{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-orphans #-}
module Barbies.Internal.DistributiveT
( DistributiveT(..)
, tdistribute'
, tcotraverse
, tdecompose
, trecompose
, gtdistributeDefault
, CanDeriveDistributiveT
)
where
import Barbies.Generics.Distributive (GDistributive(..))
import Barbies.Internal.FunctorT (FunctorT (..))
import Control.Applicative.Backwards(Backwards (..))
import Control.Monad.Trans.Except(ExceptT(..), runExceptT)
import Control.Monad.Trans.Identity(IdentityT(..))
import Control.Monad.Trans.Maybe(MaybeT(..))
import Control.Monad.Trans.RWS.Lazy as Lazy (RWST(..))
import Control.Monad.Trans.RWS.Strict as Strict (RWST(..))
import Control.Monad.Trans.Reader(ReaderT(..))
import Control.Monad.Trans.State.Lazy as Lazy (StateT(..))
import Control.Monad.Trans.State.Strict as Strict (StateT(..))
import Control.Monad.Trans.Writer.Lazy as Lazy (WriterT(..))
import Control.Monad.Trans.Writer.Strict as Strict (WriterT(..))
import Data.Functor.Compose (Compose (..))
import Data.Functor.Identity (Identity (..))
import Data.Functor.Reverse (Reverse (..))
import Data.Generics.GenericN
import Data.Proxy (Proxy (..))
import Data.Distributive
import Data.Kind (Type)
class FunctorT t => DistributiveT (t :: (Type -> Type) -> i -> Type) where
tdistribute :: Functor f => f (t g x) -> t (Compose f g) x
default tdistribute
:: forall f g x
. CanDeriveDistributiveT t f g x
=> f (t g x)
-> t (Compose f g) x
tdistribute = f (t g x) -> t (Compose f g) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (g :: * -> *)
(x :: i).
CanDeriveDistributiveT t f g x =>
f (t g x) -> t (Compose f g) x
gtdistributeDefault
tdistribute' :: (DistributiveT t, Functor f) => f (t Identity x) -> t f x
tdistribute' :: f (t Identity x) -> t f x
tdistribute' = (forall a. Compose f Identity a -> f a)
-> t (Compose f Identity) x -> t f x
forall k k' (t :: (k -> *) -> k' -> *) (f :: k -> *) (g :: k -> *)
(x :: k').
FunctorT t =>
(forall (a :: k). f a -> g a) -> t f x -> t g x
tmap ((Identity a -> a) -> f (Identity a) -> f a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Identity a -> a
forall a. Identity a -> a
runIdentity (f (Identity a) -> f a)
-> (Compose f Identity a -> f (Identity a))
-> Compose f Identity a
-> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f Identity a -> f (Identity a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose) (t (Compose f Identity) x -> t f x)
-> (f (t Identity x) -> t (Compose f Identity) x)
-> f (t Identity x)
-> t f x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (t Identity x) -> t (Compose f Identity) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (g :: * -> *)
(x :: i).
(DistributiveT t, Functor f) =>
f (t g x) -> t (Compose f g) x
tdistribute
tcotraverse :: (DistributiveT t, Functor f) => (forall a . f (g a) -> f a) -> f (t g x) -> t f x
tcotraverse :: (forall a. f (g a) -> f a) -> f (t g x) -> t f x
tcotraverse forall a. f (g a) -> f a
h = (forall a. Compose f g a -> f a) -> t (Compose f g) x -> t f x
forall k k' (t :: (k -> *) -> k' -> *) (f :: k -> *) (g :: k -> *)
(x :: k').
FunctorT t =>
(forall (a :: k). f a -> g a) -> t f x -> t g x
tmap (f (g a) -> f a
forall a. f (g a) -> f a
h (f (g a) -> f a)
-> (Compose f g a -> f (g a)) -> Compose f g a -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose f g a -> f (g a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose) (t (Compose f g) x -> t f x)
-> (f (t g x) -> t (Compose f g) x) -> f (t g x) -> t f x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (t g x) -> t (Compose f g) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (g :: * -> *)
(x :: i).
(DistributiveT t, Functor f) =>
f (t g x) -> t (Compose f g) x
tdistribute
tdecompose :: DistributiveT t => (a -> t Identity x) -> t ((->) a) x
tdecompose :: (a -> t Identity x) -> t ((->) a) x
tdecompose = (a -> t Identity x) -> t ((->) a) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (x :: i).
(DistributiveT t, Functor f) =>
f (t Identity x) -> t f x
tdistribute'
trecompose :: FunctorT t => t ((->) a) x -> a -> t Identity x
trecompose :: t ((->) a) x -> a -> t Identity x
trecompose t ((->) a) x
bfs = \a
a -> (forall a. (a -> a) -> Identity a) -> t ((->) a) x -> t Identity x
forall k k' (t :: (k -> *) -> k' -> *) (f :: k -> *) (g :: k -> *)
(x :: k').
FunctorT t =>
(forall (a :: k). f a -> g a) -> t f x -> t g x
tmap (a -> Identity a
forall a. a -> Identity a
Identity (a -> Identity a) -> ((a -> a) -> a) -> (a -> a) -> Identity a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> a) -> a -> a
forall a b. (a -> b) -> a -> b
$ a
a)) t ((->) a) x
bfs
type CanDeriveDistributiveT (t :: (Type -> Type) -> i -> Type) f g x
= ( GenericP 1 (t g x)
, GenericP 1 (t (Compose f g) x)
, GDistributive 1 f (RepP 1 (t g x)) (RepP 1 (t (Compose f g) x))
)
gtdistributeDefault
:: CanDeriveDistributiveT t f g x
=> f (t g x)
-> t (Compose f g) x
gtdistributeDefault :: f (t g x) -> t (Compose f g) x
gtdistributeDefault = Proxy 1 -> RepP 1 (t (Compose f g) x) Any -> t (Compose f g) x
forall (n :: Nat) a x. GenericP n a => Proxy n -> RepP n a x -> a
toP (Proxy 1
forall k (t :: k). Proxy t
Proxy @1) (Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 (Compose f g)) x))
(Rep (t (Compose f g) x))
Any
-> t (Compose f g) x)
-> (f (t g x)
-> Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 (Compose f g)) x))
(Rep (t (Compose f g) x))
Any)
-> f (t g x)
-> t (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy 1
-> f (Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 g) x))
(Rep (t g x))
Any)
-> Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 (Compose f g)) x))
(Rep (t (Compose f g) x))
Any
forall k (n :: Nat) (f :: * -> *) (repbg :: k -> *)
(repbfg :: k -> *) (x :: k).
GDistributive n f repbg repbfg =>
Proxy n -> f (repbg x) -> repbfg x
gdistribute (Proxy 1
forall k (t :: k). Proxy t
Proxy @1) (f (Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 g) x))
(Rep (t g x))
Any)
-> Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 (Compose f g)) x))
(Rep (t (Compose f g) x))
Any)
-> (f (t g x)
-> f (Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 g) x))
(Rep (t g x))
Any))
-> f (t g x)
-> Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 (Compose f g)) x))
(Rep (t (Compose f g) x))
Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (t g x
-> Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 g) x))
(Rep (t g x))
Any)
-> f (t g x)
-> f (Zip
(Rep (FilterIndex 1 (Indexed t 2) (Param 1 g) x))
(Rep (t g x))
Any)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Proxy 1 -> t g x -> RepP 1 (t g x) Any
forall (n :: Nat) a x. GenericP n a => Proxy n -> a -> RepP n a x
fromP (Proxy 1
forall k (t :: k). Proxy t
Proxy @1))
{-# INLINE gtdistributeDefault #-}
type P = Param
instance
( Functor f
, DistributiveT t
) => GDistributive 1 f (Rec (t (P 1 g) x) (t g x)) (Rec (t (P 1 (Compose f g)) x) (t (Compose f g) x))
where
gdistribute :: Proxy 1
-> f (Rec (t (P 1 g) x) (t g x) x)
-> Rec (t (P 1 (Compose f g)) x) (t (Compose f g) x) x
gdistribute Proxy 1
_ = K1 R (t (Compose f g) x) x
-> Rec (t (P 1 (Compose f g)) x) (t (Compose f g) x) x
forall k p a (x :: k). K1 R a x -> Rec p a x
Rec (K1 R (t (Compose f g) x) x
-> Rec (t (P 1 (Compose f g)) x) (t (Compose f g) x) x)
-> (f (Rec (t (P 1 g) x) (t g x) x) -> K1 R (t (Compose f g) x) x)
-> f (Rec (t (P 1 g) x) (t g x) x)
-> Rec (t (P 1 (Compose f g)) x) (t (Compose f g) x) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. t (Compose f g) x -> K1 R (t (Compose f g) x) x
forall k i c (p :: k). c -> K1 i c p
K1 (t (Compose f g) x -> K1 R (t (Compose f g) x) x)
-> (f (Rec (t (P 1 g) x) (t g x) x) -> t (Compose f g) x)
-> f (Rec (t (P 1 g) x) (t g x) x)
-> K1 R (t (Compose f g) x) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (t g x) -> t (Compose f g) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (g :: * -> *)
(x :: i).
(DistributiveT t, Functor f) =>
f (t g x) -> t (Compose f g) x
tdistribute (f (t g x) -> t (Compose f g) x)
-> (f (Rec (t (P 1 g) x) (t g x) x) -> f (t g x))
-> f (Rec (t (P 1 g) x) (t g x) x)
-> t (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Rec (t (P 1 g) x) (t g x) x -> t g x)
-> f (Rec (t (P 1 g) x) (t g x) x) -> f (t g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (K1 R (t g x) x -> t g x
forall i c k (p :: k). K1 i c p -> c
unK1 (K1 R (t g x) x -> t g x)
-> (Rec (t (P 1 g) x) (t g x) x -> K1 R (t g x) x)
-> Rec (t (P 1 g) x) (t g x) x
-> t g x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (t (P 1 g) x) (t g x) x -> K1 R (t g x) x
forall p a k (x :: k). Rec p a x -> K1 R a x
unRec)
{-# INLINE gdistribute #-}
instance
( Functor f
, Distributive h
, DistributiveT t
) =>
GDistributive 1 f (Rec (h (t (P 1 g) x)) (h (t g x))) (Rec (h (t (P 1 (Compose f g)) x)) (h (t (Compose f g) x)))
where
gdistribute :: Proxy 1
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> Rec (h (t (P 1 (Compose f g)) x)) (h (t (Compose f g) x)) x
gdistribute Proxy 1
_ = K1 R (h (t (Compose f g) x)) x
-> Rec (h (t (P 1 (Compose f g)) x)) (h (t (Compose f g) x)) x
forall k p a (x :: k). K1 R a x -> Rec p a x
Rec (K1 R (h (t (Compose f g) x)) x
-> Rec (h (t (P 1 (Compose f g)) x)) (h (t (Compose f g) x)) x)
-> (f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> K1 R (h (t (Compose f g) x)) x)
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> Rec (h (t (P 1 (Compose f g)) x)) (h (t (Compose f g) x)) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. h (t (Compose f g) x) -> K1 R (h (t (Compose f g) x)) x
forall k i c (p :: k). c -> K1 i c p
K1 (h (t (Compose f g) x) -> K1 R (h (t (Compose f g) x)) x)
-> (f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> h (t (Compose f g) x))
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> K1 R (h (t (Compose f g) x)) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f (t g x) -> t (Compose f g) x)
-> h (f (t g x)) -> h (t (Compose f g) x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (t g x) -> t (Compose f g) x
forall i (t :: (* -> *) -> i -> *) (f :: * -> *) (g :: * -> *)
(x :: i).
(DistributiveT t, Functor f) =>
f (t g x) -> t (Compose f g) x
tdistribute (h (f (t g x)) -> h (t (Compose f g) x))
-> (f (Rec (h (t (P 1 g) x)) (h (t g x)) x) -> h (f (t g x)))
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> h (t (Compose f g) x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (h (t g x)) -> h (f (t g x))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute (f (h (t g x)) -> h (f (t g x)))
-> (f (Rec (h (t (P 1 g) x)) (h (t g x)) x) -> f (h (t g x)))
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x)
-> h (f (t g x))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Rec (h (t (P 1 g) x)) (h (t g x)) x -> h (t g x))
-> f (Rec (h (t (P 1 g) x)) (h (t g x)) x) -> f (h (t g x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (K1 R (h (t g x)) x -> h (t g x)
forall i c k (p :: k). K1 i c p -> c
unK1 (K1 R (h (t g x)) x -> h (t g x))
-> (Rec (h (t (P 1 g) x)) (h (t g x)) x -> K1 R (h (t g x)) x)
-> Rec (h (t (P 1 g) x)) (h (t g x)) x
-> h (t g x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (h (t (P 1 g) x)) (h (t g x)) x -> K1 R (h (t g x)) x
forall p a k (x :: k). Rec p a x -> K1 R a x
unRec)
{-# INLINE gdistribute #-}
instance Distributive f => DistributiveT (Compose f) where
tdistribute :: f (Compose f g x) -> Compose f (Compose f g) x
tdistribute = f (Compose f g x) -> Compose f (Compose f g) x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (Compose f g x) -> Compose f (Compose f g) x)
-> (f (Compose f g x) -> f (Compose f g x))
-> f (Compose f g x)
-> Compose f (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f (g x) -> Compose f g x) -> f (f (g x)) -> f (Compose f g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (g x) -> Compose f g x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (f (g x)) -> f (Compose f g x))
-> (f (Compose f g x) -> f (f (g x)))
-> f (Compose f g x)
-> f (Compose f g x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (f (g x)) -> f (f (g x))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute (f (f (g x)) -> f (f (g x)))
-> (f (Compose f g x) -> f (f (g x)))
-> f (Compose f g x)
-> f (f (g x))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Compose f g x -> f (g x)) -> f (Compose f g x) -> f (f (g x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Compose f g x -> f (g x)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
{-# INLINE tdistribute #-}
instance DistributiveT Backwards where
tdistribute :: f (Backwards g x) -> Backwards (Compose f g) x
tdistribute = Compose f g x -> Backwards (Compose f g) x
forall k (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards (Compose f g x -> Backwards (Compose f g) x)
-> (f (Backwards g x) -> Compose f g x)
-> f (Backwards g x)
-> Backwards (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g x) -> Compose f g x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g x) -> Compose f g x)
-> (f (Backwards g x) -> f (g x))
-> f (Backwards g x)
-> Compose f g x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Backwards g x -> g x) -> f (Backwards g x) -> f (g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Backwards g x -> g x
forall k (f :: k -> *) (a :: k). Backwards f a -> f a
forwards
{-# INLINE tdistribute #-}
instance DistributiveT Reverse where
tdistribute :: f (Reverse g x) -> Reverse (Compose f g) x
tdistribute = Compose f g x -> Reverse (Compose f g) x
forall k (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse (Compose f g x -> Reverse (Compose f g) x)
-> (f (Reverse g x) -> Compose f g x)
-> f (Reverse g x)
-> Reverse (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g x) -> Compose f g x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g x) -> Compose f g x)
-> (f (Reverse g x) -> f (g x)) -> f (Reverse g x) -> Compose f g x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Reverse g x -> g x) -> f (Reverse g x) -> f (g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Reverse g x -> g x
forall k (f :: k -> *) (a :: k). Reverse f a -> f a
getReverse
{-# INLINE tdistribute #-}
instance DistributiveT (ExceptT e) where
tdistribute :: f (ExceptT e g x) -> ExceptT e (Compose f g) x
tdistribute = Compose f g (Either e x) -> ExceptT e (Compose f g) x
forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT (Compose f g (Either e x) -> ExceptT e (Compose f g) x)
-> (f (ExceptT e g x) -> Compose f g (Either e x))
-> f (ExceptT e g x)
-> ExceptT e (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g (Either e x)) -> Compose f g (Either e x)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (Either e x)) -> Compose f g (Either e x))
-> (f (ExceptT e g x) -> f (g (Either e x)))
-> f (ExceptT e g x)
-> Compose f g (Either e x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ExceptT e g x -> g (Either e x))
-> f (ExceptT e g x) -> f (g (Either e x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ExceptT e g x -> g (Either e x)
forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT
{-# INLINE tdistribute #-}
instance DistributiveT IdentityT where
tdistribute :: f (IdentityT g x) -> IdentityT (Compose f g) x
tdistribute = Compose f g x -> IdentityT (Compose f g) x
forall k (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (Compose f g x -> IdentityT (Compose f g) x)
-> (f (IdentityT g x) -> Compose f g x)
-> f (IdentityT g x)
-> IdentityT (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g x) -> Compose f g x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g x) -> Compose f g x)
-> (f (IdentityT g x) -> f (g x))
-> f (IdentityT g x)
-> Compose f g x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (IdentityT g x -> g x) -> f (IdentityT g x) -> f (g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap IdentityT g x -> g x
forall k (f :: k -> *) (a :: k). IdentityT f a -> f a
runIdentityT
{-# INLINE tdistribute #-}
instance DistributiveT MaybeT where
tdistribute :: f (MaybeT g x) -> MaybeT (Compose f g) x
tdistribute = Compose f g (Maybe x) -> MaybeT (Compose f g) x
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (Compose f g (Maybe x) -> MaybeT (Compose f g) x)
-> (f (MaybeT g x) -> Compose f g (Maybe x))
-> f (MaybeT g x)
-> MaybeT (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g (Maybe x)) -> Compose f g (Maybe x)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (Maybe x)) -> Compose f g (Maybe x))
-> (f (MaybeT g x) -> f (g (Maybe x)))
-> f (MaybeT g x)
-> Compose f g (Maybe x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (MaybeT g x -> g (Maybe x)) -> f (MaybeT g x) -> f (g (Maybe x))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap MaybeT g x -> g (Maybe x)
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT
{-# INLINE tdistribute #-}
instance DistributiveT (Lazy.RWST r w s) where
tdistribute :: f (RWST r w s g x) -> RWST r w s (Compose f g) x
tdistribute f (RWST r w s g x)
fh = (r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST ((r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x)
-> (r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x
forall a b. (a -> b) -> a -> b
$ \r
r s
s -> f (g (x, s, w)) -> Compose f g (x, s, w)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, s, w)) -> Compose f g (x, s, w))
-> f (g (x, s, w)) -> Compose f g (x, s, w)
forall a b. (a -> b) -> a -> b
$ (RWST r w s g x -> g (x, s, w))
-> f (RWST r w s g x) -> f (g (x, s, w))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\RWST r w s g x
h -> RWST r w s g x -> r -> s -> g (x, s, w)
forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Lazy.runRWST RWST r w s g x
h r
r s
s) f (RWST r w s g x)
fh
{-# INLINE tdistribute #-}
instance DistributiveT (Strict.RWST r w s) where
tdistribute :: f (RWST r w s g x) -> RWST r w s (Compose f g) x
tdistribute f (RWST r w s g x)
fh = (r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST ((r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x)
-> (r -> s -> Compose f g (x, s, w)) -> RWST r w s (Compose f g) x
forall a b. (a -> b) -> a -> b
$ \r
r s
s -> f (g (x, s, w)) -> Compose f g (x, s, w)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, s, w)) -> Compose f g (x, s, w))
-> f (g (x, s, w)) -> Compose f g (x, s, w)
forall a b. (a -> b) -> a -> b
$ (RWST r w s g x -> g (x, s, w))
-> f (RWST r w s g x) -> f (g (x, s, w))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\RWST r w s g x
h -> RWST r w s g x -> r -> s -> g (x, s, w)
forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Strict.runRWST RWST r w s g x
h r
r s
s) f (RWST r w s g x)
fh
{-# INLINE tdistribute #-}
instance DistributiveT (ReaderT r) where
tdistribute :: f (ReaderT r g x) -> ReaderT r (Compose f g) x
tdistribute f (ReaderT r g x)
fh = (r -> Compose f g x) -> ReaderT r (Compose f g) x
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((r -> Compose f g x) -> ReaderT r (Compose f g) x)
-> (r -> Compose f g x) -> ReaderT r (Compose f g) x
forall a b. (a -> b) -> a -> b
$ \r
r -> f (g x) -> Compose f g x
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g x) -> Compose f g x) -> f (g x) -> Compose f g x
forall a b. (a -> b) -> a -> b
$ (ReaderT r g x -> g x) -> f (ReaderT r g x) -> f (g x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\ReaderT r g x
h -> ReaderT r g x -> r -> g x
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT ReaderT r g x
h r
r) f (ReaderT r g x)
fh
{-# INLINE tdistribute #-}
instance DistributiveT (Lazy.StateT s) where
tdistribute :: f (StateT s g x) -> StateT s (Compose f g) x
tdistribute f (StateT s g x)
fh = (s -> Compose f g (x, s)) -> StateT s (Compose f g) x
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT ((s -> Compose f g (x, s)) -> StateT s (Compose f g) x)
-> (s -> Compose f g (x, s)) -> StateT s (Compose f g) x
forall a b. (a -> b) -> a -> b
$ \s
s -> f (g (x, s)) -> Compose f g (x, s)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, s)) -> Compose f g (x, s))
-> f (g (x, s)) -> Compose f g (x, s)
forall a b. (a -> b) -> a -> b
$ (StateT s g x -> g (x, s)) -> f (StateT s g x) -> f (g (x, s))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\StateT s g x
h -> StateT s g x -> s -> g (x, s)
forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Lazy.runStateT StateT s g x
h s
s) f (StateT s g x)
fh
{-# INLINE tdistribute #-}
instance DistributiveT (Strict.StateT s) where
tdistribute :: f (StateT s g x) -> StateT s (Compose f g) x
tdistribute f (StateT s g x)
fh = (s -> Compose f g (x, s)) -> StateT s (Compose f g) x
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT ((s -> Compose f g (x, s)) -> StateT s (Compose f g) x)
-> (s -> Compose f g (x, s)) -> StateT s (Compose f g) x
forall a b. (a -> b) -> a -> b
$ \s
s -> f (g (x, s)) -> Compose f g (x, s)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, s)) -> Compose f g (x, s))
-> f (g (x, s)) -> Compose f g (x, s)
forall a b. (a -> b) -> a -> b
$ (StateT s g x -> g (x, s)) -> f (StateT s g x) -> f (g (x, s))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\StateT s g x
h -> StateT s g x -> s -> g (x, s)
forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Strict.runStateT StateT s g x
h s
s) f (StateT s g x)
fh
{-# INLINE tdistribute #-}
instance DistributiveT (Lazy.WriterT w) where
tdistribute :: f (WriterT w g x) -> WriterT w (Compose f g) x
tdistribute = Compose f g (x, w) -> WriterT w (Compose f g) x
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT (Compose f g (x, w) -> WriterT w (Compose f g) x)
-> (f (WriterT w g x) -> Compose f g (x, w))
-> f (WriterT w g x)
-> WriterT w (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g (x, w)) -> Compose f g (x, w)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, w)) -> Compose f g (x, w))
-> (f (WriterT w g x) -> f (g (x, w)))
-> f (WriterT w g x)
-> Compose f g (x, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (WriterT w g x -> g (x, w)) -> f (WriterT w g x) -> f (g (x, w))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap WriterT w g x -> g (x, w)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Lazy.runWriterT
{-# INLINE tdistribute #-}
instance DistributiveT (Strict.WriterT w) where
tdistribute :: f (WriterT w g x) -> WriterT w (Compose f g) x
tdistribute = Compose f g (x, w) -> WriterT w (Compose f g) x
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT (Compose f g (x, w) -> WriterT w (Compose f g) x)
-> (f (WriterT w g x) -> Compose f g (x, w))
-> f (WriterT w g x)
-> WriterT w (Compose f g) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g (x, w)) -> Compose f g (x, w)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (g (x, w)) -> Compose f g (x, w))
-> (f (WriterT w g x) -> f (g (x, w)))
-> f (WriterT w g x)
-> Compose f g (x, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (WriterT w g x -> g (x, w)) -> f (WriterT w g x) -> f (g (x, w))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap WriterT w g x -> g (x, w)
forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Strict.runWriterT
{-# INLINE tdistribute #-}