algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Rng.Zero

Documentation

newtype ZeroRng r Source #

Constructors

ZeroRng 

Fields

Instances

Group r => RightModule Integer (ZeroRng r) Source # 

Methods

(*.) :: ZeroRng r -> Integer -> ZeroRng r Source #

Monoidal r => RightModule Natural (ZeroRng r) Source # 

Methods

(*.) :: ZeroRng r -> Natural -> ZeroRng r Source #

Group r => LeftModule Integer (ZeroRng r) Source # 

Methods

(.*) :: Integer -> ZeroRng r -> ZeroRng r Source #

Monoidal r => LeftModule Natural (ZeroRng r) Source # 

Methods

(.*) :: Natural -> ZeroRng r -> ZeroRng r Source #

Eq r => Eq (ZeroRng r) Source # 

Methods

(==) :: ZeroRng r -> ZeroRng r -> Bool #

(/=) :: ZeroRng r -> ZeroRng r -> Bool #

Ord r => Ord (ZeroRng r) Source # 

Methods

compare :: ZeroRng r -> ZeroRng r -> Ordering #

(<) :: ZeroRng r -> ZeroRng r -> Bool #

(<=) :: ZeroRng r -> ZeroRng r -> Bool #

(>) :: ZeroRng r -> ZeroRng r -> Bool #

(>=) :: ZeroRng r -> ZeroRng r -> Bool #

max :: ZeroRng r -> ZeroRng r -> ZeroRng r #

min :: ZeroRng r -> ZeroRng r -> ZeroRng r #

Read r => Read (ZeroRng r) Source # 
Show r => Show (ZeroRng r) Source # 

Methods

showsPrec :: Int -> ZeroRng r -> ShowS #

show :: ZeroRng r -> String #

showList :: [ZeroRng r] -> ShowS #

Idempotent r => Idempotent (ZeroRng r) Source # 
Abelian r => Abelian (ZeroRng r) Source # 
Additive r => Additive (ZeroRng r) Source # 

Methods

(+) :: ZeroRng r -> ZeroRng r -> ZeroRng r Source #

sinnum1p :: Natural -> ZeroRng r -> ZeroRng r Source #

sumWith1 :: Foldable1 f => (a -> ZeroRng r) -> f a -> ZeroRng r Source #

Monoidal r => Monoidal (ZeroRng r) Source # 

Methods

zero :: ZeroRng r Source #

sinnum :: Natural -> ZeroRng r -> ZeroRng r Source #

sumWith :: Foldable f => (a -> ZeroRng r) -> f a -> ZeroRng r Source #

(Monoidal r, Abelian r) => Semiring (ZeroRng r) Source # 
Monoidal r => Multiplicative (ZeroRng r) Source # 

Methods

(*) :: ZeroRng r -> ZeroRng r -> ZeroRng r Source #

pow1p :: ZeroRng r -> Natural -> ZeroRng r Source #

productWith1 :: Foldable1 f => (a -> ZeroRng r) -> f a -> ZeroRng r Source #

Group r => Group (ZeroRng r) Source # 

Methods

(-) :: ZeroRng r -> ZeroRng r -> ZeroRng r Source #

negate :: ZeroRng r -> ZeroRng r Source #

subtract :: ZeroRng r -> ZeroRng r -> ZeroRng r Source #

times :: Integral n => n -> ZeroRng r -> ZeroRng r Source #

Monoidal r => Commutative (ZeroRng r) Source # 
(Group r, Abelian r) => Rng (ZeroRng r) Source #