algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Ring.Endomorphism

Synopsis

Documentation

newtype End a Source #

The endomorphism ring of an abelian group or the endomorphism semiring of an abelian monoid

http://en.wikipedia.org/wiki/Endomorphism_ring

Constructors

End 

Fields

Instances

RightModule r m => RightModule r (End m) Source # 

Methods

(*.) :: End m -> r -> End m Source #

LeftModule r m => LeftModule r (End m) Source # 

Methods

(.*) :: r -> End m -> End m Source #

Semigroup (End r) Source # 

Methods

(<>) :: End r -> End r -> End r #

sconcat :: NonEmpty (End r) -> End r #

stimes :: Integral b => b -> End r -> End r #

Monoid (End r) Source # 

Methods

mempty :: End r #

mappend :: End r -> End r -> End r #

mconcat :: [End r] -> End r #

Abelian r => Abelian (End r) Source # 
Additive r => Additive (End r) Source # 

Methods

(+) :: End r -> End r -> End r Source #

sinnum1p :: Natural -> End r -> End r Source #

sumWith1 :: Foldable1 f => (a -> End r) -> f a -> End r Source #

Monoidal r => Monoidal (End r) Source # 

Methods

zero :: End r Source #

sinnum :: Natural -> End r -> End r Source #

sumWith :: Foldable f => (a -> End r) -> f a -> End r Source #

(Abelian r, Monoidal r) => Semiring (End r) Source # 
Multiplicative (End r) Source # 

Methods

(*) :: End r -> End r -> End r Source #

pow1p :: End r -> Natural -> End r Source #

productWith1 :: Foldable1 f => (a -> End r) -> f a -> End r Source #

Group r => Group (End r) Source # 

Methods

(-) :: End r -> End r -> End r Source #

negate :: End r -> End r Source #

subtract :: End r -> End r -> End r Source #

times :: Integral n => n -> End r -> End r Source #

Unital (End r) Source # 

Methods

one :: End r Source #

pow :: End r -> Natural -> End r Source #

productWith :: Foldable f => (a -> End r) -> f a -> End r Source #

(Abelian r, Commutative r) => Commutative (End r) Source # 
(Abelian r, Monoidal r) => Rig (End r) Source # 

Methods

fromNatural :: Natural -> End r Source #

(Abelian r, Group r) => Ring (End r) Source # 

Methods

fromInteger :: Integer -> End r Source #

(Monoidal m, Abelian m) => RightModule (End m) (End m) Source # 

Methods

(*.) :: End m -> End m -> End m Source #

(Monoidal m, Abelian m) => LeftModule (End m) (End m) Source # 

Methods

(.*) :: End m -> End m -> End m Source #

fromEnd :: Unital r => End r -> r Source #