Copyright | (c) 2021 Tony Zorman |
---|---|
License | BSD3-style (see LICENSE) |
Maintainer | Tony Zorman <soliditsallgood@mailbox.org> |
Safe Haskell | None |
Language | Haskell2010 |
Utility functions and re-exports for a more ergonomic developing experience. Users themselves will not find much use here.
Synopsis
- module Control.Applicative
- module Control.Monad
- module Data.Bool
- module Data.Char
- module Data.Function
- module Data.Maybe
- module Data.Monoid
- module Data.Traversable
- concat :: Foldable t => t [a] -> [a]
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap' :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- unzip :: [(a, b)] -> ([a], [b])
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- genericLength :: Num i => [a] -> i
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- genericReplicate :: Integral i => i -> a -> [a]
- genericTake :: Integral i => i -> [a] -> [a]
- genericDrop :: Integral i => i -> [a] -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- genericIndex :: Integral i => [a] -> i -> a
- head :: HasCallStack => [a] -> a
- group :: Eq a => [a] -> [[a]]
- groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- filter :: (a -> Bool) -> [a] -> [a]
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- transpose :: [[a]] -> [[a]]
- sortOn :: Ord b => (a -> b) -> [a] -> [a]
- cycle :: HasCallStack => [a] -> [a]
- (++) :: [a] -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- map :: (a -> b) -> [a] -> [b]
- uncons :: [a] -> Maybe (a, [a])
- unsnoc :: [a] -> Maybe ([a], a)
- tail :: HasCallStack => [a] -> [a]
- last :: HasCallStack => [a] -> a
- init :: HasCallStack => [a] -> [a]
- foldl1' :: HasCallStack => (a -> a -> a) -> [a] -> a
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- iterate' :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- reverse :: [a] -> [a]
- and :: Foldable t => t Bool -> Bool
- or :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- (!!) :: HasCallStack => [a] -> Int -> a
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- ($>) :: Functor f => f a -> b -> f b
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- dropWhileEnd :: (a -> Bool) -> [a] -> [a]
- stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
- elemIndex :: Eq a => a -> [a] -> Maybe Int
- elemIndices :: Eq a => a -> [a] -> [Int]
- findIndex :: (a -> Bool) -> [a] -> Maybe Int
- findIndices :: (a -> Bool) -> [a] -> [Int]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- isInfixOf :: Eq a => [a] -> [a] -> Bool
- nub :: Eq a => [a] -> [a]
- nubBy :: (a -> a -> Bool) -> [a] -> [a]
- delete :: Eq a => a -> [a] -> [a]
- deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
- (\\) :: Eq a => [a] -> [a] -> [a]
- union :: Eq a => [a] -> [a] -> [a]
- unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- intersect :: Eq a => [a] -> [a] -> [a]
- intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- intersperse :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- partition :: (a -> Bool) -> [a] -> ([a], [a])
- insert :: Ord a => a -> [a] -> [a]
- insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
- zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]
- zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]
- zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a, b, c, d, e, f)]
- zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a, b, c, d, e, f, g)]
- zipWith4 :: (a -> b -> c -> d -> e) -> [a] -> [b] -> [c] -> [d] -> [e]
- zipWith5 :: (a -> b -> c -> d -> e -> f) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f]
- zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]
- zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h]
- unzip4 :: [(a, b, c, d)] -> ([a], [b], [c], [d])
- unzip5 :: [(a, b, c, d, e)] -> ([a], [b], [c], [d], [e])
- unzip6 :: [(a, b, c, d, e, f)] -> ([a], [b], [c], [d], [e], [f])
- unzip7 :: [(a, b, c, d, e, f, g)] -> ([a], [b], [c], [d], [e], [f], [g])
- deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- inits :: [a] -> [[a]]
- tails :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- permutations :: [a] -> [[a]]
- sort :: Ord a => [a] -> [a]
- singleton :: a -> [a]
- lines :: String -> [String]
- unlines :: [String] -> String
- words :: String -> [String]
- unwords :: [String] -> String
- isSubsequenceOf :: Eq a => [a] -> [a] -> Bool
- fi :: (Integral a, Num b) => a -> b
- chunksOf :: Int -> [a] -> [[a]]
- (.:) :: (a -> b) -> (c -> d -> a) -> c -> d -> b
- (!?) :: [a] -> Int -> Maybe a
- data NonEmpty a = a :| [a]
- notEmpty :: HasCallStack => [a] -> NonEmpty a
- safeGetWindowAttributes :: Window -> X (Maybe WindowAttributes)
- mkAbsolutePath :: MonadIO m => FilePath -> m FilePath
- findM :: Monad m => (a -> m Bool) -> [a] -> m (Maybe a)
- keyToString :: (KeyMask, KeySym) -> String
- keymaskToString :: KeyMask -> KeyMask -> String
- cleanKeyMask :: X (KeyMask -> KeyMask)
- regularKeys :: [(String, KeySym)]
- allSpecialKeys :: [(String, KeySym)]
- specialKeys :: [(String, KeySym)]
- multimediaKeys :: [(String, KeySym)]
- functionKeys :: [(String, KeySym)]
- type WindowScreen = Screen WorkspaceId (Layout Window) Window ScreenId ScreenDetail
- data Stream a = !a :~ (Stream a)
- (+~) :: [a] -> Stream a -> Stream a
- cycleS :: NonEmpty a -> Stream a
- takeS :: Int -> Stream a -> [a]
- toList :: IsList l => l -> [Item l]
- fromList :: IsList l => [Item l] -> l
Documentation
module Control.Applicative
module Control.Monad
module Data.Bool
module Data.Char
module Data.Function
module Data.Maybe
module Data.Monoid
module Data.Traversable
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>
concat (Just [1, 2, 3])
[1,2,3]
>>>
concat (Left 42)
[]
>>>
concat [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
class Foldable (t :: Type -> Type) where #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-} data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) deriving Foldable
A more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
fold :: Monoid m => t m -> m #
Given a structure with elements whose type is a Monoid
, combine them
via the monoid's (
operator. This fold is right-associative and
lazy in the accumulator. When you need a strict left-associative fold,
use <>
)foldMap'
instead, with id
as the map.
Examples
Basic usage:
>>>
fold [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
>>>
fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))
Sum {getSum = 9}
Folds of unbounded structures do not terminate when the monoid's
(
operator is strict:<>
)
>>>
fold (repeat Nothing)
* Hangs forever *
Lazy corecursive folds of unbounded structures are fine:
>>>
take 12 $ fold $ map (\i -> [i..i+2]) [0..]
[0,1,2,1,2,3,2,3,4,3,4,5]>>>
sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]
2666668666666
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (
. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>
)foldMap'
instead.
Examples
Basic usage:
>>>
foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>>
foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>>
foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]
When a Monoid's (
is lazy in its second argument, <>
)foldMap
can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>
import qualified Data.ByteString.Lazy as L
>>>
import qualified Data.ByteString.Builder as B
>>>
let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>>
let lbs = B.toLazyByteString $ foldMap bld [0..]
>>>
L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldMap' :: Monoid m => (a -> m) -> t a -> m #
A left-associative variant of foldMap
that is strict in the
accumulator. Use this method for strict reduction when partial
results are merged via (
.<>
)
Examples
Define a Monoid
over finite bit strings under xor
. Use it to
strictly compute the xor
of a list of Int
values.
>>>
:set -XGeneralizedNewtypeDeriving
>>>
import Data.Bits (Bits, FiniteBits, xor, zeroBits)
>>>
import Data.Foldable (foldMap')
>>>
import Numeric (showHex)
>>>
>>>
newtype X a = X a deriving (Eq, Bounded, Enum, Bits, FiniteBits)
>>>
instance Bits a => Semigroup (X a) where X a <> X b = X (a `xor` b)
>>>
instance Bits a => Monoid (X a) where mempty = X zeroBits
>>>
>>>
let bits :: [Int]; bits = [0xcafe, 0xfeed, 0xdeaf, 0xbeef, 0x5411]
>>>
(\ (X a) -> showString "0x" . showHex a $ "") $ foldMap' X bits
"0x42"
Since: base-4.13.0.0
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr
can produce a terminating
expression from an unbounded list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
Examples
Basic usage:
>>>
foldr (||) False [False, True, False]
True
>>>
foldr (||) False []
False
>>>
foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures
⚠️ Applying foldr
to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
(
short-circuits on ||
)True
values, so the following terminates
because there is a True
value finitely far from the left side:
>>>
foldr (||) False (True : repeat False)
True
But the following doesn't terminate:
>>>
foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument
Applying foldr
to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined
, but []
is more clear):
>>>
take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]
foldr' :: (a -> b -> b) -> b -> t a -> b #
foldr'
is a variant of foldr
that performs strict reduction from
right to left, i.e. starting with the right-most element. The input
structure must be finite, otherwise foldr'
runs out of space
(diverges).
If you want a strict right fold in constant space, you need a structure
that supports faster than O(n) access to the right-most element, such
as Seq
from the containers
package.
This method does not run in constant space for structures such as lists
that don't support efficient right-to-left iteration and so require
O(n) space to perform right-to-left reduction. Use of this method
with such a structure is a hint that the chosen structure may be a poor
fit for the task at hand. If the order in which the elements are
combined is not important, use foldl'
instead.
Since: base-4.6.0.0
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl
, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl
will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl'
instead of foldl
. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1
in the above
example) before applying them to the operator (e.g. to (`f` x2)
).
This results in a thunk chain O(n) elements long, which then must be
evaluated from the outside-in.
For a general Foldable
structure this should be semantically identical
to:
foldl f z =foldl
f z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'
.
>>>
foldl (+) 42 [1,2,3,4]
52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>
foldl (\acc c -> c : acc) "abcd" "efgh"
"hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>
foldl (\a _ -> a) 0 $ repeat 1
* Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl'
or foldr
instead.
foldl' :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum
).
For a general Foldable
structure this should be semantically identical
to,
foldl' f z =foldl'
f z .toList
Since: base-4.6.0.0
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr
that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
Examples
Basic usage:
>>>
foldr1 (+) [1..4]
10
>>>
foldr1 (+) []
Exception: Prelude.foldr1: empty list
>>>
foldr1 (+) Nothing
*** Exception: foldr1: empty structure
>>>
foldr1 (-) [1..4]
-2
>>>
foldr1 (&&) [True, False, True, True]
False
>>>
foldr1 (||) [False, False, True, True]
True
>>>
foldr1 (+) [1..]
* Hangs forever *
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl
that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
foldl1
f =foldl1
f .toList
Examples
Basic usage:
>>>
foldl1 (+) [1..4]
10
>>>
foldl1 (+) []
*** Exception: Prelude.foldl1: empty list
>>>
foldl1 (+) Nothing
*** Exception: foldl1: empty structure
>>>
foldl1 (-) [1..4]
-8
>>>
foldl1 (&&) [True, False, True, True]
False
>>>
foldl1 (||) [False, False, True, True]
True
>>>
foldl1 (+) [1..]
* Hangs forever *
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>
null []
True
>>>
null [1]
False
null
is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>
null [1..]
False
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int
. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>
length []
0
>>>
length ['a', 'b', 'c']
3>>>
length [1..]
* Hangs forever *
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem
is often used in infix form.
Examples
Basic usage:
>>>
3 `elem` []
False
>>>
3 `elem` [1,2]
False
>>>
3 `elem` [1,2,3,4,5]
True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>
3 `elem` [1..]
True
>>>
3 `elem` ([4..] ++ [3])
* Hangs forever *
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>
maximum [1..10]
10
>>>
maximum []
*** Exception: Prelude.maximum: empty list
>>>
maximum Nothing
*** Exception: maximum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>
minimum [1..10]
1
>>>
minimum []
*** Exception: Prelude.minimum: empty list
>>>
minimum Nothing
*** Exception: minimum: empty structure
WARNING: This function is partial for possibly-empty structures like lists.
Since: base-4.8.0.0
The sum
function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>
sum []
0
>>>
sum [42]
42
>>>
sum [1..10]
55
>>>
sum [4.1, 2.0, 1.7]
7.8
>>>
sum [1..]
* Hangs forever *
Since: base-4.8.0.0
product :: Num a => t a -> a #
The product
function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>
product []
1
>>>
product [42]
42
>>>
product [1..10]
3628800
>>>
product [4.1, 2.0, 1.7]
13.939999999999998
>>>
product [1..]
* Hangs forever *
Since: base-4.8.0.0
Instances
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph fold :: Monoid m => SCC m -> m # foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldMap' :: Monoid m => (a -> m) -> SCC a -> m # foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Tree | Folds in preorder |
Defined in Data.Tree fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable TyVarBndr | |
Defined in Language.Haskell.TH.Syntax fold :: Monoid m => TyVarBndr m -> m # foldMap :: Monoid m => (a -> m) -> TyVarBndr a -> m # foldMap' :: Monoid m => (a -> m) -> TyVarBndr a -> m # foldr :: (a -> b -> b) -> b -> TyVarBndr a -> b # foldr' :: (a -> b -> b) -> b -> TyVarBndr a -> b # foldl :: (b -> a -> b) -> b -> TyVarBndr a -> b # foldl' :: (b -> a -> b) -> b -> TyVarBndr a -> b # foldr1 :: (a -> a -> a) -> TyVarBndr a -> a # foldl1 :: (a -> a -> a) -> TyVarBndr a -> a # toList :: TyVarBndr a -> [a] # length :: TyVarBndr a -> Int # elem :: Eq a => a -> TyVarBndr a -> Bool # maximum :: Ord a => TyVarBndr a -> a # minimum :: Ord a => TyVarBndr a -> a # | |
Foldable Directories' | |
Defined in XMonad.Core fold :: Monoid m => Directories' m -> m # foldMap :: Monoid m => (a -> m) -> Directories' a -> m # foldMap' :: Monoid m => (a -> m) -> Directories' a -> m # foldr :: (a -> b -> b) -> b -> Directories' a -> b # foldr' :: (a -> b -> b) -> b -> Directories' a -> b # foldl :: (b -> a -> b) -> b -> Directories' a -> b # foldl' :: (b -> a -> b) -> b -> Directories' a -> b # foldr1 :: (a -> a -> a) -> Directories' a -> a # foldl1 :: (a -> a -> a) -> Directories' a -> a # toList :: Directories' a -> [a] # null :: Directories' a -> Bool # length :: Directories' a -> Int # elem :: Eq a => a -> Directories' a -> Bool # maximum :: Ord a => Directories' a -> a # minimum :: Ord a => Directories' a -> a # sum :: Num a => Directories' a -> a # product :: Num a => Directories' a -> a # | |
Foldable Stack | |
Defined in XMonad.StackSet fold :: Monoid m => Stack m -> m # foldMap :: Monoid m => (a -> m) -> Stack a -> m # foldMap' :: Monoid m => (a -> m) -> Stack a -> m # foldr :: (a -> b -> b) -> b -> Stack a -> b # foldr' :: (a -> b -> b) -> b -> Stack a -> b # foldl :: (b -> a -> b) -> b -> Stack a -> b # foldl' :: (b -> a -> b) -> b -> Stack a -> b # foldr1 :: (a -> a -> a) -> Stack a -> a # foldl1 :: (a -> a -> a) -> Stack a -> a # elem :: Eq a => a -> Stack a -> Bool # maximum :: Ord a => Stack a -> a # minimum :: Ord a => Stack a -> a # | |
Foldable Cursors Source # | |
Defined in XMonad.Actions.WorkspaceCursors fold :: Monoid m => Cursors m -> m # foldMap :: Monoid m => (a -> m) -> Cursors a -> m # foldMap' :: Monoid m => (a -> m) -> Cursors a -> m # foldr :: (a -> b -> b) -> b -> Cursors a -> b # foldr' :: (a -> b -> b) -> b -> Cursors a -> b # foldl :: (b -> a -> b) -> b -> Cursors a -> b # foldl' :: (b -> a -> b) -> b -> Cursors a -> b # foldr1 :: (a -> a -> a) -> Cursors a -> a # foldl1 :: (a -> a -> a) -> Cursors a -> a # elem :: Eq a => a -> Cursors a -> Bool # maximum :: Ord a => Cursors a -> a # minimum :: Ord a => Cursors a -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable (History k) Source # | |
Defined in XMonad.Util.History fold :: Monoid m => History k m -> m # foldMap :: Monoid m => (a -> m) -> History k a -> m # foldMap' :: Monoid m => (a -> m) -> History k a -> m # foldr :: (a -> b -> b) -> b -> History k a -> b # foldr' :: (a -> b -> b) -> b -> History k a -> b # foldl :: (b -> a -> b) -> b -> History k a -> b # foldl' :: (b -> a -> b) -> b -> History k a -> b # foldr1 :: (a -> a -> a) -> History k a -> a # foldl1 :: (a -> a -> a) -> History k a -> a # toList :: History k a -> [a] # length :: History k a -> Int # elem :: Eq a => a -> History k a -> Bool # maximum :: Ord a => History k a -> a # minimum :: Ord a => History k a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldMap' :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # |
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
>>>
unzip []
([],[])>>>
unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
sortBy :: (a -> a -> Ordering) -> [a] -> [a] #
The sortBy
function is the non-overloaded version of sort
.
The argument must be finite.
>>>
sortBy (\(a,_) (b,_) -> compare a b) [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]
The supplied comparison relation is supposed to be reflexive and antisymmetric,
otherwise, e. g., for _ _ -> GT
, the ordered list simply does not exist.
The relation is also expected to be transitive: if it is not then sortBy
might fail to find an ordered permutation, even if it exists.
genericLength :: Num i => [a] -> i #
\(\mathcal{O}(n)\). The genericLength
function is an overloaded version
of length
. In particular, instead of returning an Int
, it returns any
type which is an instance of Num
. It is, however, less efficient than
length
.
>>>
genericLength [1, 2, 3] :: Int
3>>>
genericLength [1, 2, 3] :: Float
3.0
Users should take care to pick a return type that is wide enough to contain
the full length of the list. If the width is insufficient, the overflow
behaviour will depend on the (+)
implementation in the selected Num
instance. The following example overflows because the actual list length
of 200 lies outside of the Int8
range of -128..127
.
>>>
genericLength [1..200] :: Int8
-56
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The largest element of a non-empty structure with respect to the given comparison function.
Examples
Basic usage:
>>>
maximumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"Longest"
WARNING: This function is partial for possibly-empty structures like lists.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a #
The least element of a non-empty structure with respect to the given comparison function.
Examples
Basic usage:
>>>
minimumBy (compare `on` length) ["Hello", "World", "!", "Longest", "bar"]
"!"
WARNING: This function is partial for possibly-empty structures like lists.
genericReplicate :: Integral i => i -> a -> [a] #
The genericReplicate
function is an overloaded version of replicate
,
which accepts any Integral
value as the number of repetitions to make.
genericTake :: Integral i => i -> [a] -> [a] #
The genericTake
function is an overloaded version of take
, which
accepts any Integral
value as the number of elements to take.
genericDrop :: Integral i => i -> [a] -> [a] #
The genericDrop
function is an overloaded version of drop
, which
accepts any Integral
value as the number of elements to drop.
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
The genericSplitAt
function is an overloaded version of splitAt
, which
accepts any Integral
value as the position at which to split.
genericIndex :: Integral i => [a] -> i -> a #
The genericIndex
function is an overloaded version of !!
, which
accepts any Integral
value as the index.
head :: HasCallStack => [a] -> a #
\(\mathcal{O}(1)\). Extract the first element of a list, which must be non-empty.
>>>
head [1, 2, 3]
1>>>
head [1..]
1>>>
head []
*** Exception: Prelude.head: empty list
WARNING: This function is partial. You can use case-matching, uncons
or
listToMaybe
instead.
group :: Eq a => [a] -> [[a]] #
The group
function takes a list and returns a list of lists such
that the concatenation of the result is equal to the argument. Moreover,
each sublist in the result is non-empty and all elements are equal
to the first one. For example,
>>>
group "Mississippi"
["M","i","ss","i","ss","i","pp","i"]
group
is a special case of groupBy
, which allows the programmer to supply
their own equality test.
It's often preferable to use Data.List.NonEmpty.
group
,
which provides type-level guarantees of non-emptiness of inner lists.
groupBy :: (a -> a -> Bool) -> [a] -> [[a]] #
The groupBy
function is the non-overloaded version of group
.
When a supplied relation is not transitive, it is important to remember that equality is checked against the first element in the group, not against the nearest neighbour:
>>>
groupBy (\a b -> b - a < 5) [0..19]
[[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14],[15,16,17,18,19]]
It's often preferable to use Data.List.NonEmpty.
groupBy
,
which provides type-level guarantees of non-emptiness of inner lists.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an Applicative
action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse
.
traverse_
is just like mapM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
traverse_ print ["Hello", "world", "!"]
"Hello" "world" "!"
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA
.
sequenceA_
is just like sequence_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
sequenceA_ [print "Hello", print "world", print "!"]
"Hello" "world" "!"
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_
is traverse_
with its arguments flipped. For a version
that doesn't ignore the results see for
. This
is forM_
generalised to Applicative
actions.
for_
is just like forM_
, but generalised to Applicative
actions.
Examples
Basic usage:
>>>
for_ [1..4] print
1 2 3 4
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>
filter odd [1, 2, 3]
[1,3]
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr
function is a `dual' to foldr
: while foldr
reduces a list to a summary value, unfoldr
builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just
(a,b)
, in which
case, a
is a prepended to the list and b
is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr
can undo a foldr
operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>
unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]
Laziness:
>>>
take 1 (unfoldr (\x -> Just (x, undefined)) 'a')
"a"
The transpose
function transposes the rows and columns of its argument.
For example,
>>>
transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]
If some of the rows are shorter than the following rows, their elements are skipped:
>>>
transpose [[10,11],[20],[],[30,31,32]]
[[10,20,30],[11,31],[32]]
For this reason the outer list must be finite; otherwise transpose
hangs:
>>>
transpose (repeat [])
* Hangs forever *
transpose
is lazy:
>>>
take 1 (transpose ['a' : undefined, 'b' : undefined])
["ab"]
sortOn :: Ord b => (a -> b) -> [a] -> [a] #
Sort a list by comparing the results of a key function applied to each
element.
is equivalent to sortOn
f
, but has the
performance advantage of only evaluating sortBy
(comparing
f)f
once for each element in the
input list. This is called the decorate-sort-undecorate paradigm, or
Schwartzian transform.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>
sortOn fst [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]
The argument must be finite.
Since: base-4.8.0.0
cycle :: HasCallStack => [a] -> [a] #
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>
cycle []
*** Exception: Prelude.cycle: empty list>>>
take 10 (cycle [42])
[42,42,42,42,42,42,42,42,42,42]>>>
take 10 (cycle [2, 5, 7])
[2,5,7,2,5,7,2,5,7,2]>>>
take 1 (cycle (42 : undefined))
[42]
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
This function takes linear time in the number of elements of the
first list. Thus it is better to associate repeated
applications of (++)
to the right (which is the default behaviour):
xs ++ (ys ++ zs)
or simply xs ++ ys ++ zs
, but not (xs ++ ys) ++ zs
.
For the same reason concat
=
foldr
(++)
[]
has linear performance, while foldl
(++)
[]
is prone
to quadratic slowdown.
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
>>>
zip [1, 2] ['a', 'b']
[(1,'a'),(2,'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>
zip [1] ['a', 'b']
[(1,'a')]>>>
zip [1, 2] ['a']
[(1,'a')]>>>
zip [] [1..]
[]>>>
zip [1..] []
[]
zip
is right-lazy:
>>>
zip [] undefined
[]>>>
zip undefined []
*** Exception: Prelude.undefined ...
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map
f xs
is the list obtained by applying f
to
each element of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>
map (+1) [1, 2, 3]
[2,3,4]
unsnoc :: [a] -> Maybe ([a], a) #
\(\mathcal{O}(n)\). Decompose a list into init
and last
.
- If the list is empty, returns
Nothing
. - If the list is non-empty, returns
, whereJust
(xs, x)xs
is theinit
ial part of the list andx
is itslast
element.
>>>
unsnoc []
Nothing>>>
unsnoc [1]
Just ([],1)>>>
unsnoc [1, 2, 3]
Just ([1,2],3)
Laziness:
>>>
fst <$> unsnoc [undefined]
Just []>>>
head . fst <$> unsnoc (1 : undefined)
Just *** Exception: Prelude.undefined>>>
head . fst <$> unsnoc (1 : 2 : undefined)
Just 1
unsnoc
is dual to uncons
: for a finite list xs
unsnoc xs = (\(hd, tl) -> (reverse tl, hd)) <$> uncons (reverse xs)
Since: base-4.19.0.0
tail :: HasCallStack => [a] -> [a] #
\(\mathcal{O}(1)\). Extract the elements after the head of a list, which must be non-empty.
>>>
tail [1, 2, 3]
[2,3]>>>
tail [1]
[]>>>
tail []
*** Exception: Prelude.tail: empty list
WARNING: This function is partial. You can use case-matching or uncons
instead.
last :: HasCallStack => [a] -> a #
\(\mathcal{O}(n)\). Extract the last element of a list, which must be finite and non-empty.
>>>
last [1, 2, 3]
3>>>
last [1..]
* Hangs forever *>>>
last []
*** Exception: Prelude.last: empty list
WARNING: This function is partial. Consider using unsnoc
instead.
init :: HasCallStack => [a] -> [a] #
\(\mathcal{O}(n)\). Return all the elements of a list except the last one. The list must be non-empty.
>>>
init [1, 2, 3]
[1,2]>>>
init [1]
[]>>>
init []
*** Exception: Prelude.init: empty list
WARNING: This function is partial. Consider using unsnoc
instead.
foldl1' :: HasCallStack => (a -> a -> a) -> [a] -> a #
A strict version of foldl1
.
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl
is similar to foldl
, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>
scanl (+) 0 [1..4]
[0,1,3,6,10]>>>
scanl (+) 42 []
[42]>>>
scanl (-) 100 [1..4]
[100,99,97,94,90]>>>
scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>
take 10 (scanl (+) 0 [1..])
[0,1,3,6,10,15,21,28,36,45]>>>
take 1 (scanl undefined 'a' undefined)
"a"
scanl1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanl1
is a variant of scanl
that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>
scanl1 (+) [1..4]
[1,3,6,10]>>>
scanl1 (+) []
[]>>>
scanl1 (-) [1..4]
[1,-1,-4,-8]>>>
scanl1 (&&) [True, False, True, True]
[True,False,False,False]>>>
scanl1 (||) [False, False, True, True]
[False,False,True,True]>>>
take 10 (scanl1 (+) [1..])
[1,3,6,10,15,21,28,36,45,55]>>>
take 1 (scanl1 undefined ('a' : undefined))
"a"
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr
is the right-to-left dual of scanl
. Note that the order of parameters on the accumulating function are reversed compared to scanl
.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>
scanr (+) 0 [1..4]
[10,9,7,4,0]>>>
scanr (+) 42 []
[42]>>>
scanr (-) 100 [1..4]
[98,-97,99,-96,100]>>>
scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>
force $ scanr (+) 0 [1..]
*** Exception: stack overflow
scanr1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanr1
is a variant of scanr
that has no starting
value argument.
>>>
scanr1 (+) [1..4]
[10,9,7,4]>>>
scanr1 (+) []
[]>>>
scanr1 (-) [1..4]
[-2,3,-1,4]>>>
scanr1 (&&) [True, False, True, True]
[False,False,True,True]>>>
scanr1 (||) [True, True, False, False]
[True,True,False,False]>>>
force $ scanr1 (+) [1..]
*** Exception: stack overflow
iterate :: (a -> a) -> a -> [a] #
iterate
f x
returns an infinite list of repeated applications
of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Note that iterate
is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate'
for a strict
variant of this function.
>>>
take 10 $ iterate not True
[True,False,True,False,True,False,True,False,True,False]>>>
take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63,66,69]>>>
take 1 $ iterate undefined 42
[42]
repeat
x
is an infinite list, with x
the value of every element.
>>>
repeat 17
[17,17,17,17,17,17,17,17,17...
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
>>>
replicate 0 True
[]>>>
replicate (-1) True
[]>>>
replicate 4 True
[True,True,True,True]
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
.
>>>
takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]>>>
takeWhile (< 9) [1,2,3]
[1,2,3]>>>
takeWhile (< 0) [1,2,3]
[]
Laziness:
>>>
takeWhile (const False) undefined
*** Exception: Prelude.undefined>>>
takeWhile (const False) (undefined : undefined)
[]>>>
take 1 (takeWhile (const True) (1 : undefined))
[1]
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >=
.length
xs
>>>
take 5 "Hello World!"
"Hello">>>
take 3 [1,2,3,4,5]
[1,2,3]>>>
take 3 [1,2]
[1,2]>>>
take 3 []
[]>>>
take (-1) [1,2]
[]>>>
take 0 [1,2]
[]
Laziness:
>>>
take 0 undefined
[]>>>
take 1 (1 : undefined)
[1]
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >=
.length
xs
>>>
drop 6 "Hello World!"
"World!">>>
drop 3 [1,2,3,4,5]
[4,5]>>>
drop 3 [1,2]
[]>>>
drop 3 []
[]>>>
drop (-1) [1,2]
[1,2]>>>
drop 0 [1,2]
[1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
>>>
splitAt 6 "Hello World!"
("Hello ","World!")>>>
splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])>>>
splitAt 1 [1,2,3]
([1],[2,3])>>>
splitAt 3 [1,2,3]
([1,2,3],[])>>>
splitAt 4 [1,2,3]
([1,2,3],[])>>>
splitAt 0 [1,2,3]
([],[1,2,3])>>>
splitAt (-1) [1,2,3]
([],[1,2,3])
It is equivalent to (
unless take
n xs, drop
n xs)n
is _|_
:
splitAt _|_ xs = _|_
, not (_|_, _|_)
).
The first component of the tuple is produced lazily:
>>>
fst (splitAt 0 undefined)
[]>>>
take 1 (fst (splitAt 10 (1 : undefined)))
[1]
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span
, applied to a predicate p
and a list xs
, returns a tuple where
first element is the longest prefix (possibly empty) of xs
of elements that
satisfy p
and second element is the remainder of the list:
>>>
span (< 3) [1,2,3,4,1,2,3,4]
([1,2],[3,4,1,2,3,4])>>>
span (< 9) [1,2,3]
([1,2,3],[])>>>
span (< 0) [1,2,3]
([],[1,2,3])
span
p xs
is equivalent to (
, even if takeWhile
p xs, dropWhile
p xs)p
is _|_
.
Laziness:
>>>
span undefined []
([],[])>>>
fst (span (const False) undefined)
*** Exception: Prelude.undefined>>>
fst (span (const False) (undefined : undefined))
[]>>>
take 1 (fst (span (const True) (1 : undefined)))
[1]
span
produces the first component of the tuple lazily:
>>>
take 10 (fst (span (const True) [1..]))
[1,2,3,4,5,6,7,8,9,10]
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
>>>
break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])>>>
break (< 9) [1,2,3]
([],[1,2,3])>>>
break (> 9) [1,2,3]
([1,2,3],[])
break
p
is equivalent to
and consequently to span
(not
. p)(
,
even if takeWhile
(not
. p) xs, dropWhile
(not
. p) xs)p
is _|_
.
Laziness:
>>>
break undefined []
([],[])>>>
fst (break (const True) undefined)
*** Exception: Prelude.undefined>>>
fst (break (const True) (undefined : undefined))
[]>>>
take 1 (fst (break (const False) (1 : undefined)))
[1]
break
produces the first component of the tuple lazily:
>>>
take 10 (fst (break (const False) [1..]))
[1,2,3,4,5,6,7,8,9,10]
reverse
xs
returns the elements of xs
in reverse order.
xs
must be finite.
>>>
reverse []
[]>>>
reverse [42]
[42]>>>
reverse [2,5,7]
[7,5,2]>>>
reverse [1..]
* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and
returns the conjunction of a container of Bools. For the
result to be True
, the container must be finite; False
, however,
results from a False
value finitely far from the left end.
Examples
Basic usage:
>>>
and []
True
>>>
and [True]
True
>>>
and [False]
False
>>>
and [True, True, False]
False
>>>
and (False : repeat True) -- Infinite list [False,True,True,True,...
False
>>>
and (repeat True)
* Hangs forever *
or :: Foldable t => t Bool -> Bool #
or
returns the disjunction of a container of Bools. For the
result to be False
, the container must be finite; True
, however,
results from a True
value finitely far from the left end.
Examples
Basic usage:
>>>
or []
False
>>>
or [True]
True
>>>
or [False]
False
>>>
or [True, True, False]
True
>>>
or (True : repeat False) -- Infinite list [True,False,False,False,...
True
>>>
or (repeat False)
* Hangs forever *
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>
any (> 3) []
False
>>>
any (> 3) [1,2]
False
>>>
any (> 3) [1,2,3,4,5]
True
>>>
any (> 3) [1..]
True
>>>
any (> 3) [0, -1..]
* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>
all (> 3) []
True
>>>
all (> 3) [1,2]
False
>>>
all (> 3) [1,2,3,4,5]
False
>>>
all (> 3) [1..]
False
>>>
all (> 3) [4..]
* Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem
is the negation of elem
.
Examples
Basic usage:
>>>
3 `notElem` []
True
>>>
3 `notElem` [1,2]
True
>>>
3 `notElem` [1,2,3,4,5]
False
For infinite structures, notElem
terminates if the value exists at a
finite distance from the left side of the structure:
>>>
3 `notElem` [1..]
False
>>>
3 `notElem` ([4..] ++ [3])
* Hangs forever *
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>
concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>
concatMap (take 3) (Just [1..])
[1,2,3]
(!!) :: HasCallStack => [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex
,
which takes an index of any integral type.
>>>
['a', 'b', 'c'] !! 0
'a'>>>
['a', 'b', 'c'] !! 2
'c'>>>
['a', 'b', 'c'] !! 3
*** Exception: Prelude.!!: index too large>>>
['a', 'b', 'c'] !! (-1)
*** Exception: Prelude.!!: negative index
WARNING: This function is partial, and should only be used if you are
sure that the indexing will not fail. Otherwise, use !?
.
WARNING: This function takes linear time in the index.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example,
is applied to two lists to produce the list of
corresponding sums:zipWith
(+)
>>>
zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
zipWith
is right-lazy:
>>>
let f = undefined
>>>
zipWith f [] undefined
[]
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] #
The zipWith3
function takes a function which combines three
elements, as well as three lists and returns a list of the function applied
to corresponding elements, analogous to zipWith
.
It is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 (,,) xs ys zs == zip3 xs ys zs zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$
.
Examples
Replace the contents of a
with a constant
Maybe
Int
String
:
>>>
Nothing $> "foo"
Nothing>>>
Just 90210 $> "foo"
Just "foo"
Replace the contents of an
with a constant Either
Int
Int
String
, resulting in an
:Either
Int
String
>>>
Left 8675309 $> "foo"
Left 8675309>>>
Right 8675309 $> "foo"
Right "foo"
Replace each element of a list with a constant String
:
>>>
[1,2,3] $> "foo"
["foo","foo","foo"]
Replace the second element of a pair with a constant String
:
>>>
(1,2) $> "foo"
(1,"foo")
Since: base-4.7.0.0
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b #
Right-to-left monadic fold over the elements of a structure.
Given a structure t
with elements (a, b, c, ..., x, y)
, the result of
a fold with an operator function f
is equivalent to:
foldrM f z t = do yy <- f y z xx <- f x yy ... bb <- f b cc aa <- f a bb return aa -- Just @return z@ when the structure is empty
For a Monad m
, given two functions f1 :: a -> m b
and f2 :: b -> m c
,
their Kleisli composition (f1 >=> f2) :: a -> m c
is defined by:
(f1 >=> f2) a = f1 a >>= f2
Another way of thinking about foldrM
is that it amounts to an application
to z
of a Kleisli composition:
foldrM f z t = f y >=> f x >=> ... >=> f b >=> f a $ z
The monadic effects of foldrM
are sequenced from right to left, and e.g.
folds of infinite lists will diverge.
If at some step the bind operator (
short-circuits (as with, e.g.,
>>=
)mzero
in a MonadPlus
), the evaluated effects will be from a tail of the
element sequence. If you want to evaluate the monadic effects in
left-to-right order, or perhaps be able to short-circuit after an initial
sequence of elements, you'll need to use foldlM
instead.
If the monadic effects don't short-circuit, the outermost application of
f
is to the leftmost element a
, so that, ignoring effects, the result
looks like a right fold:
a `f` (b `f` (c `f` (... (x `f` (y `f` z))))).
Examples
Basic usage:
>>>
let f i acc = do { print i ; return $ i : acc }
>>>
foldrM f [] [0..3]
3 2 1 0 [0,1,2,3]
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
Left-to-right monadic fold over the elements of a structure.
Given a structure t
with elements (a, b, ..., w, x, y)
, the result of
a fold with an operator function f
is equivalent to:
foldlM f z t = do aa <- f z a bb <- f aa b ... xx <- f ww x yy <- f xx y return yy -- Just @return z@ when the structure is empty
For a Monad m
, given two functions f1 :: a -> m b
and f2 :: b -> m c
,
their Kleisli composition (f1 >=> f2) :: a -> m c
is defined by:
(f1 >=> f2) a = f1 a >>= f2
Another way of thinking about foldlM
is that it amounts to an application
to z
of a Kleisli composition:
foldlM f z t = flip f a >=> flip f b >=> ... >=> flip f x >=> flip f y $ z
The monadic effects of foldlM
are sequenced from left to right.
If at some step the bind operator (
short-circuits (as with, e.g.,
>>=
)mzero
in a MonadPlus
), the evaluated effects will be from an initial
segment of the element sequence. If you want to evaluate the monadic
effects in right-to-left order, or perhaps be able to short-circuit after
processing a tail of the sequence of elements, you'll need to use foldrM
instead.
If the monadic effects don't short-circuit, the outermost application of
f
is to the rightmost element y
, so that, ignoring effects, the result
looks like a left fold:
((((z `f` a) `f` b) ... `f` w) `f` x) `f` y
Examples
Basic usage:
>>>
let f a e = do { print e ; return $ e : a }
>>>
foldlM f [] [0..3]
0 1 2 3 [3,2,1,0]
dropWhileEnd :: (a -> Bool) -> [a] -> [a] #
The dropWhileEnd
function drops the largest suffix of a list
in which the given predicate holds for all elements. For example:
>>>
dropWhileEnd isSpace "foo\n"
"foo">>>
dropWhileEnd isSpace "foo bar"
"foo bar" > dropWhileEnd isSpace ("foo\n" ++ undefined) == "foo" ++ undefined
This function is lazy in spine, but strict in elements,
which makes it different from reverse
.
dropWhile
p
.
reverse
,
which is strict in spine, but lazy in elements. For instance:
>>>
take 1 (dropWhileEnd (< 0) (1 : undefined))
[1]>>>
take 1 (reverse $ dropWhile (< 0) $ reverse (1 : undefined))
*** Exception: Prelude.undefined
but on the other hand
>>>
last (dropWhileEnd (< 0) [undefined, 1])
*** Exception: Prelude.undefined>>>
last (reverse $ dropWhile (< 0) $ reverse [undefined, 1])
1
Since: base-4.5.0.0
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a] #
\(\mathcal{O}(\min(m,n))\). The stripPrefix
function drops the given
prefix from a list. It returns Nothing
if the list did not start with the
prefix given, or Just
the list after the prefix, if it does.
>>>
stripPrefix "foo" "foobar"
Just "bar"
>>>
stripPrefix "foo" "foo"
Just ""
>>>
stripPrefix "foo" "barfoo"
Nothing
>>>
stripPrefix "foo" "barfoobaz"
Nothing
elemIndices :: Eq a => a -> [a] -> [Int] #
The elemIndices
function extends elemIndex
, by returning the
indices of all elements equal to the query element, in ascending order.
>>>
elemIndices 'o' "Hello World"
[4,7]
findIndices :: (a -> Bool) -> [a] -> [Int] #
The findIndices
function extends findIndex
, by returning the
indices of all elements satisfying the predicate, in ascending order.
>>>
findIndices (`elem` "aeiou") "Hello World!"
[1,4,7]
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf
function takes two lists and
returns True
iff the first list is a prefix of the second.
>>>
"Hello" `isPrefixOf` "Hello World!"
True>>>
"Hello" `isPrefixOf` "Wello Horld!"
False
For the result to be True
, the first list must be finite;
False
, however, results from any mismatch:
>>>
[0..] `isPrefixOf` [1..]
False>>>
[0..] `isPrefixOf` [0..99]
False>>>
[0..99] `isPrefixOf` [0..]
True>>>
[0..] `isPrefixOf` [0..]
* Hangs forever *
isPrefixOf
shortcuts when the first argument is empty:
>>>
isPrefixOf [] undefined
True
isSuffixOf :: Eq a => [a] -> [a] -> Bool #
The isSuffixOf
function takes two lists and returns True
iff
the first list is a suffix of the second.
>>>
"ld!" `isSuffixOf` "Hello World!"
True>>>
"World" `isSuffixOf` "Hello World!"
False
The second list must be finite; however the first list may be infinite:
>>>
[0..] `isSuffixOf` [0..99]
False>>>
[0..99] `isSuffixOf` [0..]
* Hangs forever *
isInfixOf :: Eq a => [a] -> [a] -> Bool #
The isInfixOf
function takes two lists and returns True
iff the first list is contained, wholly and intact,
anywhere within the second.
>>>
isInfixOf "Haskell" "I really like Haskell."
True>>>
isInfixOf "Ial" "I really like Haskell."
False
For the result to be True
, the first list must be finite;
for the result to be False
, the second list must be finite:
>>>
[20..50] `isInfixOf` [0..]
True>>>
[0..] `isInfixOf` [20..50]
False>>>
[0..] `isInfixOf` [0..]
* Hangs forever *
\(\mathcal{O}(n^2)\). The nub
function removes duplicate elements from a
list. In particular, it keeps only the first occurrence of each element. (The
name nub
means `essence'.) It is a special case of nubBy
, which allows
the programmer to supply their own equality test.
>>>
nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]
If there exists instance Ord a
, it's faster to use nubOrd
from the containers
package
(link to the latest online documentation),
which takes only \(\mathcal{O}(n \log d)\) time where d
is the number of
distinct elements in the list.
Another approach to speed up nub
is to use
map
Data.List.NonEmpty.
head
. Data.List.NonEmpty.
group
. sort
,
which takes \(\mathcal{O}(n \log n)\) time, requires instance Ord a
and doesn't
preserve the order.
(\\) :: Eq a => [a] -> [a] -> [a] infix 5 #
The \\
function is list difference (non-associative).
In the result of xs
\\
ys
, the first occurrence of each element of
ys
in turn (if any) has been removed from xs
. Thus
(xs ++ ys) \\ xs == ys
.
>>>
"Hello World!" \\ "ell W"
"Hoorld!"
It is a special case of deleteFirstsBy
, which allows the programmer
to supply their own equality test.
The second list must be finite, but the first may be infinite.
>>>
take 5 ([0..] \\ [2..4])
[0,1,5,6,7]>>>
take 5 ([0..] \\ [2..])
* Hangs forever *
union :: Eq a => [a] -> [a] -> [a] #
The union
function returns the list union of the two lists.
It is a special case of unionBy
, which allows the programmer to supply
their own equality test.
For example,
>>>
"dog" `union` "cow"
"dogcw"
If equal elements are present in both lists, an element from the first list will be used. If the second list contains equal elements, only the first one will be retained:
>>>
import Data.Semigroup
>>>
union [Arg () "dog"] [Arg () "cow"]
[Arg () "dog"]>>>
union [] [Arg () "dog", Arg () "cow"]
[Arg () "dog"]
However if the first list contains duplicates, so will the result:
>>>
"coot" `union` "duck"
"cootduk">>>
"duck" `union` "coot"
"duckot"
union
is productive even if both arguments are infinite.
intersect :: Eq a => [a] -> [a] -> [a] #
The intersect
function takes the list intersection of two lists.
It is a special case of intersectBy
, which allows the programmer to
supply their own equality test.
For example,
>>>
[1,2,3,4] `intersect` [2,4,6,8]
[2,4]
If equal elements are present in both lists, an element from the first list will be used, and all duplicates from the second list quashed:
>>>
import Data.Semigroup
>>>
intersect [Arg () "dog"] [Arg () "cow", Arg () "cat"]
[Arg () "dog"]
However if the first list contains duplicates, so will the result.
>>>
"coot" `intersect` "heron"
"oo">>>
"heron" `intersect` "coot"
"o"
If the second list is infinite, intersect
either hangs
or returns its first argument in full. Otherwise if the first list
is infinite, intersect
might be productive:
>>>
intersect [100..] [0..]
[100,101,102,103...>>>
intersect [0] [1..]
* Hangs forever *>>>
intersect [1..] [0]
* Hangs forever *>>>
intersect (cycle [1..3]) [2]
[2,2,2,2...
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] #
The intersectBy
function is the non-overloaded version of intersect
.
It is productive for infinite arguments only if the first one
is a subset of the second.
intersperse :: a -> [a] -> [a] #
\(\mathcal{O}(n)\). The intersperse
function takes an element and a list
and `intersperses' that element between the elements of the list. For
example,
>>>
intersperse ',' "abcde"
"a,b,c,d,e"
intersperse
has the following laziness properties:
>>>
take 1 (intersperse undefined ('a' : undefined))
"a">>>
take 2 (intersperse ',' ('a' : undefined))
"a*** Exception: Prelude.undefined
intercalate :: [a] -> [[a]] -> [a] #
intercalate
xs xss
is equivalent to (
.
It inserts the list concat
(intersperse
xs xss))xs
in between the lists in xss
and concatenates the
result.
>>>
intercalate ", " ["Lorem", "ipsum", "dolor"]
"Lorem, ipsum, dolor"
intercalate
has the following laziness properties:
>>>
take 5 (intercalate undefined ("Lorem" : undefined))
"Lorem">>>
take 6 (intercalate ", " ("Lorem" : undefined))
"Lorem*** Exception: Prelude.undefined
partition :: (a -> Bool) -> [a] -> ([a], [a]) #
The partition
function takes a predicate and a list, and returns
the pair of lists of elements which do and do not satisfy the
predicate, respectively; i.e.,
partition p xs == (filter p xs, filter (not . p) xs)
>>>
partition (`elem` "aeiou") "Hello World!"
("eoo","Hll Wrld!")
insert :: Ord a => a -> [a] -> [a] #
\(\mathcal{O}(n)\). The insert
function takes an element and a list and
inserts the element into the list at the first position where it is less than
or equal to the next element. In particular, if the list is sorted before the
call, the result will also be sorted. It is a special case of insertBy
,
which allows the programmer to supply their own comparison function.
>>>
insert 4 [1,2,3,5,6,7]
[1,2,3,4,5,6,7]
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a] #
\(\mathcal{O}(n)\). The non-overloaded version of insert
.
zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h] #
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] #
The deleteFirstsBy
function takes a predicate and two lists and
returns the first list with the first occurrence of each element of
the second list removed. This is the non-overloaded version of (\\)
.
The second list must be finite, but the first may be infinite.
The inits
function returns all initial segments of the argument,
shortest first. For example,
>>>
inits "abc"
["","a","ab","abc"]
Note that inits
has the following strictness property:
inits (xs ++ _|_) = inits xs ++ _|_
In particular,
inits _|_ = [] : _|_
inits
is semantically equivalent to
,
but under the hood uses a queue to amortize costs of map
reverse
. scanl
(flip
(:)) []reverse
.
subsequences :: [a] -> [[a]] #
The subsequences
function returns the list of all subsequences of the argument.
>>>
subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]
This function is productive on infinite inputs:
>>>
take 8 $ subsequences ['a'..]
["","a","b","ab","c","ac","bc","abc"]
subsequences
does not look ahead unless it must:
>>>
take 1 (subsequences undefined)
[[]]>>>
take 2 (subsequences ('a' : undefined))
["","a"]
permutations :: [a] -> [[a]] #
The permutations
function returns the list of all permutations of the argument.
>>>
permutations "abc"
["abc","bac","cba","bca","cab","acb"]
The permutations
function is maximally lazy:
for each n
, the value of
starts with those permutations
that permute permutations
xs
and keep take
n xs
.drop
n xs
This function is productive on infinite inputs:
>>>
take 6 $ map (take 3) $ permutations ['a'..]
["abc","bac","cba","bca","cab","acb"]
Note that the order of permutations is not lexicographic. It satisfies the following property:
map (take n) (take (product [1..n]) (permutations ([1..n] ++ undefined))) == permutations [1..n]
The sort
function implements a stable sorting algorithm.
It is a special case of sortBy
, which allows the programmer to supply
their own comparison function.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>
sort [1,6,4,3,2,5]
[1,2,3,4,5,6]
The argument must be finite.
Construct a list from a single element.
>>>
singleton True
[True]
Since: base-4.15.0.0
Splits the argument into a list of lines stripped of their terminating
\n
characters. The \n
terminator is optional in a final non-empty
line of the argument string.
For example:
>>>
lines "" -- empty input contains no lines
[]>>>
lines "\n" -- single empty line
[""]>>>
lines "one" -- single unterminated line
["one"]>>>
lines "one\n" -- single non-empty line
["one"]>>>
lines "one\n\n" -- second line is empty
["one",""]>>>
lines "one\ntwo" -- second line is unterminated
["one","two"]>>>
lines "one\ntwo\n" -- two non-empty lines
["one","two"]
When the argument string is empty, or ends in a \n
character, it can be
recovered by passing the result of lines
to the unlines
function.
Otherwise, unlines
appends the missing terminating \n
. This makes
unlines . lines
idempotent:
(unlines . lines) . (unlines . lines) = (unlines . lines)
isSubsequenceOf :: Eq a => [a] -> [a] -> Bool #
The isSubsequenceOf
function takes two lists and returns True
if all
the elements of the first list occur, in order, in the second. The
elements do not have to occur consecutively.
is equivalent to isSubsequenceOf
x y
.elem
x (subsequences
y)
>>>
isSubsequenceOf "GHC" "The Glorious Haskell Compiler"
True>>>
isSubsequenceOf ['a','d'..'z'] ['a'..'z']
True>>>
isSubsequenceOf [1..10] [10,9..0]
False
For the result to be True
, the first list must be finite;
for the result to be False
, the second list must be finite:
>>>
[0,2..10] `isSubsequenceOf` [0..]
True>>>
[0..] `isSubsequenceOf` [0,2..10]
False>>>
[0,2..] `isSubsequenceOf` [0..]
* Hangs forever*
Since: base-4.8.0.0
chunksOf :: Int -> [a] -> [[a]] Source #
Given a maximum length, splits a list into sublists
>>>
chunksOf 5 (take 30 $ repeat 'a')
["aaaaa","aaaaa","aaaaa","aaaaa","aaaaa","aaaaa"]
(.:) :: (a -> b) -> (c -> d -> a) -> c -> d -> b Source #
Multivariable composition.
f .: g ≡ (f .) . g ≡ \c d -> f (g c d)
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
a :| [a] infixr 5 |
Instances
MonadFix NonEmpty | Since: base-4.9.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip NonEmpty | Since: base-4.9.0.0 | ||||
Foldable NonEmpty | Since: base-4.9.0.0 | ||||
Defined in Data.Foldable fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |||||
Foldable1 NonEmpty | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 fold1 :: Semigroup m => NonEmpty m -> m # foldMap1 :: Semigroup m => (a -> m) -> NonEmpty a -> m # foldMap1' :: Semigroup m => (a -> m) -> NonEmpty a -> m # toNonEmpty :: NonEmpty a -> NonEmpty a # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # | |||||
Eq1 NonEmpty | Since: base-4.10.0.0 | ||||
Ord1 NonEmpty | Since: base-4.10.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read1 NonEmpty | Since: base-4.10.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Show1 NonEmpty | Since: base-4.10.0.0 | ||||
Traversable NonEmpty | Since: base-4.9.0.0 | ||||
Applicative NonEmpty | Since: base-4.9.0.0 | ||||
Functor NonEmpty | Since: base-4.9.0.0 | ||||
Monad NonEmpty | Since: base-4.9.0.0 | ||||
NFData1 NonEmpty | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Generic1 NonEmpty | |||||
Defined in GHC.Generics
| |||||
Lift a => Lift (NonEmpty a :: Type) | Since: template-haskell-2.15.0.0 | ||||
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 | ||||
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |||||
Semigroup (NonEmpty a) | Since: base-4.9.0.0 | ||||
Generic (NonEmpty a) | |||||
Defined in GHC.Generics
| |||||
IsList (NonEmpty a) | Since: base-4.9.0.0 | ||||
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 | ||||
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 | ||||
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 | ||||
type Rep1 NonEmpty | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 []))) | |||||
type Rep (NonEmpty a) | Since: base-4.6.0.0 | ||||
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |||||
type Item (NonEmpty a) | |||||
Defined in GHC.IsList |
notEmpty :: HasCallStack => [a] -> NonEmpty a Source #
fromList
with a better error message. Useful to
silence GHC's Pattern match(es) are non-exhaustive warning in places where
the programmer knows it's always non-empty, but it's infeasible to express
that in the type system.
safeGetWindowAttributes :: Window -> X (Maybe WindowAttributes) Source #
A safe version of getWindowAttributes
.
mkAbsolutePath :: MonadIO m => FilePath -> m FilePath Source #
(Naïvely) turn a relative path into an absolute one.
- If the path starts with
/
, do nothing. - If it starts with
~/
, replace that with the actual home - directory.
- If it starts with
$
, read the name of an environment - variable and replace it with the contents of that.
- Otherwise, prepend the home directory and
/
to the path.
findM :: Monad m => (a -> m Bool) -> [a] -> m (Maybe a) Source #
Like find
, but takes a monadic function instead; retains the
short-circuiting behaviour of the non-monadic version.
For example,
findM (\a -> putStr (show a <> " ") >> pure False) [1..10]
would print "1 2 3 4 5 6 7 8 9 10" and return Nothing
, while
findM (\a -> putStr (show a <> " ") >> pure True) [1..10]
would print "1"
and return Just 1
.
Keys
Convert a modifier mask into a useful string.
cleanKeyMask :: X (KeyMask -> KeyMask) Source #
Strip numlock, capslock, mouse buttons and XKB group from a KeyMask
,
leaving only modifier keys like Shift, Control, Super, Hyper in the mask
(hence the "Key" in "cleanKeyMask").
Core's cleanMask
only strips the first two because key events from
passive grabs (key bindings) are stripped of mouse buttons and XKB group by
the X server already for compatibility reasons. For more info, see:
https://www.x.org/releases/X11R7.7/doc/kbproto/xkbproto.html#Delivering_a_Key_or_Button_Event_to_a_Client
regularKeys :: [(String, KeySym)] Source #
A list of "regular" (extended ASCII) keys.
allSpecialKeys :: [(String, KeySym)] Source #
A list of all special key names and their associated KeySyms.
specialKeys :: [(String, KeySym)] Source #
A list of special key names and their corresponding KeySyms.
multimediaKeys :: [(String, KeySym)] Source #
List of multimedia keys. If Xlib does not know about some keysym
it's omitted from the list (stringToKeysym
returns noSymbol
in
this case).
functionKeys :: [(String, KeySym)] Source #
A list pairing function key descriptor strings (e.g. "<F2>"
)
with the associated KeySyms.
Infinite streams
An infinite stream type
takeS :: Int -> Stream a -> [a] Source #
takeS n stream
returns the first n
elements of stream
; if n < 0
,
this returns the empty list.