Int
s)
rotateL128 :: Word128 -> Int -> Word128
rotateL128 :: Word128 -> Int -> Word128
rotateL128 w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
r
| Int
r forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
r forall a. Ord a => a -> a -> Bool
< Int
0 = Word128
zeroWord128
| Int
r forall a. Ord a => a -> a -> Bool
>= Int
128 = Word128 -> Int -> Word128
rotateL128 Word128
w (Int
r forall a. Integral a => a -> a -> a
`mod` Int
128)
| Int
r forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
a1
| Int
r forall a. Ord a => a -> a -> Bool
> Int
64 = Word128 -> Int -> Word128
rotateL128 (Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
a1) (Int
r forall a. Integral a => a -> a -> a
`mod` Int
64)
| Bool
otherwise =
Word64 -> Word64 -> Word128
Word128 Word64
s1 Word64
s0
where
s0 :: Word64
s0 = Word64
a0 forall a. Bits a => a -> Int -> a
`shiftL` Int
r forall a. Num a => a -> a -> a
+ Word64
a1 forall a. Bits a => a -> Int -> a
`shiftR` (Int
64 forall a. Num a => a -> a -> a
- Int
r)
s1 :: Word64
s1 = Word64
a1 forall a. Bits a => a -> Int -> a
`shiftL` Int
r forall a. Num a => a -> a -> a
+ Word64
a0 forall a. Bits a => a -> Int -> a
`shiftR` (Int
64 forall a. Num a => a -> a -> a
- Int
r)
rotateR128 :: Word128 -> Int -> Word128
rotateR128 :: Word128 -> Int -> Word128
rotateR128 w :: Word128
w@(Word128 Word64
a1 Word64
a0) Int
r
| Int
r forall a. Eq a => a -> a -> Bool
== Int
0 = Word128
w
| Int
r forall a. Ord a => a -> a -> Bool
< Int
0 = Word128 -> Int -> Word128
rotateR128 Word128
w (Int
128 forall a. Num a => a -> a -> a
- (forall a. Num a => a -> a
abs Int
r forall a. Integral a => a -> a -> a
`mod` Int
128))
| Int
r forall a. Ord a => a -> a -> Bool
>= Int
128 = Word128 -> Int -> Word128
rotateR128 Word128
w (Int
r forall a. Integral a => a -> a -> a
`mod` Int
128)
| Int
r forall a. Eq a => a -> a -> Bool
== Int
64 = Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
a1
| Int
r forall a. Ord a => a -> a -> Bool
> Int
64 = Word128 -> Int -> Word128
rotateR128 (Word64 -> Word64 -> Word128
Word128 Word64
a0 Word64
a1) (Int
r forall a. Integral a => a -> a -> a
`mod` Int
64)
| Bool
otherwise =
Word64 -> Word64 -> Word128
Word128 Word64
s1 Word64
s0
where
s0 :: Word64
s0 = Word64
a0 forall a. Bits a => a -> Int -> a
`shiftR` Int
r forall a. Num a => a -> a -> a
+ Word64
a1 forall a. Bits a => a -> Int -> a
`shiftL` (Int
64 forall a. Num a => a -> a -> a
- Int
r)
s1 :: Word64
s1 = Word64
a1 forall a. Bits a => a -> Int -> a
`shiftR` Int
r forall a. Num a => a -> a -> a
+ Word64
a0 forall a. Bits a => a -> Int -> a
`shiftL` (Int
64 forall a. Num a => a -> a -> a
- Int
r)
testBit128 :: Word128 -> Int -> Bool
testBit128 :: Word128 -> Int -> Bool
testBit128 (Word128 Word64
a1 Word64
a0) Int
i
| Int
i forall a. Ord a => a -> a -> Bool
< Int
0 = Bool
False
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
128 = Bool
False
| Int
i forall a. Ord a => a -> a -> Bool
>= Int
64 = forall a. Bits a => a -> Int -> Bool
testBit Word64
a1 (Int
i forall a. Num a => a -> a -> a
- Int
64)
| Bool
otherwise = forall a. Bits a => a -> Int -> Bool
testBit Word64
a0 Int
i
bit128 :: Int -> Word128
bit128 :: Int -> Word128
bit128 Int
indx
| Int
indx forall a. Ord a => a -> a -> Bool
< Int
0 = Word128
zeroWord128
| Int
indx forall a. Ord a => a -> a -> Bool
>= Int
128 = Word128
zeroWord128
| Bool
otherwise = Word128 -> Int -> Word128
shiftL128 Word128
oneWord128 Int
indx
popCount128 :: Word128 -> Int
popCount128 :: Word128 -> Int
popCount128 (Word128 Word64
a1 Word64
a0) = forall a. Bits a => a -> Int
popCount Word64
a1 forall a. Num a => a -> a -> a
+ forall a. Bits a => a -> Int
popCount Word64
a0
countLeadingZeros128 :: Word128 -> Int
countLeadingZeros128 :: Word128 -> Int
countLeadingZeros128 (Word128 Word64
a1 Word64
a0) =
case forall b. FiniteBits b => b -> Int
countLeadingZeros Word64
a1 of
Int
64 -> Int
64 forall a. Num a => a -> a -> a
+ forall b. FiniteBits b => b -> Int
countLeadingZeros Word64
a0
Int
res -> Int
res
countTrailingZeros128 :: Word128 -> Int
countTrailingZeros128 :: Word128 -> Int
countTrailingZeros128 (Word128 Word64
a1 Word64
a0) =
case forall b. FiniteBits b => b -> Int
countTrailingZeros Word64
a0 of
Int
64 -> Int
64 forall a. Num a => a -> a -> a
+ forall b. FiniteBits b => b -> Int
countTrailingZeros Word64
a1
Int
res -> Int
res
quotRem128 :: Word128 -> Word128 -> (Word128, Word128)
quotRem128 :: Word128 -> Word128 -> (Word128, Word128)
quotRem128 num :: Word128
num@(Word128 Word64
n1 Word64
n0) den :: Word128
den@(Word128 Word64
d1 Word64
d0)
| Word64
n1 forall a. Eq a => a -> a -> Bool
== Word64
0 Bool -> Bool -> Bool
&& Word64
d1 forall a. Eq a => a -> a -> Bool
== Word64
0 = Word64 -> Word64 -> (Word128, Word128)
quotRemTwo Word64
n0 Word64
d0
| Word64
n1 forall a. Ord a => a -> a -> Bool
< Word64
d1 = (Word128
zeroWord128, Word128
num)
| Word64
d1 forall a. Eq a => a -> a -> Bool
== Word64
0 = Word128 -> Word64 -> (Word128, Word128)
quotRemThree Word128
num Word64
d0
| Word64
n1 forall a. Eq a => a -> a -> Bool
== Word64
d1 =
case forall a. Ord a => a -> a -> Ordering
compare Word64
n0 Word64
d0 of
Ordering
LT -> (Word128
zeroWord128, Word128
num)
Ordering
EQ -> (Word128
oneWord128, Word128
zeroWord128)
Ordering
GT -> (Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
1, Word64 -> Word64 -> Word128
Word128 Word64
0 (Word64
n0 forall a. Num a => a -> a -> a
- Word64
d0))
| Bool
otherwise = Word128 -> Word128 -> (Word128, Word128)
quotRemFour Word128
num Word128
den
{-# INLINE quotRemFour #-}
quotRemFour :: Word128 -> Word128 -> (Word128, Word128)
quotRemFour :: Word128 -> Word128 -> (Word128, Word128)
quotRemFour num :: Word128
num@(Word128 Word64
n1 Word64
_) den :: Word128
den@(Word128 Word64
d1 Word64
_)
| Word128
remain forall a. Ord a => a -> a -> Bool
< Word128
den = (Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
qest, Word128
remain)
| Bool
otherwise =
forall a b. (a -> b) -> (a, a) -> (b, b)
mapPair Integer -> Word128
fromInteger128 forall a b. (a -> b) -> a -> b
$ forall a. Integral a => a -> a -> (a, a)
quotRem (forall a. Integral a => a -> Integer
toInteger Word128
num) (forall a. Integral a => a -> Integer
toInteger Word128
den)
where
qest :: Word64
qest = forall a. Integral a => a -> a -> a
quot Word64
n1 Word64
d1
prod :: Word128
prod = Word128 -> Word64 -> Word128
halfTimes128 Word128
den Word64
qest
remain :: Word128
remain = Word128 -> Word128 -> Word128
minus128 Word128
num Word128
prod
{-# INLINE halfTimes128 #-}
halfTimes128 :: Word128 -> Word64 -> Word128
halfTimes128 :: Word128 -> Word64 -> Word128
halfTimes128 (Word128 Word64
a1 Word64
a0) Word64
b0 =
Word64 -> Word64 -> Word128
Word128 Word64
p1 Word64
p0
where
!(Word64
c1, Word64
p0) = Word64 -> Word64 -> (Word64, Word64)
timesCarryProd Word64
a0 Word64
b0
p1a :: Word64
p1a = Word64
a1 forall a. Num a => a -> a -> a
* Word64
b0
p1 :: Word64
p1 = Word64
p1a forall a. Num a => a -> a -> a
+ Word64
c1
{-# INLINE quotRemThree #-}
quotRemThree :: Word128 -> Word64 -> (Word128, Word128)
quotRemThree :: Word128 -> Word64 -> (Word128, Word128)
quotRemThree num :: Word128
num@(Word128 Word64
n1 Word64
n0) Word64
den
| Word64
den forall a. Eq a => a -> a -> Bool
== Word64
0 = forall a. a
divZeroError
| Word64
den forall a. Eq a => a -> a -> Bool
== Word64
1 = (Word128
num, Word128
zeroWord128)
| Word64
n1 forall a. Ord a => a -> a -> Bool
< Word64
den = case Word64 -> Word64 -> Word64 -> (Word64, Word64)
quotRem2Word64 Word64
n1 Word64
n0 Word64
den of
(Word64
q, Word64
r) -> (Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
q, Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
r)
| Bool
otherwise =
case forall a. Integral a => a -> a -> (a, a)
quotRem Word64
n1 Word64
den of
(Word64
q1, Word64
r1) -> case Word64 -> Word64 -> Word64 -> (Word64, Word64)
quotRem2Word64 Word64
r1 Word64
n0 Word64
den of
(Word64
q0, Word64
r0) -> (Word64 -> Word64 -> Word128
Word128 Word64
q1 Word64
q0, Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
r0)
{-# INLINE quotRemTwo #-}
quotRemTwo :: Word64 -> Word64 -> (Word128, Word128)
quotRemTwo :: Word64 -> Word64 -> (Word128, Word128)
quotRemTwo Word64
n0 Word64
d0 =
case forall a. Integral a => a -> a -> (a, a)
quotRem Word64
n0 Word64
d0 of
(Word64
q, Word64
r) -> (Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
q, Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
r)
{-# INLINE toInteger128 #-}
toInteger128 :: Word128 -> Integer
toInteger128 :: Word128 -> Integer
toInteger128 (Word128 Word64
a1 Word64
a0) = forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
a1 forall a. Bits a => a -> Int -> a
`shiftL` Int
64 forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Word64
a0
peek128 :: Ptr Word128 -> IO Word128
peek128 :: Ptr Word128 -> IO Word128
peek128 Ptr Word128
ptr =
Word64 -> Word64 -> Word128
Word128 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Storable a => Ptr a -> Int -> IO a
peekElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) Int
index1 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Storable a => Ptr a -> Int -> IO a
peekElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) Int
index0
peekElemOff128 :: Ptr Word128 -> Int -> IO Word128
peekElemOff128 :: Ptr Word128 -> Int -> IO Word128
peekElemOff128 Ptr Word128
ptr Int
idx =
Word64 -> Word64 -> Word128
Word128 forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. Storable a => Ptr a -> Int -> IO a
peekElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) (Int
idx2 forall a. Num a => a -> a -> a
+ Int
index1)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. Storable a => Ptr a -> Int -> IO a
peekElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) (Int
idx2 forall a. Num a => a -> a -> a
+ Int
index0)
where idx2 :: Int
idx2 = Int
2 forall a. Num a => a -> a -> a
* Int
idx
poke128 :: Ptr Word128 -> Word128 -> IO ()
poke128 :: Ptr Word128 -> Word128 -> IO ()
poke128 Ptr Word128
ptr (Word128 Word64
a1 Word64
a0) =
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) Int
index1 Word64
a1 forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) Int
index0 Word64
a0
pokeElemOff128 :: Ptr Word128 -> Int -> Word128 -> IO ()
pokeElemOff128 :: Ptr Word128 -> Int -> Word128 -> IO ()
pokeElemOff128 Ptr Word128
ptr Int
idx (Word128 Word64
a1 Word64
a0) = do
let idx2 :: Int
idx2 = Int
2 forall a. Num a => a -> a -> a
* Int
idx
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) (Int
idx2 forall a. Num a => a -> a -> a
+ Int
index0) Word64
a0
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff (forall a b. Ptr a -> Ptr b
castPtr Ptr Word128
ptr) (Int
idx2 forall a. Num a => a -> a -> a
+ Int
index1) Word64
a1
{-# INLINE sizeOf128# #-}
sizeOf128# :: Word128 -> Int#
sizeOf128# :: Word128 -> Int#
sizeOf128# Word128
_ = Int#
2# Int# -> Int# -> Int#
*# forall a. Prim a => a -> Int#
sizeOf# (Word64
0 :: Word64)
{-# INLINE alignment128# #-}
alignment128# :: Word128 -> Int#
alignment128# :: Word128 -> Int#
alignment128# Word128
_ = Int#
2# Int# -> Int# -> Int#
*# forall a. Prim a => a -> Int#
alignment# (Word64
0 :: Word64)
{-# INLINE indexByteArray128# #-}
indexByteArray128# :: ByteArray# -> Int# -> Word128
indexByteArray128# :: ByteArray# -> Int# -> Word128
indexByteArray128# ByteArray#
arr# Int#
i# =
let i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
x :: Word64
x = forall a. Prim a => ByteArray# -> Int# -> a
indexByteArray# ByteArray#
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1)
y :: Word64
y = forall a. Prim a => ByteArray# -> Int# -> a
indexByteArray# ByteArray#
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0)
in Word64 -> Word64 -> Word128
Word128 Word64
x Word64
y
{-# INLINE readByteArray128# #-}
readByteArray128# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word128 #)
readByteArray128# :: forall s.
MutableByteArray# s -> Int# -> State# s -> (# State# s, Word128 #)
readByteArray128# MutableByteArray# s
arr# Int#
i# =
\State# s
s0 -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
readByteArray# MutableByteArray# s
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1) State# s
s0 of
(# State# s
s1, Word64
x #) -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
readByteArray# MutableByteArray# s
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0) State# s
s1 of
(# State# s
s2, Word64
y #) -> (# State# s
s2, Word64 -> Word64 -> Word128
Word128 Word64
x Word64
y #)
where i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
{-# INLINE writeByteArray128# #-}
writeByteArray128# :: MutableByteArray# s -> Int# -> Word128 -> State# s -> State# s
writeByteArray128# :: forall s.
MutableByteArray# s -> Int# -> Word128 -> State# s -> State# s
writeByteArray128# MutableByteArray# s
arr# Int#
i# (Word128 Word64
a Word64
b) =
\State# s
s0 -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
writeByteArray# MutableByteArray# s
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1) Word64
a State# s
s0 of
State# s
s1 -> case forall a s.
Prim a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
writeByteArray# MutableByteArray# s
arr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0) Word64
b State# s
s1 of
State# s
s2 -> State# s
s2
where i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
{-# INLINE setByteArray128# #-}
setByteArray128# :: MutableByteArray# s -> Int# -> Int# -> Word128 -> State# s -> State# s
setByteArray128# :: forall s.
MutableByteArray# s
-> Int# -> Int# -> Word128 -> State# s -> State# s
setByteArray128# = forall a s.
Prim a =>
MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
defaultSetByteArray#
{-# INLINE indexOffAddr128# #-}
indexOffAddr128# :: Addr# -> Int# -> Word128
indexOffAddr128# :: Addr# -> Int# -> Word128
indexOffAddr128# Addr#
addr# Int#
i# =
let i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
x :: Word64
x = forall a. Prim a => Addr# -> Int# -> a
indexOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1)
y :: Word64
y = forall a. Prim a => Addr# -> Int# -> a
indexOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0)
in Word64 -> Word64 -> Word128
Word128 Word64
x Word64
y
{-# INLINE readOffAddr128# #-}
readOffAddr128# :: Addr# -> Int# -> State# s -> (# State# s, Word128 #)
readOffAddr128# :: forall s. Addr# -> Int# -> State# s -> (# State# s, Word128 #)
readOffAddr128# Addr#
addr# Int#
i# =
\State# s
s0 -> case forall a s.
Prim a =>
Addr# -> Int# -> State# s -> (# State# s, a #)
readOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1) State# s
s0 of
(# State# s
s1, Word64
x #) -> case forall a s.
Prim a =>
Addr# -> Int# -> State# s -> (# State# s, a #)
readOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0) State# s
s1 of
(# State# s
s2, Word64
y #) -> (# State# s
s2, Word64 -> Word64 -> Word128
Word128 Word64
x Word64
y #)
where i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
{-# INLINE writeOffAddr128# #-}
writeOffAddr128# :: Addr# -> Int# -> Word128 -> State# s -> State# s
writeOffAddr128# :: forall s. Addr# -> Int# -> Word128 -> State# s -> State# s
writeOffAddr128# Addr#
addr# Int#
i# (Word128 Word64
a Word64
b) =
\State# s
s0 -> case forall a s. Prim a => Addr# -> Int# -> a -> State# s -> State# s
writeOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index1) Word64
a State# s
s0 of
State# s
s1 -> case forall a s. Prim a => Addr# -> Int# -> a -> State# s -> State# s
writeOffAddr# Addr#
addr# (Int#
i2# Int# -> Int# -> Int#
+# Int -> Int#
unInt Int
index0) Word64
b State# s
s1 of
State# s
s2 -> State# s
s2
where i2# :: Int#
i2# = Int#
2# Int# -> Int# -> Int#
*# Int#
i#
{-# INLINE setOffAddr128# #-}
setOffAddr128# :: Addr# -> Int# -> Int# -> Word128 -> State# s -> State# s
setOffAddr128# :: forall s. Addr# -> Int# -> Int# -> Word128 -> State# s -> State# s
setOffAddr128# = forall a s.
Prim a =>
Addr# -> Int# -> Int# -> a -> State# s -> State# s
defaultSetOffAddr#
mapPair :: (a -> b) -> (a, a) -> (b, b)
mapPair :: forall a b. (a -> b) -> (a, a) -> (b, b)
mapPair a -> b
f (a
a, a
b) = (a -> b
f a
a, a -> b
f a
b)
zeroWord128 :: Word128
zeroWord128 :: Word128
zeroWord128 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
0
oneWord128 :: Word128
oneWord128 :: Word128
oneWord128 = Word64 -> Word64 -> Word128
Word128 Word64
0 Word64
1
unInt :: Int -> Int#
unInt :: Int -> Int#
unInt (I# Int#
i#) = Int#
i#
index0, index1 :: Int
#if WORDS_BIGENDIAN
index0 = 1
index1 = 0
#else
index0 :: Int
index0 = Int
0
index1 :: Int
index1 = Int
1
#endif