algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Ring.Rng

Synopsis

Documentation

data RngRing r Source #

The free Ring given a Rng obtained by adjoining Z, such that

RngRing r = n*1 + r

This ring is commonly denoted r^.

Constructors

RngRing !Integer r 

Instances

(Abelian r, Group r) => RightModule Integer (RngRing r) Source # 

Methods

(*.) :: RngRing r -> Integer -> RngRing r Source #

(Abelian r, Monoidal r) => RightModule Natural (RngRing r) Source # 

Methods

(*.) :: RngRing r -> Natural -> RngRing r Source #

(Abelian r, Group r) => LeftModule Integer (RngRing r) Source # 

Methods

(.*) :: Integer -> RngRing r -> RngRing r Source #

(Abelian r, Monoidal r) => LeftModule Natural (RngRing r) Source # 

Methods

(.*) :: Natural -> RngRing r -> RngRing r Source #

Read r => Read (RngRing r) Source # 
Show r => Show (RngRing r) Source # 

Methods

showsPrec :: Int -> RngRing r -> ShowS #

show :: RngRing r -> String #

showList :: [RngRing r] -> ShowS #

Abelian r => Abelian (RngRing r) Source # 
Abelian r => Additive (RngRing r) Source # 

Methods

(+) :: RngRing r -> RngRing r -> RngRing r Source #

sinnum1p :: Natural -> RngRing r -> RngRing r Source #

sumWith1 :: Foldable1 f => (a -> RngRing r) -> f a -> RngRing r Source #

(Abelian r, Monoidal r) => Monoidal (RngRing r) Source # 

Methods

zero :: RngRing r Source #

sinnum :: Natural -> RngRing r -> RngRing r Source #

sumWith :: Foldable f => (a -> RngRing r) -> f a -> RngRing r Source #

Rng r => Semiring (RngRing r) Source # 
Rng r => Multiplicative (RngRing r) Source # 

Methods

(*) :: RngRing r -> RngRing r -> RngRing r Source #

pow1p :: RngRing r -> Natural -> RngRing r Source #

productWith1 :: Foldable1 f => (a -> RngRing r) -> f a -> RngRing r Source #

(Abelian r, Group r) => Group (RngRing r) Source # 

Methods

(-) :: RngRing r -> RngRing r -> RngRing r Source #

negate :: RngRing r -> RngRing r Source #

subtract :: RngRing r -> RngRing r -> RngRing r Source #

times :: Integral n => n -> RngRing r -> RngRing r Source #

Rng r => Unital (RngRing r) Source # 

Methods

one :: RngRing r Source #

pow :: RngRing r -> Natural -> RngRing r Source #

productWith :: Foldable f => (a -> RngRing r) -> f a -> RngRing r Source #

(Rng r, Division r) => Division (RngRing r) Source # 

Methods

recip :: RngRing r -> RngRing r Source #

(/) :: RngRing r -> RngRing r -> RngRing r Source #

(\\) :: RngRing r -> RngRing r -> RngRing r Source #

(^) :: Integral n => RngRing r -> n -> RngRing r Source #

(Commutative r, Rng r) => Commutative (RngRing r) Source # 
Rng r => Rig (RngRing r) Source # 
Rng r => Ring (RngRing r) Source # 
Rng s => RightModule (RngRing s) (RngRing s) Source # 

Methods

(*.) :: RngRing s -> RngRing s -> RngRing s Source #

Rng s => LeftModule (RngRing s) (RngRing s) Source # 

Methods

(.*) :: RngRing s -> RngRing s -> RngRing s Source #

rngRingHom :: r -> RngRing r Source #

The rng homomorphism from r to RngRing r

liftRngHom :: Ring s => (r -> s) -> RngRing r -> s Source #

given a rng homomorphism from a rng r into a ring s, liftRngHom yields a ring homomorphism from the ring `r^` into s.