{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
module XMonad.Layout.MultiDishes (
MultiDishes (..)
) where
import XMonad
import XMonad.StackSet (integrate)
import XMonad.Prelude (ap)
data MultiDishes a = MultiDishes Int Int Rational deriving (Int -> MultiDishes a -> ShowS
[MultiDishes a] -> ShowS
MultiDishes a -> String
(Int -> MultiDishes a -> ShowS)
-> (MultiDishes a -> String)
-> ([MultiDishes a] -> ShowS)
-> Show (MultiDishes a)
forall a. Int -> MultiDishes a -> ShowS
forall a. [MultiDishes a] -> ShowS
forall a. MultiDishes a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [MultiDishes a] -> ShowS
$cshowList :: forall a. [MultiDishes a] -> ShowS
show :: MultiDishes a -> String
$cshow :: forall a. MultiDishes a -> String
showsPrec :: Int -> MultiDishes a -> ShowS
$cshowsPrec :: forall a. Int -> MultiDishes a -> ShowS
Show, ReadPrec [MultiDishes a]
ReadPrec (MultiDishes a)
Int -> ReadS (MultiDishes a)
ReadS [MultiDishes a]
(Int -> ReadS (MultiDishes a))
-> ReadS [MultiDishes a]
-> ReadPrec (MultiDishes a)
-> ReadPrec [MultiDishes a]
-> Read (MultiDishes a)
forall a. ReadPrec [MultiDishes a]
forall a. ReadPrec (MultiDishes a)
forall a. Int -> ReadS (MultiDishes a)
forall a. ReadS [MultiDishes a]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [MultiDishes a]
$creadListPrec :: forall a. ReadPrec [MultiDishes a]
readPrec :: ReadPrec (MultiDishes a)
$creadPrec :: forall a. ReadPrec (MultiDishes a)
readList :: ReadS [MultiDishes a]
$creadList :: forall a. ReadS [MultiDishes a]
readsPrec :: Int -> ReadS (MultiDishes a)
$creadsPrec :: forall a. Int -> ReadS (MultiDishes a)
Read)
instance LayoutClass MultiDishes a where
pureLayout :: MultiDishes a -> Rectangle -> Stack a -> [(a, Rectangle)]
pureLayout (MultiDishes Int
nmaster Int
dishesPerStack Rational
h) Rectangle
r =
([a] -> [Rectangle] -> [(a, Rectangle)])
-> ([a] -> [Rectangle]) -> [a] -> [(a, Rectangle)]
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap [a] -> [Rectangle] -> [(a, Rectangle)]
forall a b. [a] -> [b] -> [(a, b)]
zip (Rational -> Rectangle -> Int -> Int -> Int -> [Rectangle]
multiDishes Rational
h Rectangle
r Int
nmaster Int
dishesPerStack (Int -> [Rectangle]) -> ([a] -> Int) -> [a] -> [Rectangle]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length) ([a] -> [(a, Rectangle)])
-> (Stack a -> [a]) -> Stack a -> [(a, Rectangle)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Stack a -> [a]
forall a. Stack a -> [a]
integrate
pureMessage :: MultiDishes a -> SomeMessage -> Maybe (MultiDishes a)
pureMessage (MultiDishes Int
nmaster Int
dishesPerStack Rational
h) SomeMessage
m = (IncMasterN -> MultiDishes a)
-> Maybe IncMasterN -> Maybe (MultiDishes a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap IncMasterN -> MultiDishes a
forall {a}. IncMasterN -> MultiDishes a
incmastern (SomeMessage -> Maybe IncMasterN
forall m. Message m => SomeMessage -> Maybe m
fromMessage SomeMessage
m)
where incmastern :: IncMasterN -> MultiDishes a
incmastern (IncMasterN Int
d) = Int -> Int -> Rational -> MultiDishes a
forall a. Int -> Int -> Rational -> MultiDishes a
MultiDishes (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
0 (Int
nmasterInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
d)) Int
dishesPerStack Rational
h
multiDishes :: Rational -> Rectangle -> Int -> Int -> Int -> [Rectangle]
multiDishes :: Rational -> Rectangle -> Int -> Int -> Int -> [Rectangle]
multiDishes Rational
h Rectangle
s Int
nmaster Int
dishesPerStack Int
n = if Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
nmaster
then Int -> Rectangle -> [Rectangle]
splitHorizontally Int
n Rectangle
s
else [Rectangle]
ws
where
(Int
filledDishStackCount, Int
remainder) =
(Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
nmaster) Int -> Int -> (Int, Int)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
1 Int
dishesPerStack
(Int
firstDepth, Int
dishStackCount) =
if Int
remainder Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then
(Int
dishesPerStack, Int
filledDishStackCount)
else
(Int
remainder, Int
filledDishStackCount Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
(Rectangle
masterRect, Rectangle
dishesRect) =
Rational -> Rectangle -> (Rectangle, Rectangle)
forall r. RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
splitVerticallyBy (Rational
1 Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
- Int -> Rational
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
dishStackCount Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
* Rational
h) Rectangle
s
dishStackRects :: [Rectangle]
dishStackRects =
Int -> Rectangle -> [Rectangle]
splitVertically Int
dishStackCount Rectangle
dishesRect
allDishRects :: [Rectangle]
allDishRects = case [Rectangle]
dishStackRects of
(Rectangle
firstStack:[Rectangle]
bottomDishStacks) ->
Int -> Rectangle -> [Rectangle]
splitHorizontally Int
firstDepth Rectangle
firstStack [Rectangle] -> [Rectangle] -> [Rectangle]
forall a. [a] -> [a] -> [a]
++ ([Rectangle]
bottomDishStacks [Rectangle] -> (Rectangle -> [Rectangle]) -> [Rectangle]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Int -> Rectangle -> [Rectangle]
splitHorizontally Int
dishesPerStack)
[] -> []
ws :: [Rectangle]
ws =
Int -> Rectangle -> [Rectangle]
splitHorizontally Int
nmaster Rectangle
masterRect [Rectangle] -> [Rectangle] -> [Rectangle]
forall a. [a] -> [a] -> [a]
++ [Rectangle]
allDishRects