{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE UnboxedTuples #-}
module Z.Data.Builder.Base
(
AllocateStrategy(..)
, Buffer(..)
, BuildStep
, Builder(..)
, append
, buildBytes
, buildBytesWith
, buildBytesList
, buildBytesListWith
, buildAndRun
, buildAndRunWith
, bytes
, ensureN
, atMost
, writeN
, doubleBuffer
, insertChunk
, oneShotAction
, encodePrim
, encodePrimLE
, encodePrimBE
, stringModifiedUTF8, charModifiedUTF8, stringUTF8, charUTF8, string7, char7, string8, char8, text
, paren, curly, square, angle, quotes, squotes, colon, comma, intercalateVec, intercalateList
) where
import Control.Monad
import Control.Monad.Primitive
import Control.Monad.ST
import Control.Monad.ST.Unsafe (unsafeInterleaveST)
import Data.Bits (shiftL, shiftR, (.&.))
import Data.Primitive.PrimArray (MutablePrimArray (..))
import Data.Primitive.Ptr (copyPtrToMutablePrimArray)
import Data.String (IsString (..))
import Data.Word
import Data.Int
import GHC.CString (unpackCString#, unpackCStringUtf8#)
import GHC.Prim
import GHC.Ptr
import GHC.Types
import qualified Z.Data.Array as A
import Z.Data.Array.UnalignedAccess
import qualified Z.Data.Text.Base as T
import qualified Z.Data.Text.UTF8Codec as T
import qualified Z.Data.Vector.Base as V
import qualified Z.Data.Vector as V
import System.IO.Unsafe
import Test.QuickCheck.Arbitrary (Arbitrary(..), CoArbitrary(..))
data AllocateStrategy s
= DoubleBuffer
| InsertChunk {-# UNPACK #-} !Int
| OneShotAction (V.Bytes -> ST s ())
data Buffer s = Buffer {-# UNPACK #-} !(A.MutablePrimArray s Word8)
{-# UNPACK #-} !Int
type BuildStep s = Buffer s -> ST s [V.Bytes]
newtype Builder a = Builder
{ Builder a
-> forall s.
AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
runBuilder :: forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s}
instance Show (Builder a) where
show :: Builder a -> String
show = Bytes -> String
forall a. Show a => a -> String
show (Bytes -> String) -> (Builder a -> Bytes) -> Builder a -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Builder a -> Bytes
forall a. Builder a -> Bytes
buildBytes
instance Functor Builder where
{-# INLINE fmap #-}
fmap :: (a -> b) -> Builder a -> Builder b
fmap a -> b
f (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) = (forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s)
-> Builder b
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
al b -> BuildStep s
k -> AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b AllocateStrategy s
al (b -> BuildStep s
k (b -> BuildStep s) -> (a -> b) -> a -> BuildStep s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f))
{-# INLINE (<$) #-}
a
a <$ :: a -> Builder b -> Builder a
<$ (Builder forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
b) = (forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
al a -> BuildStep s
k -> AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
b AllocateStrategy s
al (\ b
_ -> a -> BuildStep s
k a
a))
instance Applicative Builder where
{-# INLINE pure #-}
pure :: a -> Builder a
pure a
x = (forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ a -> BuildStep s
k -> a -> BuildStep s
k a
x)
{-# INLINE (<*>) #-}
(Builder forall s.
AllocateStrategy s -> ((a -> b) -> BuildStep s) -> BuildStep s
f) <*> :: Builder (a -> b) -> Builder a -> Builder b
<*> (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) = (forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s)
-> Builder b
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
al b -> BuildStep s
k -> AllocateStrategy s -> ((a -> b) -> BuildStep s) -> BuildStep s
forall s.
AllocateStrategy s -> ((a -> b) -> BuildStep s) -> BuildStep s
f AllocateStrategy s
al ( \ a -> b
ab -> AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b AllocateStrategy s
al (b -> BuildStep s
k (b -> BuildStep s) -> (a -> b) -> a -> BuildStep s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
ab)))
{-# INLINE (*>) #-}
*> :: Builder a -> Builder b -> Builder b
(*>) = Builder a -> Builder b -> Builder b
forall a b. Builder a -> Builder b -> Builder b
append
instance Monad Builder where
{-# INLINE (>>=) #-}
(Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) >>= :: Builder a -> (a -> Builder b) -> Builder b
>>= a -> Builder b
f = (forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s)
-> Builder b
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
al b -> BuildStep s
k -> AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b AllocateStrategy s
al ( \ a
a -> Builder b
-> AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
forall a.
Builder a
-> forall s.
AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
runBuilder (a -> Builder b
f a
a) AllocateStrategy s
al b -> BuildStep s
k))
{-# INLINE (>>) #-}
>> :: Builder a -> Builder b -> Builder b
(>>) = Builder a -> Builder b -> Builder b
forall a b. Builder a -> Builder b -> Builder b
append
instance Semigroup (Builder ()) where
<> :: Builder () -> Builder () -> Builder ()
(<>) = Builder () -> Builder () -> Builder ()
forall a b. Builder a -> Builder b -> Builder b
append
{-# INLINE (<>) #-}
instance Monoid (Builder ()) where
mempty :: Builder ()
mempty = () -> Builder ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
{-# INLINE mempty #-}
mappend :: Builder () -> Builder () -> Builder ()
mappend = Builder () -> Builder () -> Builder ()
forall a b. Builder a -> Builder b -> Builder b
append
{-# INLINE mappend #-}
mconcat :: [Builder ()] -> Builder ()
mconcat = (Builder () -> Builder () -> Builder ())
-> Builder () -> [Builder ()] -> Builder ()
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Builder () -> Builder () -> Builder ()
forall a b. Builder a -> Builder b -> Builder b
append (() -> Builder ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ())
{-# INLINE mconcat #-}
instance (a ~ ()) => IsString (Builder a) where
{-# INLINE fromString #-}
fromString :: String -> Builder a
fromString = String -> Builder a
String -> Builder ()
stringModifiedUTF8
instance Arbitrary (Builder ()) where
arbitrary :: Gen (Builder ())
arbitrary = Bytes -> Builder ()
bytes (Bytes -> Builder ()) -> Gen Bytes -> Gen (Builder ())
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Gen Bytes
forall a. Arbitrary a => Gen a
arbitrary
shrink :: Builder () -> [Builder ()]
shrink Builder ()
b = (Bytes -> Builder ()
bytes (Bytes -> Builder ())
-> ([Word8] -> Bytes) -> [Word8] -> Builder ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Word8] -> Bytes
forall (v :: * -> *) a. Vec v a => [a] -> v a
V.pack) ([Word8] -> Builder ()) -> [[Word8]] -> [Builder ()]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Word8] -> [[Word8]]
forall a. Arbitrary a => a -> [a]
shrink (Bytes -> [Word8]
forall (v :: * -> *) a. Vec v a => v a -> [a]
V.unpack (Builder () -> Bytes
forall a. Builder a -> Bytes
buildBytes Builder ()
b))
instance CoArbitrary (Builder ()) where
coarbitrary :: Builder () -> Gen b -> Gen b
coarbitrary = Bytes -> Gen b -> Gen b
forall a b. CoArbitrary a => a -> Gen b -> Gen b
coarbitrary (Bytes -> Gen b -> Gen b)
-> (Builder () -> Bytes) -> Builder () -> Gen b -> Gen b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Builder () -> Bytes
forall a. Builder a -> Bytes
buildBytes
stringModifiedUTF8 :: String -> Builder ()
{-# INLINE CONLIKE [0] stringModifiedUTF8 #-}
{-# RULES
"stringModifiedUTF8/packAddrModified" forall addr . stringModifiedUTF8 (unpackCString# addr) = packAddrModified addr
#-}
{-# RULES
"stringModifiedUTF8/packAddrModified" forall addr . stringModifiedUTF8 (unpackCStringUtf8# addr) = packAddrModified addr
#-}
stringModifiedUTF8 :: String -> Builder ()
stringModifiedUTF8 = (Char -> Builder ()) -> String -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Char -> Builder ()
charModifiedUTF8
charModifiedUTF8 :: Char -> Builder ()
{-# INLINE charModifiedUTF8 #-}
charModifiedUTF8 :: Char -> Builder ()
charModifiedUTF8 Char
chr = do
Int -> Builder ()
ensureN Int
4
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
mba Int
i) -> do
Int
i' <- MutablePrimArray (PrimState (ST s)) Word8
-> Int -> Char -> ST s Int
forall (m :: * -> *).
PrimMonad m =>
MutablePrimArray (PrimState m) Word8 -> Int -> Char -> m Int
T.encodeCharModifiedUTF8 MutablePrimArray s Word8
MutablePrimArray (PrimState (ST s)) Word8
mba Int
i Char
chr
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba Int
i'))
packAddrModified :: Addr# -> Builder ()
packAddrModified :: Addr# -> Builder ()
packAddrModified Addr#
addr0# = Addr# -> Builder ()
copy Addr#
addr0#
where
len :: Int
len = CSize -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (CSize -> Int) -> (IO CSize -> CSize) -> IO CSize -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO CSize -> CSize
forall a. IO a -> a
unsafeDupablePerformIO (IO CSize -> Int) -> IO CSize -> Int
forall a b. (a -> b) -> a -> b
$ Addr# -> IO CSize
V.c_strlen Addr#
addr0#
copy :: Addr# -> Builder ()
copy Addr#
addr# = do
Int -> Builder ()
ensureN Int
len
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
mba Int
i) -> do
MutablePrimArray (PrimState (ST s)) Word8
-> Int -> Ptr Word8 -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> Int -> Ptr a -> Int -> m ()
copyPtrToMutablePrimArray MutablePrimArray s Word8
MutablePrimArray (PrimState (ST s)) Word8
mba Int
i (Addr# -> Ptr Word8
forall a. Addr# -> Ptr a
Ptr Addr#
addr#) Int
len
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len)))
append :: Builder a -> Builder b -> Builder b
{-# INLINE append #-}
append :: Builder a -> Builder b -> Builder b
append (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
f) (Builder forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
g) = (forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s)
-> Builder b
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
al b -> BuildStep s
k -> AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
f AllocateStrategy s
al ( \ a
_ -> AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (b -> BuildStep s) -> BuildStep s
g AllocateStrategy s
al b -> BuildStep s
k))
bytes :: V.Bytes -> Builder ()
{-# INLINE bytes #-}
bytes :: Bytes -> Builder ()
bytes bs :: Bytes
bs@(V.PrimVector PrimArray Word8
arr Int
s Int
l) = (forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
strategy () -> BuildStep s
k buffer :: Buffer s
buffer@(Buffer MutablePrimArray s Word8
buf Int
offset) ->
case AllocateStrategy s
strategy of
AllocateStrategy s
DoubleBuffer -> AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
copy AllocateStrategy s
strategy () -> BuildStep s
k Buffer s
buffer
InsertChunk Int
chunkSiz
| Int
l Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
chunkSiz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1 ->
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
copy AllocateStrategy s
strategy () -> BuildStep s
k Buffer s
buffer
| Int
offset Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 ->
Int -> Int -> BuildStep s -> BuildStep s
forall s. Int -> Int -> BuildStep s -> BuildStep s
insertChunk Int
chunkSiz Int
0 (\ Buffer s
buffer' -> (Bytes
bsBytes -> [Bytes] -> [Bytes]
forall a. a -> [a] -> [a]
:) ([Bytes] -> [Bytes]) -> ST s [Bytes] -> ST s [Bytes]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` () -> BuildStep s
k () Buffer s
buffer') Buffer s
buffer
| Bool
otherwise -> (Bytes
bsBytes -> [Bytes] -> [Bytes]
forall a. a -> [a] -> [a]
:) ([Bytes] -> [Bytes]) -> ST s [Bytes] -> ST s [Bytes]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` () -> BuildStep s
k () Buffer s
buffer
OneShotAction Bytes -> ST s ()
action -> do
Int
chunkSiz <- MArr PrimArray s Word8 -> ST s Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
case () of
()
_
| Int
l Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
chunkSiz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftR` Int
1 ->
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
copy AllocateStrategy s
strategy () -> BuildStep s
k Buffer s
buffer
| Int
offset Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 ->
(Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
forall s. (Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
oneShotAction Bytes -> ST s ()
action Int
0 (\ Buffer s
buffer' -> Bytes -> ST s ()
action Bytes
bs ST s () -> ST s [Bytes] -> ST s [Bytes]
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> () -> BuildStep s
k () Buffer s
buffer') Buffer s
buffer
| Bool
otherwise -> Bytes -> ST s ()
action Bytes
bs ST s () -> ST s [Bytes] -> ST s [Bytes]
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> () -> BuildStep s
k () Buffer s
buffer)
where
copy :: forall s. AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
copy :: AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
copy AllocateStrategy s
strategy () -> BuildStep s
k =
Builder ()
-> AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s
forall a.
Builder a
-> forall s.
AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
runBuilder (Int -> Builder ()
ensureN Int
l) AllocateStrategy s
strategy ( \ ()
_ (Buffer MutablePrimArray s Word8
buf Int
offset) -> do
MArr PrimArray s Word8
-> Int -> PrimArray Word8 -> Int -> Int -> ST s ()
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> Int -> arr a -> Int -> Int -> m ()
A.copyArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf Int
offset PrimArray Word8
arr Int
s Int
l
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf (Int
offsetInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
l)))
{-# INLINE copy #-}
ensureN :: Int -> Builder ()
{-# INLINE ensureN #-}
ensureN :: Int -> Builder ()
ensureN !Int
n = (forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder ((forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ())
-> (forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a b. (a -> b) -> a -> b
$ \ AllocateStrategy s
strategy () -> BuildStep s
k buffer :: Buffer s
buffer@(Buffer MutablePrimArray s Word8
buf Int
offset) -> do
Int
siz <- MArr PrimArray s Word8 -> ST s Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
if Int
siz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
offset Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n
then () -> BuildStep s
k () Buffer s
buffer
else AllocateStrategy s -> Int -> (() -> BuildStep s) -> BuildStep s
forall s.
AllocateStrategy s -> Int -> (() -> BuildStep s) -> BuildStep s
handleBoundary AllocateStrategy s
strategy Int
n () -> BuildStep s
k Buffer s
buffer
where
{-# NOINLINE handleBoundary #-}
handleBoundary :: AllocateStrategy s -> Int -> (() -> BuildStep s) -> BuildStep s
handleBoundary AllocateStrategy s
DoubleBuffer Int
n' () -> BuildStep s
k Buffer s
buffer = Int -> BuildStep s -> BuildStep s
forall s. Int -> BuildStep s -> BuildStep s
doubleBuffer Int
n' (() -> BuildStep s
k ()) Buffer s
buffer
handleBoundary (InsertChunk Int
chunkSiz) Int
n' () -> BuildStep s
k Buffer s
buffer = Int -> Int -> BuildStep s -> BuildStep s
forall s. Int -> Int -> BuildStep s -> BuildStep s
insertChunk Int
chunkSiz Int
n' (() -> BuildStep s
k ()) Buffer s
buffer
handleBoundary (OneShotAction Bytes -> ST s ()
action) Int
n' () -> BuildStep s
k Buffer s
buffer = (Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
forall s. (Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
oneShotAction Bytes -> ST s ()
action Int
n' (() -> BuildStep s
k ()) Buffer s
buffer
doubleBuffer :: Int -> BuildStep s -> BuildStep s
doubleBuffer :: Int -> BuildStep s -> BuildStep s
doubleBuffer !Int
wantSiz BuildStep s
k (Buffer MutablePrimArray s Word8
buf Int
offset) = do
!Int
siz <- MArr PrimArray s Word8 -> ST s Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
let !siz' :: Int
siz' = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max (Int
offset Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
wantSiz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftL` Int
1)
(Int
siz Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`shiftL` Int
1)
MutablePrimArray s Word8
buf' <- MArr PrimArray s Word8 -> Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> Int -> m (MArr arr s a)
A.resizeMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf Int
siz'
BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf' Int
offset)
{-# INLINE doubleBuffer #-}
insertChunk :: Int -> Int -> BuildStep s -> BuildStep s
{-# INLINE insertChunk #-}
insertChunk :: Int -> Int -> BuildStep s -> BuildStep s
insertChunk !Int
chunkSiz !Int
wantSiz BuildStep s
k (Buffer MutablePrimArray s Word8
buf Int
offset) = do
!Int
siz <- MArr PrimArray s Word8 -> ST s Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
case () of
()
_
| Int
offset Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 -> do
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
offset Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
siz)
(MArr PrimArray s Word8 -> Int -> ST s ()
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> Int -> m ()
A.shrinkMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf Int
offset)
PrimArray Word8
arr <- MArr PrimArray s Word8 -> ST s (PrimArray Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m (arr a)
A.unsafeFreezeArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
MutablePrimArray s Word8
buf' <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
wantSiz Int
chunkSiz)
[Bytes]
xs <- ST s [Bytes] -> ST s [Bytes]
forall s a. ST s a -> ST s a
unsafeInterleaveST (BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf' Int
0))
let v :: Bytes
v = IArray PrimVector Word8 -> Int -> Int -> Bytes
forall (v :: * -> *) a. Vec v a => IArray v a -> Int -> Int -> v a
V.fromArr PrimArray Word8
IArray PrimVector Word8
arr Int
0 Int
offset
Bytes
v Bytes -> ST s [Bytes] -> ST s [Bytes]
`seq` [Bytes] -> ST s [Bytes]
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Bytes
v Bytes -> [Bytes] -> [Bytes]
forall a. a -> [a] -> [a]
: [Bytes]
xs)
| Int
wantSiz Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
siz -> BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
0)
| Bool
otherwise -> do
MutablePrimArray s Word8
buf' <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
wantSiz Int
chunkSiz)
BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf' Int
0)
oneShotAction :: (V.Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
{-# INLINE oneShotAction #-}
oneShotAction :: (Bytes -> ST s ()) -> Int -> BuildStep s -> BuildStep s
oneShotAction Bytes -> ST s ()
action !Int
wantSiz BuildStep s
k (Buffer MutablePrimArray s Word8
buf Int
offset) = do
!Int
siz <- MArr PrimArray s Word8 -> ST s Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
case () of
()
_
| Int
offset Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 -> do
PrimArray Word8
arr <- MArr PrimArray s Word8 -> ST s (PrimArray Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m (arr a)
A.unsafeFreezeArr MutablePrimArray s Word8
MArr PrimArray s Word8
buf
Bytes -> ST s ()
action (PrimArray Word8 -> Int -> Int -> Bytes
forall a. PrimArray a -> Int -> Int -> PrimVector a
V.PrimVector PrimArray Word8
arr Int
0 Int
offset)
if Int
wantSiz Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
siz
then BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
0)
else do
MutablePrimArray s Word8
buf' <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr Int
wantSiz
BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf' Int
0)
| Int
wantSiz Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
siz -> BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
0)
| Bool
otherwise -> do
MutablePrimArray s Word8
buf' <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr Int
wantSiz
BuildStep s
k (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf' Int
0 )
buildBytes :: Builder a -> V.Bytes
{-# INLINE buildBytes #-}
buildBytes :: Builder a -> Bytes
buildBytes = Int -> Builder a -> Bytes
forall a. Int -> Builder a -> Bytes
buildBytesWith Int
V.defaultInitSize
buildBytesWith :: Int -> Builder a -> V.Bytes
{-# INLINABLE buildBytesWith #-}
buildBytesWith :: Int -> Builder a -> Bytes
buildBytesWith Int
initSiz (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) = (forall s. ST s Bytes) -> Bytes
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s Bytes) -> Bytes)
-> (forall s. ST s Bytes) -> Bytes
forall a b. (a -> b) -> a -> b
$ do
MutablePrimArray s Word8
buf <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr Int
initSiz
[Bytes
bs] <- AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b AllocateStrategy s
forall s. AllocateStrategy s
DoubleBuffer a -> BuildStep s
forall (m :: * -> *) p.
PrimMonad m =>
p -> Buffer (PrimState m) -> m [Bytes]
lastStep (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
0 )
Bytes -> ST s Bytes
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bytes
bs
where
lastStep :: p -> Buffer (PrimState m) -> m [Bytes]
lastStep p
_ (Buffer MutablePrimArray (PrimState m) Word8
buf Int
offset) = do
Int
siz <- MArr PrimArray (PrimState m) Word8 -> m Int
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m Int
A.sizeofMutableArr MutablePrimArray (PrimState m) Word8
MArr PrimArray (PrimState m) Word8
buf
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
offset Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
siz) (MArr PrimArray (PrimState m) Word8 -> Int -> m ()
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> Int -> m ()
A.shrinkMutableArr MutablePrimArray (PrimState m) Word8
MArr PrimArray (PrimState m) Word8
buf Int
offset)
PrimArray Word8
arr <- MArr PrimArray (PrimState m) Word8 -> m (PrimArray Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m (arr a)
A.unsafeFreezeArr MutablePrimArray (PrimState m) Word8
MArr PrimArray (PrimState m) Word8
buf
[Bytes] -> m [Bytes]
forall (f :: * -> *) a. Applicative f => a -> f a
pure [PrimArray Word8 -> Int -> Int -> Bytes
forall a. PrimArray a -> Int -> Int -> PrimVector a
V.PrimVector PrimArray Word8
arr Int
0 Int
offset]
buildBytesList :: Builder a -> [V.Bytes]
{-# INLINE buildBytesList #-}
buildBytesList :: Builder a -> [Bytes]
buildBytesList = Int -> Int -> Builder a -> [Bytes]
forall a. Int -> Int -> Builder a -> [Bytes]
buildBytesListWith Int
V.smallChunkSize Int
V.defaultChunkSize
buildBytesListWith :: Int -> Int -> Builder a -> [V.Bytes]
{-# INLINABLE buildBytesListWith #-}
buildBytesListWith :: Int -> Int -> Builder a -> [Bytes]
buildBytesListWith Int
initSiz Int
chunkSiz (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) = (forall s. ST s [Bytes]) -> [Bytes]
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s [Bytes]) -> [Bytes])
-> (forall s. ST s [Bytes]) -> [Bytes]
forall a b. (a -> b) -> a -> b
$ do
MutablePrimArray s Word8
buf <- Int -> ST s (MArr PrimArray s Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr Int
initSiz
AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b (Int -> AllocateStrategy s
forall s. Int -> AllocateStrategy s
InsertChunk Int
chunkSiz) a -> BuildStep s
forall (m :: * -> *) p.
PrimMonad m =>
p -> Buffer (PrimState m) -> m [Bytes]
lastStep (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
0)
where
lastStep :: p -> Buffer (PrimState m) -> m [Bytes]
lastStep p
_ (Buffer MutablePrimArray (PrimState m) Word8
buf Int
offset) = do
PrimArray Word8
arr <- MArr PrimArray (PrimState m) Word8 -> m (PrimArray Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m (arr a)
A.unsafeFreezeArr MutablePrimArray (PrimState m) Word8
MArr PrimArray (PrimState m) Word8
buf
[Bytes] -> m [Bytes]
forall (f :: * -> *) a. Applicative f => a -> f a
pure [PrimArray Word8 -> Int -> Int -> Bytes
forall a. PrimArray a -> Int -> Int -> PrimVector a
V.PrimVector PrimArray Word8
arr Int
0 Int
offset]
buildAndRun :: (V.Bytes -> IO ()) -> Builder a -> IO ()
buildAndRun :: (Bytes -> IO ()) -> Builder a -> IO ()
buildAndRun = Int -> (Bytes -> IO ()) -> Builder a -> IO ()
forall a. Int -> (Bytes -> IO ()) -> Builder a -> IO ()
buildAndRunWith Int
V.defaultChunkSize
buildAndRunWith :: Int -> (V.Bytes -> IO ()) -> Builder a -> IO ()
buildAndRunWith :: Int -> (Bytes -> IO ()) -> Builder a -> IO ()
buildAndRunWith Int
chunkSiz Bytes -> IO ()
action (Builder forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b) = do
MutablePrimArray RealWorld Word8
buf <- Int -> IO (MArr PrimArray RealWorld Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
Int -> m (MArr arr s a)
A.newArr Int
chunkSiz
[Bytes]
_ <- ST RealWorld [Bytes] -> IO [Bytes]
forall a. ST RealWorld a -> IO a
stToIO (AllocateStrategy RealWorld
-> (a -> BuildStep RealWorld) -> BuildStep RealWorld
forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s
b ((Bytes -> ST RealWorld ()) -> AllocateStrategy RealWorld
forall s. (Bytes -> ST s ()) -> AllocateStrategy s
OneShotAction (\ Bytes
bs -> IO () -> ST RealWorld ()
forall (m :: * -> *) a.
(PrimMonad m, PrimState m ~ RealWorld) =>
IO a -> m a
ioToPrim (Bytes -> IO ()
action Bytes
bs))) a -> BuildStep RealWorld
forall a. a -> BuildStep RealWorld
lastStep (MutablePrimArray RealWorld Word8 -> Int -> Buffer RealWorld
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray RealWorld Word8
buf Int
0))
() -> IO ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
where
lastStep :: a -> BuildStep RealWorld
lastStep :: a -> BuildStep RealWorld
lastStep a
_ (Buffer MutablePrimArray RealWorld Word8
buf Int
offset) = do
PrimArray Word8
arr <- MArr PrimArray RealWorld Word8 -> ST RealWorld (PrimArray Word8)
forall (arr :: * -> *) a (m :: * -> *) s.
(Arr arr a, PrimMonad m, PrimState m ~ s) =>
MArr arr s a -> m (arr a)
A.unsafeFreezeArr MutablePrimArray RealWorld Word8
MArr PrimArray RealWorld Word8
buf
IO () -> ST RealWorld ()
forall (m :: * -> *) a.
(PrimMonad m, PrimState m ~ RealWorld) =>
IO a -> m a
ioToPrim (Bytes -> IO ()
action (PrimArray Word8 -> Int -> Int -> Bytes
forall a. PrimArray a -> Int -> Int -> PrimVector a
V.PrimVector PrimArray Word8
arr Int
0 Int
offset))
[Bytes] -> ST RealWorld [Bytes]
forall (f :: * -> *) a. Applicative f => a -> f a
pure []
{-# INLINABLE buildAndRun #-}
atMost :: Int
-> (forall s. A.MutablePrimArray s Word8 -> Int -> ST s Int)
-> Builder ()
{-# INLINE atMost #-}
atMost :: Int
-> (forall s. MutablePrimArray s Word8 -> Int -> ST s Int)
-> Builder ()
atMost Int
n forall s. MutablePrimArray s Word8 -> Int -> ST s Int
f = Int -> Builder ()
ensureN Int
n Builder () -> Builder () -> Builder ()
forall a b. Builder a -> Builder b -> Builder b
`append`
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
buf Int
offset ) ->
MutablePrimArray s Word8 -> Int -> ST s Int
forall s. MutablePrimArray s Word8 -> Int -> ST s Int
f MutablePrimArray s Word8
buf Int
offset ST s Int -> (Int -> ST s [Bytes]) -> ST s [Bytes]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \ Int
offset' -> () -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf Int
offset'))
writeN :: Int
-> (forall s. A.MutablePrimArray s Word8 -> Int -> ST s ())
-> Builder ()
{-# INLINE writeN #-}
writeN :: Int
-> (forall s. MutablePrimArray s Word8 -> Int -> ST s ())
-> Builder ()
writeN Int
n forall s. MutablePrimArray s Word8 -> Int -> ST s ()
f = Int -> Builder ()
ensureN Int
n Builder () -> Builder () -> Builder ()
forall a b. Builder a -> Builder b -> Builder b
`append`
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
buf Int
offset ) ->
MutablePrimArray s Word8 -> Int -> ST s ()
forall s. MutablePrimArray s Word8 -> Int -> ST s ()
f MutablePrimArray s Word8
buf Int
offset ST s () -> ST s [Bytes] -> ST s [Bytes]
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> () -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
buf (Int
offsetInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
n)))
encodePrim :: forall a. UnalignedAccess a => a -> Builder ()
{-# INLINE encodePrim #-}
{-# SPECIALIZE INLINE encodePrim :: Word -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Word64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Word32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Word16 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Word8 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Int -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Int64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Int32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Int16 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrim :: Int8 -> Builder () #-}
encodePrim :: a -> Builder ()
encodePrim a
x = do
Int -> Builder ()
ensureN Int
n
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer (MutablePrimArray MutableByteArray# s
mba#) i :: Int
i@(I# Int#
i#)) -> do
(State# (PrimState (ST s)) -> State# (PrimState (ST s))) -> ST s ()
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ (MutableByteArray# s -> Int# -> a -> State# s -> State# s
forall a s.
UnalignedAccess a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
writeWord8ArrayAs MutableByteArray# s
mba# Int#
i# a
x)
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer (MutableByteArray# s -> MutablePrimArray s Word8
forall s a. MutableByteArray# s -> MutablePrimArray s a
MutablePrimArray MutableByteArray# s
mba#) (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)))
where
n :: Int
n = (UnalignedSize a -> Int
forall a. UnalignedSize a -> Int
getUnalignedSize (UnalignedSize a
forall a. UnalignedAccess a => UnalignedSize a
unalignedSize :: UnalignedSize a))
encodePrimLE :: forall a. UnalignedAccess (LE a) => a -> Builder ()
{-# INLINE encodePrimLE #-}
{-# SPECIALIZE INLINE encodePrimLE :: Word -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Word64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Word32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Word16 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Int -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Int64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Int32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimLE :: Int16 -> Builder () #-}
encodePrimLE :: a -> Builder ()
encodePrimLE = LE a -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim (LE a -> Builder ()) -> (a -> LE a) -> a -> Builder ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> LE a
forall a. a -> LE a
LE
encodePrimBE :: forall a. UnalignedAccess (BE a) => a -> Builder ()
{-# INLINE encodePrimBE #-}
{-# SPECIALIZE INLINE encodePrimBE :: Word -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Word64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Word32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Word16 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Int -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Int64 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Int32 -> Builder () #-}
{-# SPECIALIZE INLINE encodePrimBE :: Int16 -> Builder () #-}
encodePrimBE :: a -> Builder ()
encodePrimBE = BE a -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim (BE a -> Builder ()) -> (a -> BE a) -> a -> Builder ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> BE a
forall a. a -> BE a
BE
stringUTF8 :: String -> Builder ()
{-# INLINE CONLIKE [0] stringUTF8 #-}
{-# RULES
"stringUTF8/packASCIIAddr" forall addr . stringUTF8 (unpackCString# addr) = packASCIIAddr addr
#-}
{-# RULES
"stringUTF8/packUTF8Addr" forall addr . stringUTF8 (unpackCString# addr) = packUTF8Addr addr
#-}
stringUTF8 :: String -> Builder ()
stringUTF8 = (Char -> Builder ()) -> String -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Char -> Builder ()
charUTF8
packASCIIAddr :: Addr# -> Builder ()
packASCIIAddr :: Addr# -> Builder ()
packASCIIAddr Addr#
addr0# = Addr# -> Builder ()
copy Addr#
addr0#
where
len :: Int
len = CSize -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (CSize -> Int) -> (IO CSize -> CSize) -> IO CSize -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO CSize -> CSize
forall a. IO a -> a
unsafeDupablePerformIO (IO CSize -> Int) -> IO CSize -> Int
forall a b. (a -> b) -> a -> b
$ Addr# -> IO CSize
V.c_strlen Addr#
addr0#
copy :: Addr# -> Builder ()
copy Addr#
addr# = do
Int -> Builder ()
ensureN Int
len
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
mba Int
i) -> do
MutablePrimArray (PrimState (ST s)) Word8
-> Int -> Ptr Word8 -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> Int -> Ptr a -> Int -> m ()
copyPtrToMutablePrimArray MutablePrimArray s Word8
MutablePrimArray (PrimState (ST s)) Word8
mba Int
i (Addr# -> Ptr Word8
forall a. Addr# -> Ptr a
Ptr Addr#
addr#) Int
len
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len)))
packUTF8Addr :: Addr# -> Builder ()
packUTF8Addr :: Addr# -> Builder ()
packUTF8Addr Addr#
addr0# = Addr# -> Builder ()
validateAndCopy Addr#
addr0#
where
len :: Int
len = CSize -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (CSize -> Int) -> (IO CSize -> CSize) -> IO CSize -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IO CSize -> CSize
forall a. IO a -> a
unsafeDupablePerformIO (IO CSize -> Int) -> IO CSize -> Int
forall a b. (a -> b) -> a -> b
$ Addr# -> IO CSize
V.c_strlen Addr#
addr0#
valid :: Int
valid = IO Int -> Int
forall a. IO a -> a
unsafeDupablePerformIO (IO Int -> Int) -> IO Int -> Int
forall a b. (a -> b) -> a -> b
$ Addr# -> Int -> IO Int
T.c_utf8_validate_addr Addr#
addr0# Int
len
validateAndCopy :: Addr# -> Builder ()
validateAndCopy Addr#
addr#
| Int
valid Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = (Char -> Builder ()) -> String -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Char -> Builder ()
charUTF8 (Addr# -> String
unpackCString# Addr#
addr#)
| Bool
otherwise = do
Int -> Builder ()
ensureN Int
len
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
mba Int
i) -> do
MutablePrimArray (PrimState (ST s)) Word8
-> Int -> Ptr Word8 -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> Int -> Ptr a -> Int -> m ()
copyPtrToMutablePrimArray MutablePrimArray s Word8
MutablePrimArray (PrimState (ST s)) Word8
mba Int
i (Addr# -> Ptr Word8
forall a. Addr# -> Ptr a
Ptr Addr#
addr#) Int
len
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
len)))
charUTF8 :: Char -> Builder ()
{-# INLINE charUTF8 #-}
charUTF8 :: Char -> Builder ()
charUTF8 Char
chr = do
Int -> Builder ()
ensureN Int
4
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer MutablePrimArray s Word8
mba Int
i) -> do
Int
i' <- MutablePrimArray s Word8 -> Int -> Char -> ST s Int
forall s. MutablePrimArray s Word8 -> Int -> Char -> ST s Int
T.encodeChar MutablePrimArray s Word8
mba Int
i Char
chr
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba Int
i'))
string7 :: String -> Builder ()
{-# INLINE string7 #-}
string7 :: String -> Builder ()
string7 = (Char -> Builder ()) -> String -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Char -> Builder ()
char7
char7 :: Char -> Builder ()
{-# INLINE char7 #-}
char7 :: Char -> Builder ()
char7 Char
chr = do
Int -> Builder ()
ensureN Int
1
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer mba :: MutablePrimArray s Word8
mba@(MutablePrimArray MutableByteArray# s
mba#) i :: Int
i@(I# Int#
i#)) -> do
let x :: Word8
x = Char -> Word8
V.c2w Char
chr Word8 -> Word8 -> Word8
forall a. Bits a => a -> a -> a
.&. Word8
0x7F
(State# (PrimState (ST s)) -> State# (PrimState (ST s))) -> ST s ()
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ (MutableByteArray# s -> Int# -> Word8 -> State# s -> State# s
forall a s.
UnalignedAccess a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
writeWord8ArrayAs MutableByteArray# s
mba# Int#
i# Word8
x)
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)))
string8 :: String -> Builder ()
{-# INLINE string8 #-}
string8 :: String -> Builder ()
string8 = (Char -> Builder ()) -> String -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Char -> Builder ()
char8
char8 :: Char -> Builder ()
{-# INLINE char8 #-}
char8 :: Char -> Builder ()
char8 Char
chr = do
Int -> Builder ()
ensureN Int
1
(forall s.
AllocateStrategy s -> (() -> BuildStep s) -> BuildStep s)
-> Builder ()
forall a.
(forall s. AllocateStrategy s -> (a -> BuildStep s) -> BuildStep s)
-> Builder a
Builder (\ AllocateStrategy s
_ () -> BuildStep s
k (Buffer mba :: MutablePrimArray s Word8
mba@(MutablePrimArray MutableByteArray# s
mba#) i :: Int
i@(I# Int#
i#)) -> do
let x :: Word8
x = Char -> Word8
V.c2w Char
chr
(State# (PrimState (ST s)) -> State# (PrimState (ST s))) -> ST s ()
forall (m :: * -> *).
PrimMonad m =>
(State# (PrimState m) -> State# (PrimState m)) -> m ()
primitive_ (MutableByteArray# s -> Int# -> Word8 -> State# s -> State# s
forall a s.
UnalignedAccess a =>
MutableByteArray# s -> Int# -> a -> State# s -> State# s
writeWord8ArrayAs MutableByteArray# s
mba# Int#
i# Word8
x)
() -> BuildStep s
k () (MutablePrimArray s Word8 -> Int -> Buffer s
forall s. MutablePrimArray s Word8 -> Int -> Buffer s
Buffer MutablePrimArray s Word8
mba (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)))
text :: T.Text -> Builder ()
{-# INLINE text #-}
text :: Text -> Builder ()
text (T.Text Bytes
bs) = Bytes -> Builder ()
bytes Bytes
bs
#define BACKSLASH 92
#define CLOSE_ANGLE 62
#define CLOSE_CURLY 125
#define CLOSE_PAREN 41
#define CLOSE_SQUARE 93
#define COMMA 44
#define COLON 58
#define DOUBLE_QUOTE 34
#define OPEN_ANGLE 60
#define OPEN_CURLY 123
#define OPEN_PAREN 40
#define OPEN_SQUARE 91
#define SINGLE_QUOTE 39
paren :: Builder () -> Builder ()
{-# INLINE paren #-}
paren :: Builder () -> Builder ()
paren Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 OPEN_PAREN >> b >> encodePrim @Word8 CLOSE_PAREN
curly :: Builder () -> Builder ()
{-# INLINE curly #-}
curly :: Builder () -> Builder ()
curly Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 OPEN_CURLY >> b >> encodePrim @Word8 CLOSE_CURLY
square :: Builder () -> Builder ()
{-# INLINE square #-}
square :: Builder () -> Builder ()
square Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 OPEN_SQUARE >> b >> encodePrim @Word8 CLOSE_SQUARE
angle :: Builder () -> Builder ()
{-# INLINE angle #-}
angle :: Builder () -> Builder ()
angle Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 OPEN_ANGLE >> b >> encodePrim @Word8 CLOSE_ANGLE
quotes :: Builder () -> Builder ()
{-# INLINE quotes #-}
quotes :: Builder () -> Builder ()
quotes Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 DOUBLE_QUOTE >> b >> encodePrim @Word8 DOUBLE_QUOTE
squotes :: Builder () -> Builder ()
{-# INLINE squotes #-}
squotes :: Builder () -> Builder ()
squotes Builder ()
b = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 SINGLE_QUOTE >> b >> encodePrim @Word8 SINGLE_QUOTE
colon :: Builder ()
{-# INLINE colon #-}
colon :: Builder ()
colon = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 COLON
comma :: Builder ()
{-# INLINE comma #-}
comma :: Builder ()
comma = Word8 -> Builder ()
forall a. UnalignedAccess a => a -> Builder ()
encodePrim @Word8 COMMA
intercalateVec :: (V.Vec v a)
=> Builder ()
-> (a -> Builder ())
-> v a
-> Builder ()
{-# INLINE intercalateVec #-}
intercalateVec :: Builder () -> (a -> Builder ()) -> v a -> Builder ()
intercalateVec Builder ()
s a -> Builder ()
f v a
v = do
(a -> Builder ()) -> v a -> Builder ()
forall (v :: * -> *) a (f :: * -> *) b.
(Vec v a, Applicative f) =>
(a -> f b) -> v a -> f ()
V.traverseVec_ (\ a
x -> a -> Builder ()
f a
x Builder () -> Builder () -> Builder ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Builder ()
s) (v a -> v a
forall (v :: * -> *) a. Vec v a => v a -> v a
V.initMayEmpty v a
v)
Maybe a -> (a -> Builder ()) -> Builder ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ (v a -> Maybe a
forall (v :: * -> *) a. Vec v a => v a -> Maybe a
V.lastMaybe v a
v) a -> Builder ()
f
intercalateList :: Builder ()
-> (a -> Builder ())
-> [a]
-> Builder ()
{-# INLINE intercalateList #-}
intercalateList :: Builder () -> (a -> Builder ()) -> [a] -> Builder ()
intercalateList Builder ()
s a -> Builder ()
f [a]
xs = [a] -> Builder ()
go [a]
xs
where
go :: [a] -> Builder ()
go [] = () -> Builder ()
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
go [a
x] = a -> Builder ()
f a
x
go (a
x:[a]
xs') = a -> Builder ()
f a
x Builder () -> Builder () -> Builder ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Builder ()
s Builder () -> Builder () -> Builder ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> [a] -> Builder ()
go [a]
xs'