clash-prelude-1.8.0: Clash: a functional hardware description language - Prelude library
Copyright(C) 2013-2016 University of Twente
2017-2019 Myrtle Software Ltd
2017 Google Inc.
2021-2023 QBayLogic B.V.
LicenseBSD2 (see the file LICENSE)
MaintainerQBayLogic B.V. <devops@qbaylogic.com>
Safe HaskellUnsafe
LanguageHaskell2010
Extensions
  • Cpp
  • MonoLocalBinds
  • ScopedTypeVariables
  • BangPatterns
  • ViewPatterns
  • DataKinds
  • InstanceSigs
  • StandaloneDeriving
  • DeriveDataTypeable
  • DeriveFunctor
  • DeriveTraversable
  • DeriveFoldable
  • DeriveGeneric
  • DefaultSignatures
  • DeriveLift
  • DerivingStrategies
  • FlexibleContexts
  • MagicHash
  • KindSignatures
  • PostfixOperators
  • TupleSections
  • TypeOperators
  • ExplicitNamespaces
  • ExplicitForAll
  • BinaryLiterals
  • TypeApplications

Clash.Prelude

Description

Clash is a functional hardware description language that borrows both its syntax and semantics from the functional programming language Haskell. The merits of using a functional language to describe hardware comes from the fact that combinational circuits can be directly modeled as mathematical functions and that functional languages lend themselves very well at describing and (de-)composing mathematical functions.

This package provides:

  • Prelude library containing datatypes and functions for circuit design

To use the library:

  • Import Clash.Prelude; by default clock and reset lines are implicitly routed for all the components found in Clash.Prelude. You can read more about implicit clock and reset lines in Clash.Signal
  • Alternatively, if you want to explicitly route clock and reset ports, for more straightforward multi-clock designs, you can import the Clash.Explicit.Prelude module. Note that you should not import Clash.Prelude and Clash.Explicit.Prelude at the same time as they have overlapping definitions.

For now, Clash.Prelude is also the best starting point for exploring the library. A preliminary version of a tutorial can be found in Clash.Tutorial. Some circuit examples can be found in Clash.Examples.

Synopsis

Creating synchronous sequential circuits

mealy Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s) 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Signal dom i -> Signal dom o

Synchronous sequential function with input and output matching that of the mealy machine

Create a synchronous function from a combinational function describing a mealy machine

macT
  :: Int        -- Current state
  -> (Int,Int)  -- Input
  -> (Int,Int)  -- (Updated state, output)
macT s (x,y) = (s',s)
  where
    s' = x * y + s

mac :: HiddenClockResetEnable dom  => Signal dom (Int, Int) -> Signal dom Int
mac = mealy macT 0
>>> simulate @System mac [(0,0),(1,1),(2,2),(3,3),(4,4)]
[0,0,1,5,14...
...

Synchronous sequential functions can be composed just like their combinational counterpart:

dualMac
  :: HiddenClockResetEnable dom
  => (Signal dom Int, Signal dom Int)
  -> (Signal dom Int, Signal dom Int)
  -> Signal dom Int
dualMac (a,b) (x,y) = s1 + s2
  where
    s1 = mealy macT 0 (bundle (a,x))
    s2 = mealy macT 0 (bundle (b,y))

mealyS Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s) 
=> (i -> State s o) 
-> s

Initial state

-> Signal dom i -> Signal dom o

Synchronous sequential function with input and output matching that of the mealy machine

Create a synchronous function from a combinational function describing a mealy machine using the state monad. This can be particularly useful when combined with lenses or optics to replicate imperative algorithms.

data DelayState = DelayState
  { _history    :: Vec 4 Int
  , _untilValid :: Index 4
  }
  deriving (Generic, NFDataX)
makeLenses ''DelayState

initialDelayState = DelayState (repeat 0) maxBound

delayS :: Int -> State DelayState (Maybe Int)
delayS n = do
  history   %= (n +>>)
  remaining <- use untilValid
  if remaining > 0
  then do
     untilValid -= 1
     return Nothing
   else do
     out <- uses history last
     return (Just out)

delayTop :: HiddenClockResetEnable dom  => Signal dom Int -> Signal dom (Maybe Int)
delayTop = mealyS delayS initialDelayState
>>> L.take 7 $ simulate @System delayTop [1,2,3,4,5,6,7,8]
[Nothing,Nothing,Nothing,Just 1,Just 2,Just 3,Just 4]
...

mealyB Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s, Bundle i, Bundle o) 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Unbundled dom i -> Unbundled dom o

Synchronous sequential function with input and output matching that of the mealy machine

A version of mealy that does automatic Bundleing

Given a function f of type:

f :: Int -> (Bool, Int) -> (Int, (Int, Bool))

When we want to make compositions of f in g using mealy, we have to write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = unbundle (mealy f 0 (bundle (a,b)))
    (i2,b2) = unbundle (mealy f 3 (bundle (c,i1)))

Using mealyB however we can write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = mealyB f 0 (a,b)
    (i2,b2) = mealyB f 3 (c,i1)

mealySB Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s, Bundle i, Bundle o) 
=> (i -> State s o) 
-> s

Initial state

-> Unbundled dom i -> Unbundled dom o

Synchronous sequential function with input and output matching that of the mealy machine

A version of mealyS that does automatic Bundleing, see mealyB for details.

(<^>) Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s, Bundle i, Bundle o) 
=> (s -> i -> (s, o))

Transfer function in mealy machine form: state -> input -> (newstate,output)

-> s

Initial state

-> Unbundled dom i -> Unbundled dom o

Synchronous sequential function with input and output matching that of the mealy machine

Infix version of mealyB

moore Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s) 
=> (s -> i -> s)

Transfer function in moore machine form: state -> input -> newstate

-> (s -> o)

Output function in moore machine form: state -> output

-> s

Initial state

-> Signal dom i -> Signal dom o

Synchronous sequential function with input and output matching that of the moore machine

Create a synchronous function from a combinational function describing a moore machine

macT
  :: Int        -- Current state
  -> (Int,Int)  -- Input
  -> Int        -- Updated state
macT s (x,y) = x * y + s

mac
  :: HiddenClockResetEnable dom
  => Signal dom (Int, Int)
  -> Signal dom Int
mac = moore mac id 0
>>> simulate @System mac [(0,0),(1,1),(2,2),(3,3),(4,4)]
[0,0,1,5,14,30,...
...

Synchronous sequential functions can be composed just like their combinational counterpart:

dualMac
  :: HiddenClockResetEnable dom
  => (Signal dom Int, Signal dom Int)
  -> (Signal dom Int, Signal dom Int)
  -> Signal dom Int
dualMac (a,b) (x,y) = s1 + s2
  where
    s1 = moore macT id 0 (bundle (a,x))
    s2 = moore macT id 0 (bundle (b,y))

mooreB Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX s, Bundle i, Bundle o) 
=> (s -> i -> s)

Transfer function in moore machine form: state -> input -> newstate

-> (s -> o)

Output function in moore machine form: state -> output

-> s

Initial state

-> Unbundled dom i -> Unbundled dom o

Synchronous sequential function with input and output matching that of the moore machine

A version of moore that does automatic Bundleing

Given a functions t and o of types:

t :: Int -> (Bool, Int) -> Int
o :: Int -> (Int, Bool)

When we want to make compositions of t and o in g using moore, we have to write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = unbundle (moore t o 0 (bundle (a,b)))
    (i2,b2) = unbundle (moore t o 3 (bundle (c,i1)))

Using mooreB however we can write:

g a b c = (b1,b2,i2)
  where
    (i1,b1) = mooreB t o 0 (a,b)
    (i2,b2) = mooreB t o 3 (c,i1)

registerB :: (HiddenClockResetEnable dom, NFDataX a, Bundle a) => a -> Unbundled dom a -> Unbundled dom a infixr 3 Source #

Create a register function for product-type like signals (e.g. '(Signal a, Signal b)')

rP :: HiddenClockResetEnable dom
   => (Signal dom Int, Signal dom Int)
   -> (Signal dom Int, Signal dom Int)
rP = registerB (8,8)
>>> simulateB @System rP [(1,1),(2,2),(3,3)] :: [(Int,Int)]
[(8,8),(1,1),(2,2),(3,3)...
...

ROMs

asyncRom Source #

Arguments

:: (KnownNat n, Enum addr, NFDataX a) 
=> Vec n a

ROM content, also determines the size, n, of the ROM

NB: MUST be a constant

-> addr

Read address r

-> a

The value of the ROM at address r

An asynchronous/combinational ROM with space for n elements

See also:

asyncRomPow2 Source #

Arguments

:: (KnownNat n, NFDataX a) 
=> Vec (2 ^ n) a

ROM content

NB: MUST be a constant

-> Unsigned n

Read address r

-> a

The value of the ROM at address r

An asynchronous/combinational ROM with space for 2^n elements

See also:

rom Source #

Arguments

:: forall dom n m a. (NFDataX a, KnownNat n, KnownNat m, HiddenClock dom, HiddenEnable dom) 
=> Vec n a

ROM content, also determines the size, n, of the ROM

NB: MUST be a constant

-> Signal dom (Unsigned m)

Read address r

-> Signal dom a

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

romPow2 Source #

Arguments

:: forall dom n a. (KnownNat n, NFDataX a, HiddenClock dom, HiddenEnable dom) 
=> Vec (2 ^ n) a

ROM content

NB: MUST be a constant

-> Signal dom (Unsigned n)

Read address r

-> Signal dom a

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

ROMs defined by a MemBlob

asyncRomBlob Source #

Arguments

:: Enum addr 
=> MemBlob n m

ROM content, also determines the size, n, of the ROM

NB: MUST be a constant

-> addr

Read address r

-> BitVector m

The value of the ROM at address r

An asynchronous/combinational ROM with space for n elements

See also:

asyncRomBlobPow2 Source #

Arguments

:: KnownNat n 
=> MemBlob (2 ^ n) m

ROM content, also determines the size, 2^n, of the ROM

NB: MUST be a constant

-> Unsigned n

Read address r

-> BitVector m

The value of the ROM at address r

An asynchronous/combinational ROM with space for 2^n elements

See also:

romBlob Source #

Arguments

:: forall dom addr m n. (HiddenClock dom, HiddenEnable dom, Enum addr) 
=> MemBlob n m

ROM content, also determines the size, n, of the ROM

NB: MUST be a constant

-> Signal dom addr

Read address r

-> Signal dom (BitVector m)

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

romBlobPow2 Source #

Arguments

:: forall dom m n. (HiddenClock dom, HiddenEnable dom, KnownNat n) 
=> MemBlob (2 ^ n) m

ROM content, also determines the size, 2^n, of the ROM

NB: MUST be a constant

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (BitVector m)

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

ROMs defined by a data file

asyncRomFile Source #

Arguments

:: (KnownNat m, Enum addr) 
=> SNat n

Size of the ROM

-> FilePath

File describing the content of the ROM

-> addr

Read address r

-> BitVector m

The value of the ROM at address r

An asynchronous/combinational ROM with space for n elements

  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

  • See Clash.Prelude.ROM.File for more information on how to instantiate a ROM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.
  • When you notice that asyncRomFile is significantly slowing down your simulation, give it a monomorphic type signature. So instead of leaving the type to be inferred:

    myRomData = asyncRomFile d512 "memory.bin"
    

    or giving it a polymorphic type signature:

    myRomData :: Enum addr => addr -> BitVector 16
    myRomData = asyncRomFile d512 "memory.bin"
    

    you should give it a monomorphic type signature:

    myRomData :: Unsigned 9 -> BitVector 16
    myRomData = asyncRomFile d512 "memory.bin"
    

asyncRomFilePow2 Source #

Arguments

:: forall n m. (KnownNat m, KnownNat n) 
=> FilePath

File describing the content of the ROM

-> Unsigned n

Read address r

-> BitVector m

The value of the ROM at address r

An asynchronous/combinational ROM with space for 2^n elements

  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

  • See Clash.Prelude.ROM.File for more information on how to instantiate a ROM with the contents of a data file.
  • See Clash.Sized.Fixed for ideas on how to create your own data files.
  • When you notice that asyncRomFilePow2 is significantly slowing down your simulation, give it a monomorphic type signature. So instead of leaving the type to be inferred:

    myRomData = asyncRomFilePow2 "memory.bin"
    

    you should give it a monomorphic type signature:

    myRomData :: Unsigned 9 -> BitVector 16
    myRomData = asyncRomFilePow2 "memory.bin"
    

romFile Source #

Arguments

:: (KnownNat m, KnownNat n, HiddenClock dom, HiddenEnable dom, Enum addr) 
=> SNat n

Size of the ROM

-> FilePath

File describing the content of the ROM

-> Signal dom addr

Read address r

-> Signal dom (BitVector m)

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

romFilePow2 Source #

Arguments

:: forall n m dom. (KnownNat m, KnownNat n, HiddenClock dom, HiddenEnable dom) 
=> FilePath

File describing the content of the ROM

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (BitVector m)

The value of the ROM at address r from the previous clock cycle

A ROM with a synchronous read port, with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

RAM primitives with a combinational read port

asyncRam Source #

Arguments

:: (Enum addr, NFDataX addr, HiddenClock dom, HiddenEnable dom, HasCallStack, NFDataX a) 
=> SNat n

Size n of the RAM

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the RAM at address r

Create a RAM with space for n elements

  • NB: Initial content of the RAM is undefined, reading it will throw an XException

See also:

asyncRamPow2 Source #

Arguments

:: (KnownNat n, HiddenClock dom, HiddenEnable dom, HasCallStack, NFDataX a) 
=> Signal dom (Unsigned n)

Read address r

-> Signal dom (Maybe (Unsigned n, a))

(write address w, value to write)

-> Signal dom a

Value of the RAM at address r

Create a RAM with space for 2^n elements

  • NB: Initial content of the RAM is undefined, reading it will throw an XException

See also:

Block RAM primitives

blockRam Source #

Arguments

:: (HasCallStack, HiddenClock dom, HiddenEnable dom, NFDataX a, Enum addr, NFDataX addr) 
=> Vec n a

Initial content of the BRAM, also determines the size, n, of the BRAM

NB: MUST be a constant

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the BRAM at address r from the previous clock cycle

Create a block RAM with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

Example

Expand
bram40
  :: HiddenClock dom
  => Signal dom (Unsigned 6)
  -> Signal dom (Maybe (Unsigned 6, Bit))
  -> Signal dom Bit
bram40 = blockRam (replicate d40 1)

blockRamPow2 Source #

Arguments

:: (HasCallStack, HiddenClock dom, HiddenEnable dom, NFDataX a, KnownNat n) 
=> Vec (2 ^ n) a

Initial content of the BRAM

NB: MUST be a constant.

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (Maybe (Unsigned n, a))

(write address w, value to write)

-> Signal dom a

Value of the blockRAM at address r from the previous clock cycle

Create a block RAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

Example

Expand
bram32
  :: HiddenClock dom
  => Signal dom (Unsigned 5)
  -> Signal dom (Maybe (Unsigned 5, Bit))
  -> Signal dom Bit
bram32 = blockRamPow2 (replicate d32 1)

blockRamU Source #

Arguments

:: forall n dom a r addr. (HasCallStack, HiddenClockResetEnable dom, NFDataX a, Enum addr, NFDataX addr, 1 <= n) 
=> ResetStrategy r

Whether to clear BRAM on asserted reset (ClearOnReset) or not (NoClearOnReset). The reset needs to be asserted for at least n cycles to clear the BRAM.

-> SNat n

Number of elements in BRAM

-> (Index n -> a)

If applicable (see first argument), reset BRAM using this function

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the BRAM at address r from the previous clock cycle

A version of blockRam that has no default values set. May be cleared to an arbitrary state using a reset function.

blockRam1 Source #

Arguments

:: forall n dom a r addr. (HasCallStack, HiddenClockResetEnable dom, NFDataX a, Enum addr, NFDataX addr, 1 <= n) 
=> ResetStrategy r

Whether to clear BRAM on asserted reset (ClearOnReset) or not (NoClearOnReset). The reset needs to be asserted for at least n cycles to clear the BRAM.

-> SNat n

Number of elements in BRAM

-> a

Initial content of the BRAM (replicated n times)

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(write address w, value to write)

-> Signal dom a

Value of the BRAM at address r from the previous clock cycle

A version of blockRam that is initialized with the same value on all memory positions

Block RAM primitives initialized with a MemBlob

blockRamBlob Source #

Arguments

:: forall dom addr m n. (HiddenClock dom, HiddenEnable dom, Enum addr, NFDataX addr) 
=> MemBlob n m

Initial content of the BRAM, also determines the size, n, of the BRAM

NB: MUST be a constant

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, BitVector m))

(write address w, value to write)

-> Signal dom (BitVector m)

Value of the BRAM at address r from the previous clock cycle

Create a block RAM with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

blockRamBlobPow2 Source #

Arguments

:: forall dom m n. (HiddenClock dom, HiddenEnable dom, KnownNat n) 
=> MemBlob (2 ^ n) m

Initial content of the BRAM, also determines the size, 2^n, of the BRAM

NB: MUST be a constant

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (Maybe (Unsigned n, BitVector m))

(write address w, value to write)

-> Signal dom (BitVector m)

Value of the BRAM at address r from the previous clock cycle

Create a block RAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException

See also:

Creating and inspecting MemBlob

data MemBlob (n :: Nat) (m :: Nat) Source #

Efficient storage of memory content

It holds n words of BitVector m.

Instances

Instances details
Show (MemBlob n m) Source # 
Instance details

Defined in Clash.Explicit.BlockRam.Internal

Methods

showsPrec :: Int -> MemBlob n m -> ShowS #

show :: MemBlob n m -> String #

showList :: [MemBlob n m] -> ShowS #

createMemBlob Source #

Arguments

:: forall a f. (Foldable f, BitPack a) 
=> String

Name of the binding to generate

-> Maybe Bit

Value to map don't care bits to. Nothing means throwing an error on don't care bits.

-> f a

The content for the MemBlob

-> DecsQ 

Create a MemBlob binding from a list of values

Since this uses Template Haskell, nothing in the arguments given to createMemBlob can refer to something defined in the same module.

Example

Expand
createMemBlob "content" Nothing [15 :: Unsigned 8 .. 17]

ram clk en = blockRamBlob clk en content

The Maybe datatype has don't care bits, where the actual value does not matter. But the bits need a defined value in the memory. Either 0 or 1 can be used, and both are valid representations of the data.

>>> import qualified Prelude as P
>>> let es = [ Nothing, Just (7 :: Unsigned 8), Just 8 ]
>>> :{
createMemBlob "content0" (Just 0) es
createMemBlob "content1" (Just 1) es
x = 1
:}
>>> let pr = mapM_ (putStrLn . show)
>>> pr $ P.map pack es
0b0_...._....
0b1_0000_0111
0b1_0000_1000
>>> pr $ unpackMemBlob content0
0b0_0000_0000
0b1_0000_0111
0b1_0000_1000
>>> pr $ unpackMemBlob content1
0b0_1111_1111
0b1_0000_0111
0b1_0000_1000
>>> :{
createMemBlob "contentN" Nothing es
x = 1
:}

<interactive>:...: error:...
    packBVs: cannot convert don't care values. Please specify a mapping to a definite value.

Note how we hinted to clashi that our multi-line command was a list of declarations by including a dummy declaration x = 1. Without this trick, clashi would expect an expression and the Template Haskell would not work.

memBlobTH Source #

Arguments

:: forall a f. (Foldable f, BitPack a) 
=> Maybe Bit

Value to map don't care bits to. Nothing means throwing an error on don't care bits.

-> f a

The content for the MemBlob

-> ExpQ 

Create a MemBlob from a list of values

Since this uses Template Haskell, nothing in the arguments given to memBlobTH can refer to something defined in the same module.

Example

Expand
ram clk en = blockRamBlob clk en $(memBlobTH Nothing [15 :: Unsigned 8 .. 17])

The Maybe datatype has don't care bits, where the actual value does not matter. But the bits need a defined value in the memory. Either 0 or 1 can be used, and both are valid representations of the data.

>>> import qualified Prelude as P
>>> let es = [ Nothing, Just (7 :: Unsigned 8), Just 8 ]
>>> content0 = $(memBlobTH (Just 0) es)
>>> content1 = $(memBlobTH (Just 1) es)
>>> let pr = mapM_ (putStrLn . show)
>>> pr $ P.map pack es
0b0_...._....
0b1_0000_0111
0b1_0000_1000
>>> pr $ unpackMemBlob content0
0b0_0000_0000
0b1_0000_0111
0b1_0000_1000
>>> pr $ unpackMemBlob content1
0b0_1111_1111
0b1_0000_0111
0b1_0000_1000
>>> $(memBlobTH Nothing es)

<interactive>:...: error:...
    • packBVs: cannot convert don't care values. Please specify a mapping to a definite value.
    • In the untyped splice: $(memBlobTH Nothing es)

unpackMemBlob :: forall n m. MemBlob n m -> [BitVector m] Source #

Convert a MemBlob back to a list

NB: Not synthesizable

Block RAM primitives initialized with a data file

blockRamFile Source #

Arguments

:: (KnownNat m, Enum addr, NFDataX addr, HiddenClock dom, HiddenEnable dom, HasCallStack) 
=> SNat n

Size of the BRAM

-> FilePath

File describing the initial content of the BRAM

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, BitVector m))

(write address w, value to write)

-> Signal dom (BitVector m)

Value of the BRAM at address r from the previous clock cycle

Create a block RAM with space for n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

blockRamFilePow2 Source #

Arguments

:: forall dom n m. (KnownNat m, KnownNat n, HiddenClock dom, HiddenEnable dom, HasCallStack) 
=> FilePath

File describing the initial content of the BRAM

-> Signal dom (Unsigned n)

Read address r

-> Signal dom (Maybe (Unsigned n, BitVector m))

(write address w, value to write)

-> Signal dom (BitVector m)

Value of the BRAM at address r from the previous clock cycle

Create a block RAM with space for 2^n elements

  • NB: Read value is delayed by 1 cycle
  • NB: Initial output value is undefined, reading it will throw an XException
  • NB: This function might not work for specific combinations of code-generation backends and hardware targets. Please check the support table below:
VHDLVerilogSystemVerilog
Altera/QuartusBrokenWorksWorks
Xilinx/ISEWorksWorksWorks
ASICUntestedUntestedUntested

See also:

Block RAM read/write conflict resolution

readNew Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX a, Eq addr) 
=> (Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a)

The BRAM component

-> Signal dom addr

Read address r

-> Signal dom (Maybe (addr, a))

(Write address w, value to write)

-> Signal dom a

Value of the BRAM at address r from the previous clock cycle

Create a read-after-write block RAM from a read-before-write one

>>> :t readNew (blockRam (0 :> 1 :> Nil))
readNew (blockRam (0 :> 1 :> Nil))
  :: ...
     ...
     ...
     ...
     ... =>
     Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a

True dual-port block RAM

trueDualPortBlockRam Source #

Arguments

:: forall nAddrs dom a. (HasCallStack, KnownNat nAddrs, HiddenClock dom, NFDataX a) 
=> Signal dom (RamOp nAddrs a)

RAM operation for port A

-> Signal dom (RamOp nAddrs a)

RAM operation for port B

-> (Signal dom a, Signal dom a)

Outputs data on next cycle. When writing, the data written will be echoed. When reading, the read data is returned.

Produces vendor-agnostic HDL that will be inferred as a true dual-port block RAM

Any value that is being written on a particular port is also the value that will be read on that port, i.e. the same-port read/write behavior is: WriteFirst. For mixed-port read/write, when port A writes to the address port B reads from, the output of port B is undefined, and vice versa.

data RamOp n a Source #

Port operation

Constructors

RamRead (Index n)

Read from address

RamWrite (Index n) a

Write data to address

RamNoOp

No operation

Instances

Instances details
Show a => Show (RamOp n a) Source # 
Instance details

Defined in Clash.Explicit.BlockRam

Methods

showsPrec :: Int -> RamOp n a -> ShowS #

show :: RamOp n a -> String #

showList :: [RamOp n a] -> ShowS #

Generic (RamOp n a) Source # 
Instance details

Defined in Clash.Explicit.BlockRam

Associated Types

type Rep (RamOp n a) :: Type -> Type #

Methods

from :: RamOp n a -> Rep (RamOp n a) x #

to :: Rep (RamOp n a) x -> RamOp n a #

NFDataX a => NFDataX (RamOp n a) Source # 
Instance details

Defined in Clash.Explicit.BlockRam

Methods

deepErrorX :: String -> RamOp n a Source #

hasUndefined :: RamOp n a -> Bool Source #

ensureSpine :: RamOp n a -> RamOp n a Source #

rnfX :: RamOp n a -> () Source #

type Rep (RamOp n a) Source # 
Instance details

Defined in Clash.Explicit.BlockRam

type Rep (RamOp n a) = D1 ('MetaData "RamOp" "Clash.Explicit.BlockRam" "clash-prelude-1.8.0-inplace" 'False) (C1 ('MetaCons "RamRead" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Index n))) :+: (C1 ('MetaCons "RamWrite" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Index n)) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "RamNoOp" 'PrefixI 'False) (U1 :: Type -> Type)))

Utility functions

window Source #

Arguments

:: (HiddenClockResetEnable dom, KnownNat n, Default a, NFDataX a) 
=> Signal dom a

Signal to create a window over

-> Vec (n + 1) (Signal dom a)

Window of at least size 1

Give a window over a Signal

window4 :: HiddenClockResetEnable dom
        => Signal dom Int -> Vec 4 (Signal dom Int)
window4 = window
>>> simulateB @System window4 [1::Int,2,3,4,5] :: [Vec 4 Int]
[1 :> 0 :> 0 :> 0 :> Nil,2 :> 1 :> 0 :> 0 :> Nil,3 :> 2 :> 1 :> 0 :> Nil,4 :> 3 :> 2 :> 1 :> Nil,5 :> 4 :> 3 :> 2 :> Nil,...
...

windowD Source #

Arguments

:: (HiddenClockResetEnable dom, KnownNat n, Default a, NFDataX a) 
=> Signal dom a

Signal to create a window over

-> Vec (n + 1) (Signal dom a)

Window of at least size 1

Give a delayed window over a Signal

windowD3
  :: HiddenClockResetEnable dom
  => Signal dom Int
  -> Vec 3 (Signal dom Int)
windowD3 = windowD
>>> simulateB @System windowD3 [1::Int,2,3,4] :: [Vec 3 Int]
[0 :> 0 :> 0 :> Nil,1 :> 0 :> 0 :> Nil,2 :> 1 :> 0 :> Nil,3 :> 2 :> 1 :> Nil,4 :> 3 :> 2 :> Nil,...
...

isRising Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX a, Bounded a, Eq a) 
=> a

Starting value

-> Signal dom a 
-> Signal dom Bool 

Give a pulse when the Signal goes from minBound to maxBound

isFalling Source #

Arguments

:: (HiddenClockResetEnable dom, NFDataX a, Bounded a, Eq a) 
=> a

Starting value

-> Signal dom a 
-> Signal dom Bool 

Give a pulse when the Signal goes from maxBound to minBound

riseEvery :: HiddenClockResetEnable dom => SNat n -> Signal dom Bool Source #

Give a pulse every n clock cycles. This is a useful helper function when combined with functions like regEn or mux, in order to delay a register by a known amount.

To be precise: the given signal will be False for the next n-1 cycles, followed by a single True value:

>>> Prelude.last (sampleN @System 1025 (riseEvery d1024)) == True
True
>>> Prelude.or (sampleN @System 1024 (riseEvery d1024)) == False
True

For example, to update a counter once every 10 million cycles:

counter = regEn 0 (riseEvery (SNat :: SNat 10000000)) (counter + 1)

oscillate :: HiddenClockResetEnable dom => Bool -> SNat n -> Signal dom Bool Source #

Oscillate a Bool for a given number of cycles. This is a convenient function when combined with something like regEn, as it allows you to easily hold a register value for a given number of cycles. The input Bool determines what the initial value is.

To oscillate on an interval of 5 cycles:

>>> sampleN @System 11 (oscillate False d5)
[False,False,False,False,False,False,True,True,True,True,True]

To oscillate between True and False:

>>> sampleN @System 11 (oscillate False d1)
[False,False,True,False,True,False,True,False,True,False,True]

An alternative definition for the above could be:

>>> let osc' = register False (not <$> osc')
>>> sampleN @System 200 (oscillate False d1) == sampleN @System 200 osc'
True

Tracing

Simple

traceSignal1 Source #

Arguments

:: (BitPack a, NFDataX a, Typeable a) 
=> String

Name of signal in the VCD output

-> Signal dom a

Signal to trace

-> Signal dom a 

Trace a single signal. Will emit an error if a signal with the same name was previously registered.

NB: Associates the traced signal with a clock period of 1, which results in incorrect VCD files when working with circuits that have multiple clocks. Use traceSignal when working with circuits that have multiple clocks.

traceVecSignal1 Source #

Arguments

:: (KnownNat n, BitPack a, NFDataX a, Typeable a) 
=> String

Name of signal in debugging output. Will be appended by _0, _1, ..., _n.

-> Signal dom (Vec (n + 1) a)

Signal to trace

-> Signal dom (Vec (n + 1) a) 

Trace a single vector signal: each element in the vector will show up as a different trace. If the trace name already exists, this function will emit an error.

NB: Associates the traced signal with a clock period of 1, which results in incorrect VCD files when working with circuits that have multiple clocks. Use traceSignal when working with circuits that have multiple clocks.

Tracing in a multi-clock environment

traceSignal Source #

Arguments

:: forall dom a. (KnownDomain dom, BitPack a, NFDataX a, Typeable a) 
=> String

Name of signal in the VCD output

-> Signal dom a

Signal to trace

-> Signal dom a 

Trace a single signal. Will emit an error if a signal with the same name was previously registered.

NB: Works correctly when creating VCD files from traced signal in multi-clock circuits. However traceSignal1 might be more convenient to use when the domain of your circuit is polymorphic.

traceVecSignal Source #

Arguments

:: forall dom a n. (KnownDomain dom, KnownNat n, BitPack a, NFDataX a, Typeable a) 
=> String

Name of signal in debugging output. Will be appended by _0, _1, ..., _n.

-> Signal dom (Vec (n + 1) a)

Signal to trace

-> Signal dom (Vec (n + 1) a) 

Trace a single vector signal: each element in the vector will show up as a different trace. If the trace name already exists, this function will emit an error.

NB: Works correctly when creating VCD files from traced signal in multi-clock circuits. However traceSignal1 might be more convenient to use when the domain of your circuit is polymorphic.

VCD dump functions

dumpVCD Source #

Arguments

:: NFDataX a 
=> (Int, Int)

(offset, number of samples)

-> Signal dom a

(One of) the outputs of the circuit containing the traces

-> [String]

The names of the traces you definitely want to be dumped in the VCD file

-> IO (Either String Text) 

Produce a four-state VCD (Value Change Dump) according to IEEE 1364-{1995,2001}. This function fails if a trace name contains either non-printable or non-VCD characters.

Due to lazy evaluation, the created VCD files might not contain all the traces you were expecting. You therefore have to provide a list of names you definately want to be dumped in the VCD file.

For example:

vcd <- dumpVCD (0, 100) cntrOut ["main", "sub"]

Evaluates cntrOut long enough in order for to guarantee that the main, and sub traces end up in the generated VCD file.

Exported modules

Synchronous signals

data Reset (dom :: Domain) Source #

A reset signal belonging to a domain called dom.

The underlying representation of resets is Bool.

Instances

Instances details
ClocksSync (Clock c1, Reset c1) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1)) => ClocksSyncClocksInst (Clock c1, Reset c1) domIn -> Clock domIn -> (Clock c1, Reset c1) Source #

ClocksSync (Clock c1, Reset c1, Clock c2, Reset c2) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2)) => ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn -> Clock domIn -> (Clock c1, Reset c1, Clock c2, Reset c2) Source #

ClocksSync (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3)) => ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn -> Clock domIn -> (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source #

type HasDomain dom1 (Reset dom2) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSpecificDomain

type HasDomain dom1 (Reset dom2) = DomEq dom1 dom2
type TryDomain t (Reset dom) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSingleDomain

type TryDomain t (Reset dom) = 'Found dom
type ClocksResetSynchronizerCxt (Clock c1, Reset c1) Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1) domIn = (Clock c1, Signal domIn Bool)
type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2) Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn = (Clock c1, Clock c2, Signal domIn Bool)
type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn = (Clock c1, Clock c2, Clock c3, Signal domIn Bool)

data DiffClock (dom :: Domain) Source #

A differential clock signal belonging to a domain named dom. The clock input of a design with such an input has two ports which are in antiphase. The first input is the positive phase, the second the negative phase. When using makeTopEntity, the names of the inputs will end in _p and _n respectively.

To create a differential clock in a test bench, you can use clockToDiffClock.

Instances

Instances details
Show (DiffClock dom) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> DiffClock dom -> ShowS #

show :: DiffClock dom -> String #

showList :: [DiffClock dom] -> ShowS #

data Clock (dom :: Domain) Source #

A clock signal belonging to a domain named dom.

Instances

Instances details
Show (Clock dom) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> Clock dom -> ShowS #

show :: Clock dom -> String #

showList :: [Clock dom] -> ShowS #

ClocksSync (Clock c1, Reset c1) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1)) => ClocksSyncClocksInst (Clock c1, Reset c1) domIn -> Clock domIn -> (Clock c1, Reset c1) Source #

Clocks (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Signal pllLock Bool) Source #

Clocks (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Clock c2, Signal pllLock Bool) Source #

ClocksSync (Clock c1, Reset c1, Clock c2, Reset c2) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2)) => ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn -> Clock domIn -> (Clock c1, Reset c1, Clock c2, Reset c2) Source #

Clocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source #

ClocksSync (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn Source #

type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source #

Methods

clocksResetSynchronizer :: forall (domIn :: Domain). (KnownDomain domIn, ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3)) => ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn -> Clock domIn -> (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source #

type HasDomain dom1 (Clock dom2) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSpecificDomain

type HasDomain dom1 (Clock dom2) = DomEq dom1 dom2
type TryDomain t (Clock dom) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSingleDomain

type TryDomain t (Clock dom) = 'Found dom
type ClocksResetSynchronizerCxt (Clock c1, Reset c1) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Signal pllLock Bool) = (KnownDomain c1, KnownDomain pllLock)
type NumOutClocks (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Signal pllLock Bool) = 1
type ClocksSyncClocksInst (Clock c1, Reset c1) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1) domIn = (Clock c1, Signal domIn Bool)
type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) = (KnownDomain c1, KnownDomain c2, KnownDomain pllLock)
type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) = 2
type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) = (KnownDomain c1, KnownDomain c2, KnownDomain c3, KnownDomain pllLock)
type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) = 3
type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2) domIn = (Clock c1, Clock c2, Signal domIn Bool)
type ClocksResetSynchronizerCxt (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn Source # 
Instance details

Defined in Clash.Clocks

type ClocksSyncClocksInst (Clock c1, Reset c1, Clock c2, Reset c2, Clock c3, Reset c3) domIn = (Clock c1, Clock c2, Clock c3, Signal domIn Bool)

data Enable dom Source #

A signal of booleans, indicating whether a component is enabled. No special meaning is implied, it's up to the component itself to decide how to respond to its enable line. It is used throughout Clash as a global enable signal.

Instances

Instances details
type HasDomain dom1 (Enable dom2) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSpecificDomain

type HasDomain dom1 (Enable dom2) = DomEq dom1 dom2
type TryDomain t (Enable dom) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSingleDomain

type TryDomain t (Enable dom) = 'Found dom

data Signal (dom :: Domain) a Source #

Clash has synchronous Signals in the form of:

Signal (dom :: Domain) a

Where a is the type of the value of the Signal, for example Int or Bool, and dom is the clock- (and reset-) domain to which the memory elements manipulating these Signals belong.

The type-parameter, dom, is of the kind Domain - a simple string. That string refers to a single synthesis domain. A synthesis domain describes the behavior of certain aspects of memory elements in it.

  • NB: "Bad things"™ happen when you actually use a clock period of 0, so do not do that!
  • NB: You should be judicious using a clock with period of 1 as you can never create a clock that goes any faster!
  • NB: For the best compatibility make sure your period is divisible by 2, because some VHDL simulators don't support fractions of picoseconds.
  • NB: Whether System has good defaults depends on your target platform. Check out IntelSystem and XilinxSystem too!

Signals have the type role

>>> :i Signal
type role Signal nominal representational
...

as it is safe to coerce the underlying value of a signal, but not safe to coerce a signal between different synthesis domains.

See the module documentation of Clash.Signal for more information about domains.

Instances

Instances details
Lift a => Lift (Signal dom a :: Type) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

lift :: Signal dom a -> Q Exp #

liftTyped :: Signal dom a -> Q (TExp (Signal dom a)) #

AssertionValue dom (Signal dom Bool) Source #

Stream of booleans, originating from a circuit

Instance details

Defined in Clash.Verification.Internal

Functor (Signal dom) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

fmap :: (a -> b) -> Signal dom a -> Signal dom b #

(<$) :: a -> Signal dom b -> Signal dom a #

Applicative (Signal dom) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

pure :: a -> Signal dom a #

(<*>) :: Signal dom (a -> b) -> Signal dom a -> Signal dom b #

liftA2 :: (a -> b -> c) -> Signal dom a -> Signal dom b -> Signal dom c #

(*>) :: Signal dom a -> Signal dom b -> Signal dom b #

(<*) :: Signal dom a -> Signal dom b -> Signal dom a #

Foldable (Signal dom) Source #

NB: Not synthesizable

NB: In "foldr f z s":

  • The function f should be lazy in its second argument.
  • The z element will never be used.
Instance details

Defined in Clash.Signal.Internal

Methods

fold :: Monoid m => Signal dom m -> m #

foldMap :: Monoid m => (a -> m) -> Signal dom a -> m #

foldMap' :: Monoid m => (a -> m) -> Signal dom a -> m #

foldr :: (a -> b -> b) -> b -> Signal dom a -> b #

foldr' :: (a -> b -> b) -> b -> Signal dom a -> b #

foldl :: (b -> a -> b) -> b -> Signal dom a -> b #

foldl' :: (b -> a -> b) -> b -> Signal dom a -> b #

foldr1 :: (a -> a -> a) -> Signal dom a -> a #

foldl1 :: (a -> a -> a) -> Signal dom a -> a #

toList :: Signal dom a -> [a] #

null :: Signal dom a -> Bool #

length :: Signal dom a -> Int #

elem :: Eq a => a -> Signal dom a -> Bool #

maximum :: Ord a => Signal dom a -> a #

minimum :: Ord a => Signal dom a -> a #

sum :: Num a => Signal dom a -> a #

product :: Num a => Signal dom a -> a #

Traversable (Signal dom) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Signal dom a -> f (Signal dom b) #

sequenceA :: Applicative f => Signal dom (f a) -> f (Signal dom a) #

mapM :: Monad m => (a -> m b) -> Signal dom a -> m (Signal dom b) #

sequence :: Monad m => Signal dom (m a) -> m (Signal dom a) #

Fractional a => Fractional (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

(/) :: Signal dom a -> Signal dom a -> Signal dom a #

recip :: Signal dom a -> Signal dom a #

fromRational :: Rational -> Signal dom a #

Num a => Num (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

(+) :: Signal dom a -> Signal dom a -> Signal dom a #

(-) :: Signal dom a -> Signal dom a -> Signal dom a #

(*) :: Signal dom a -> Signal dom a -> Signal dom a #

negate :: Signal dom a -> Signal dom a #

abs :: Signal dom a -> Signal dom a #

signum :: Signal dom a -> Signal dom a #

fromInteger :: Integer -> Signal dom a #

Show a => Show (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> Signal dom a -> ShowS #

show :: Signal dom a -> String #

showList :: [Signal dom a] -> ShowS #

Arbitrary a => Arbitrary (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

arbitrary :: Gen (Signal dom a) #

shrink :: Signal dom a -> [Signal dom a] #

CoArbitrary a => CoArbitrary (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

coarbitrary :: Signal dom a -> Gen b -> Gen b #

Default a => Default (Signal dom a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

def :: Signal dom a #

NFDataX a => NFDataX (Signal domain a) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

deepErrorX :: String -> Signal domain a Source #

hasUndefined :: Signal domain a -> Bool Source #

ensureSpine :: Signal domain a -> Signal domain a Source #

rnfX :: Signal domain a -> () Source #

Clocks (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Signal pllLock Bool) Source #

Clocks (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Clock c2, Signal pllLock Bool) Source #

Clocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

Associated Types

type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source #

type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) :: Nat Source #

Methods

clocks :: forall (domIn :: Domain). (KnownDomain domIn, ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool)) => Clock domIn -> Reset domIn -> (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source #

type HasDomain dom1 (Signal dom2 a) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSpecificDomain

type HasDomain dom1 (Signal dom2 a) = DomEq dom1 dom2
type TryDomain t (Signal dom a) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSingleDomain

type TryDomain t (Signal dom a) = 'Found dom
type ClocksCxt (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Signal pllLock Bool) = (KnownDomain c1, KnownDomain pllLock)
type NumOutClocks (Clock c1, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Signal pllLock Bool) = 1
type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Clock c2, Signal pllLock Bool) = (KnownDomain c1, KnownDomain c2, KnownDomain pllLock)
type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Clock c2, Signal pllLock Bool) = 2
type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type ClocksCxt (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) = (KnownDomain c1, KnownDomain c2, KnownDomain c3, KnownDomain pllLock)
type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) Source # 
Instance details

Defined in Clash.Clocks

type NumOutClocks (Clock c1, Clock c2, Clock c3, Signal pllLock Bool) = 3

data VDomainConfiguration Source #

Same as SDomainConfiguration but allows for easy updates through record update syntax. Should be used in combination with vDomain and createDomain. Example:

createDomain (knownVDomain @System){vName="System10", vPeriod=10}

This duplicates the settings in the System domain, replaces the name and period, and creates an instance for it. As most users often want to update the system domain, a shortcut is available in the form:

createDomain vSystem{vName="System10", vPeriod=10}

Instances

Instances details
Eq VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Read VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Show VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Generic VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep VDomainConfiguration :: Type -> Type #

Binary VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

NFData VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

rnf :: VDomainConfiguration -> () #

type Rep VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

type XilinxSystem = "XilinxSystem" :: Domain Source #

A clock (and reset) dom with clocks running at 100 MHz. Memory elements respond to the rising edge of the clock, and synchronously to changes in reset signals. It has defined initial values, and active-high resets.

See module documentation of Clash.Explicit.Signal for more information on how to create custom synthesis domains.

type IntelSystem = "IntelSystem" :: Domain Source #

A clock (and reset) dom with clocks running at 100 MHz. Memory elements respond to the rising edge of the clock, and asynchronously to changes in reset signals. It has defined initial values, and active-high resets.

See module documentation of Clash.Explicit.Signal for more information on how to create custom synthesis domains.

type System = "System" :: Domain Source #

A clock (and reset) dom with clocks running at 100 MHz. Memory elements respond to the rising edge of the clock, and asynchronously to changes in reset signals. It has defined initial values, and active-high resets.

See module documentation of Clash.Explicit.Signal for more information on how to create custom synthesis domains.

class (KnownSymbol dom, KnownNat (DomainPeriod dom)) => KnownDomain (dom :: Domain) where Source #

A KnownDomain constraint indicates that a circuit's behavior depends on some properties of a domain. See DomainConfiguration for more information.

Associated Types

type KnownConf dom :: DomainConfiguration Source #

Methods

knownDomain :: SDomainConfiguration dom (KnownConf dom) Source #

Returns SDomainConfiguration corresponding to an instance's DomainConfiguration.

Example usage:

>>> knownDomain @System
SDomainConfiguration {sName = SSymbol @"System", sPeriod = SNat @10000, sActiveEdge = SRising, sResetKind = SAsynchronous, sInitBehavior = SDefined, sResetPolarity = SActiveHigh}

Instances

Instances details
KnownDomain XilinxSystem Source #

System instance with defaults set for Xilinx FPGAs

Instance details

Defined in Clash.Signal.Internal

KnownDomain IntelSystem Source #

System instance with defaults set for Intel FPGAs

Instance details

Defined in Clash.Signal.Internal

KnownDomain System Source #

A clock (and reset) dom with clocks running at 100 MHz

Instance details

Defined in Clash.Signal.Internal

Associated Types

type KnownConf System :: DomainConfiguration Source #

type KnownConfiguration dom conf = (KnownDomain dom, KnownConf dom ~ conf) Source #

data SDomainConfiguration (dom :: Domain) (conf :: DomainConfiguration) where Source #

Singleton version of DomainConfiguration

Constructors

SDomainConfiguration 

Fields

Instances

Instances details
Show (SDomainConfiguration dom conf) Source # 
Instance details

Defined in Clash.Signal.Internal

type DomainResetPolarity (dom :: Domain) = DomainConfigurationResetPolarity (KnownConf dom) Source #

Convenience type to help to extract the reset polarity from a domain. Example usage:

myFunc :: (KnownDomain dom, DomainResetPolarity dom ~ 'ActiveHigh) => ...

type HasDefinedInitialValues (dom :: Domain) = (KnownDomain dom, DomainInitBehavior dom ~ 'Defined) Source #

Convenience type to constrain a domain to have initial values. Example usage:

myFunc :: HasDefinedInitialValues dom => ...

Using this type implies KnownDomain.

Note that there is no UnknownInitialValues dom as a component that works without initial values will also work if it does have them.

Click here for usage hints

type DomainInitBehavior (dom :: Domain) = DomainConfigurationInitBehavior (KnownConf dom) Source #

Convenience type to help to extract the initial value behavior from a domain. Example usage:

myFunc :: (KnownDomain dom, DomainInitBehavior dom ~ 'Defined) => ...

type HasAsynchronousReset (dom :: Domain) = (KnownDomain dom, DomainResetKind dom ~ 'Asynchronous) Source #

Convenience type to constrain a domain to have asynchronous resets. Example usage:

myFunc :: HasAsynchronousReset dom => ...

Using this type implies KnownDomain.

Click here for usage hints

type HasSynchronousReset (dom :: Domain) = (KnownDomain dom, DomainResetKind dom ~ 'Synchronous) Source #

Convenience type to constrain a domain to have synchronous resets. Example usage:

myFunc :: HasSynchronousReset dom => ...

Using this type implies KnownDomain.

Click here for usage hints

type DomainResetKind (dom :: Domain) = DomainConfigurationResetKind (KnownConf dom) Source #

Convenience type to help to extract the reset synchronicity from a domain. Example usage:

myFunc :: (KnownDomain dom, DomainResetKind dom ~ 'Synchronous) => ...

type DomainActiveEdge (dom :: Domain) = DomainConfigurationActiveEdge (KnownConf dom) Source #

Convenience type to help to extract the active edge from a domain. Example usage:

myFunc :: (KnownDomain dom, DomainActiveEdge dom ~ 'Rising) => ...

type DomainPeriod (dom :: Domain) = DomainConfigurationPeriod (KnownConf dom) Source #

Convenience type to help to extract a period from a domain. Example usage:

myFunc :: (KnownDomain dom, DomainPeriod dom ~ 6000) => ...

data DomainConfiguration Source #

A domain with a name (Domain). Configures the behavior of various aspects of a circuits. See the documentation of this record's field types for more information on the options.

See module documentation of Clash.Explicit.Signal for more information on how to create custom synthesis domains.

Constructors

DomainConfiguration 

Fields

data SInitBehavior (init :: InitBehavior) where Source #

Instances

Instances details
Show (SInitBehavior init) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> SInitBehavior init -> ShowS #

show :: SInitBehavior init -> String #

showList :: [SInitBehavior init] -> ShowS #

data InitBehavior Source #

Constructors

Unknown

Power up value of memory elements is unknown.

Defined

If applicable, power up value of a memory element is defined. Applies to registers for example, but not to blockRam.

Instances

Instances details
Eq InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Data InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InitBehavior -> c InitBehavior #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InitBehavior #

toConstr :: InitBehavior -> Constr #

dataTypeOf :: InitBehavior -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InitBehavior) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InitBehavior) #

gmapT :: (forall b. Data b => b -> b) -> InitBehavior -> InitBehavior #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InitBehavior -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InitBehavior -> r #

gmapQ :: (forall d. Data d => d -> u) -> InitBehavior -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> InitBehavior -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> InitBehavior -> m InitBehavior #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InitBehavior -> m InitBehavior #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InitBehavior -> m InitBehavior #

Ord InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Read InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Show InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Generic InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep InitBehavior :: Type -> Type #

Binary InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

NFData InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

rnf :: InitBehavior -> () #

Hashable InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep InitBehavior = D1 ('MetaData "InitBehavior" "Clash.Signal.Internal" "clash-prelude-1.8.0-inplace" 'False) (C1 ('MetaCons "Unknown" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Defined" 'PrefixI 'False) (U1 :: Type -> Type))

data SResetPolarity (polarity :: ResetPolarity) where Source #

Singleton version of ResetPolarity

Instances

Instances details
Show (SResetPolarity polarity) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> SResetPolarity polarity -> ShowS #

show :: SResetPolarity polarity -> String #

showList :: [SResetPolarity polarity] -> ShowS #

data ResetPolarity Source #

Determines the value for which a reset line is considered "active"

Constructors

ActiveHigh

Reset is considered active if underlying signal is True.

ActiveLow

Reset is considered active if underlying signal is False.

Instances

Instances details
Eq ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Data ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ResetPolarity -> c ResetPolarity #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ResetPolarity #

toConstr :: ResetPolarity -> Constr #

dataTypeOf :: ResetPolarity -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ResetPolarity) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ResetPolarity) #

gmapT :: (forall b. Data b => b -> b) -> ResetPolarity -> ResetPolarity #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ResetPolarity -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ResetPolarity -> r #

gmapQ :: (forall d. Data d => d -> u) -> ResetPolarity -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ResetPolarity -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ResetPolarity -> m ResetPolarity #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ResetPolarity -> m ResetPolarity #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ResetPolarity -> m ResetPolarity #

Ord ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Read ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Show ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Generic ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ResetPolarity :: Type -> Type #

Binary ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

NFData ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

rnf :: ResetPolarity -> () #

Hashable ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ResetPolarity = D1 ('MetaData "ResetPolarity" "Clash.Signal.Internal" "clash-prelude-1.8.0-inplace" 'False) (C1 ('MetaCons "ActiveHigh" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ActiveLow" 'PrefixI 'False) (U1 :: Type -> Type))

data SResetKind (resetKind :: ResetKind) where Source #

Singleton version of ResetKind

Instances

Instances details
Show (SResetKind reset) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> SResetKind reset -> ShowS #

show :: SResetKind reset -> String #

showList :: [SResetKind reset] -> ShowS #

data ResetKind Source #

Constructors

Asynchronous

Elements respond asynchronously to changes in their reset input. This means that they do not wait for the next active clock edge, but respond immediately instead. Common on Intel FPGA platforms.

Synchronous

Elements respond synchronously to changes in their reset input. This means that changes in their reset input won't take effect until the next active clock edge. Common on Xilinx FPGA platforms.

Instances

Instances details
Eq ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Data ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ResetKind -> c ResetKind #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ResetKind #

toConstr :: ResetKind -> Constr #

dataTypeOf :: ResetKind -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ResetKind) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ResetKind) #

gmapT :: (forall b. Data b => b -> b) -> ResetKind -> ResetKind #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ResetKind -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ResetKind -> r #

gmapQ :: (forall d. Data d => d -> u) -> ResetKind -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ResetKind -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ResetKind -> m ResetKind #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ResetKind -> m ResetKind #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ResetKind -> m ResetKind #

Ord ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Read ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Show ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Generic ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ResetKind :: Type -> Type #

Binary ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

NFData ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

rnf :: ResetKind -> () #

Hashable ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ResetKind = D1 ('MetaData "ResetKind" "Clash.Signal.Internal" "clash-prelude-1.8.0-inplace" 'False) (C1 ('MetaCons "Asynchronous" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Synchronous" 'PrefixI 'False) (U1 :: Type -> Type))

data SActiveEdge (edge :: ActiveEdge) where Source #

Singleton version of ActiveEdge

Instances

Instances details
Show (SActiveEdge edge) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

showsPrec :: Int -> SActiveEdge edge -> ShowS #

show :: SActiveEdge edge -> String #

showList :: [SActiveEdge edge] -> ShowS #

data ActiveEdge Source #

Determines clock edge memory elements are sensitive to. Not yet implemented.

Constructors

Rising

Elements are sensitive to the rising edge (low-to-high) of the clock.

Falling

Elements are sensitive to the falling edge (high-to-low) of the clock.

Instances

Instances details
Eq ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Data ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ActiveEdge -> c ActiveEdge #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ActiveEdge #

toConstr :: ActiveEdge -> Constr #

dataTypeOf :: ActiveEdge -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ActiveEdge) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ActiveEdge) #

gmapT :: (forall b. Data b => b -> b) -> ActiveEdge -> ActiveEdge #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ActiveEdge -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ActiveEdge -> r #

gmapQ :: (forall d. Data d => d -> u) -> ActiveEdge -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ActiveEdge -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ActiveEdge -> m ActiveEdge #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ActiveEdge -> m ActiveEdge #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ActiveEdge -> m ActiveEdge #

Ord ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Read ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Show ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Generic ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ActiveEdge :: Type -> Type #

Binary ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

NFData ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

rnf :: ActiveEdge -> () #

Hashable ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

type Rep ActiveEdge = D1 ('MetaData "ActiveEdge" "Clash.Signal.Internal" "clash-prelude-1.8.0-inplace" 'False) (C1 ('MetaCons "Rising" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Falling" 'PrefixI 'False) (U1 :: Type -> Type))

vSystem :: VDomainConfiguration Source #

Convenience value to allow easy "subclassing" of System domain. Should be used in combination with createDomain. For example, if you just want to change the period but leave all other settings intact use:

createDomain vSystem{vName="System10", vPeriod=10}

vIntelSystem :: VDomainConfiguration Source #

Convenience value to allow easy "subclassing" of IntelSystem domain. Should be used in combination with createDomain. For example, if you just want to change the period but leave all other settings intact use:

createDomain vIntelSystem{vName="Intel10", vPeriod=10}

vXilinxSystem :: VDomainConfiguration Source #

Convenience value to allow easy "subclassing" of XilinxSystem domain. Should be used in combination with createDomain. For example, if you just want to change the period but leave all other settings intact use:

createDomain vXilinxSystem{vName="Xilinx10", vPeriod=10}

vDomain :: SDomainConfiguration dom conf -> VDomainConfiguration Source #

Convert SDomainConfiguration to VDomainConfiguration. Should be used in combination with createDomain only.

createDomain :: VDomainConfiguration -> Q [Dec] Source #

Convenience method to express new domains in terms of others.

createDomain (knownVDomain @System){vName="System10", vPeriod=10}

This duplicates the settings in the System domain, replaces the name and period, and creates an instance for it. As most users often want to update the system domain, a shortcut is available in the form:

createDomain vSystem{vName="System10", vPeriod=10}

The function will create two extra identifiers. The first:

type System10 = ..

You can use that as the dom to Clocks/Resets/Enables/Signals. For example: Signal System10 Int. Additionally, it will create a VDomainConfiguration that you can use in later calls to createDomain:

vSystem10 = knownVDomain @System10

It will also make System10 an instance of KnownDomain.

If either identifier is already in scope it will not be generated a second time. Note: This can be useful for example when documenting a new domain:

-- | Here is some documentation for CustomDomain
type CustomDomain = ("CustomDomain" :: Domain)

-- | Here is some documentation for vCustomDomain
createDomain vSystem{vName="CustomDomain"}

sameDomain :: forall (domA :: Domain) (domB :: Domain). (KnownDomain domA, KnownDomain domB) => Maybe (domA :~: domB) Source #

We either get evidence that this function was instantiated with the same domains, or Nothing.

fromEnable :: Enable dom -> Signal dom Bool Source #

Convert Enable construct to its underlying representation: a signal of bools.

toEnable :: Signal dom Bool -> Enable dom Source #

Convert a signal of bools to an Enable construct

enableGen :: Enable dom Source #

Enable generator for some domain. Is simply always True.

clockGen :: KnownDomain dom => Clock dom Source #

Clock generator for simulations. Do not use this clock generator for the testBench function, use tbClockGen instead.

To be used like:

clkSystem = clockGen @System

See DomainConfiguration for more information on how to use synthesis domains.

resetGen :: forall dom. KnownDomain dom => Reset dom Source #

Reset generator for simulation purposes. Asserts the reset for a single cycle.

To be used like:

rstSystem = resetGen @System

See tbClockGen for example usage.

NB: While this can be used in the testBench function, it cannot be synthesized to hardware.

resetGenN Source #

Arguments

:: forall dom n. (KnownDomain dom, 1 <= n) 
=> SNat n

Number of initial cycles to hold reset high

-> Reset dom 

Reset generator for simulation purposes. Asserts the reset for the first n cycles.

To be used like:

rstSystem5 = resetGen @System d5

Example usage:

>>> sampleN 7 (unsafeToActiveHigh (resetGenN @System d3))
[True,True,True,False,False,False,False]

NB: While this can be used in the testBench function, it cannot be synthesized to hardware.

unsafeToActiveHigh :: forall dom. KnownDomain dom => Reset dom -> Signal dom Bool Source #

Convert a reset to an active high reset. Has no effect if reset is already an active high reset. Is unsafe because it can introduce:

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeToHighPolarity :: forall dom. KnownDomain dom => Reset dom -> Signal dom Bool Source #

Deprecated: Use unsafeToActiveHigh instead. This function will be removed in Clash 1.12.

Convert a reset to an active high reset. Has no effect if reset is already an active high reset. Is unsafe because it can introduce:

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeToActiveLow :: forall dom. KnownDomain dom => Reset dom -> Signal dom Bool Source #

Convert a reset to an active low reset. Has no effect if reset is already an active low reset. It is unsafe because it can introduce:

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeToLowPolarity :: forall dom. KnownDomain dom => Reset dom -> Signal dom Bool Source #

Deprecated: Use unsafeToActiveLow instead. This function will be removed in Clash 1.12.

Convert a reset to an active low reset. Has no effect if reset is already an active low reset. It is unsafe because it can introduce:

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeFromReset :: Reset dom -> Signal dom Bool Source #

unsafeFromReset is unsafe because it can introduce:

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

NB: You probably want to use unsafeToActiveLow or unsafeToActiveHigh.

unsafeToReset :: KnownDomain dom => Signal dom Bool -> Reset dom Source #

unsafeToReset is unsafe. For asynchronous resets it is unsafe because it can introduce combinatorial loops. In case of synchronous resets it can lead to meta-stability issues in the presence of asynchronous resets.

NB: You probably want to use unsafeFromActiveLow or unsafeFromActiveHigh.

unsafeFromHighPolarity Source #

Arguments

:: forall dom. KnownDomain dom 
=> Signal dom Bool

Reset signal that's True when active, and False when inactive.

-> Reset dom 

Deprecated: Use unsafeFromActiveHigh instead. This function will be removed in Clash 1.12.

Interpret a signal of bools as an active high reset and convert it to a reset signal corresponding to the domain's setting.

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeFromActiveHigh Source #

Arguments

:: forall dom. KnownDomain dom 
=> Signal dom Bool

Reset signal that's True when active, and False when inactive.

-> Reset dom 

Interpret a signal of bools as an active high reset and convert it to a reset signal corresponding to the domain's setting.

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeFromLowPolarity Source #

Arguments

:: forall dom. KnownDomain dom 
=> Signal dom Bool

Reset signal that's False when active, and True when inactive.

-> Reset dom 

Deprecated: Use unsafeFromActiveLow instead. This function will be removed in Clash 1.12.

Interpret a signal of bools as an active low reset and convert it to a reset signal corresponding to the domain's setting.

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

unsafeFromActiveLow Source #

Arguments

:: forall dom. KnownDomain dom 
=> Signal dom Bool

Reset signal that's False when active, and True when inactive.

-> Reset dom 

Interpret a signal of bools as an active low reset and convert it to a reset signal corresponding to the domain's setting.

For asynchronous resets it is unsafe because it can cause combinatorial loops. In case of synchronous resets it can lead to meta-stability in the presence of asynchronous resets.

(.||.) :: Applicative f => f Bool -> f Bool -> f Bool infixr 2 Source #

The above type is a generalization for:

(.||.) :: Signal Bool -> Signal Bool -> Signal Bool

It is a version of (||) that returns a Signal of Bool

(.&&.) :: Applicative f => f Bool -> f Bool -> f Bool infixr 3 Source #

The above type is a generalization for:

(.&&.) :: Signal Bool -> Signal Bool -> Signal Bool

It is a version of (&&) that returns a Signal of Bool

mux :: Applicative f => f Bool -> f a -> f a -> f a Source #

The above type is a generalization for:

mux :: Signal Bool -> Signal a -> Signal a -> Signal a

A multiplexer. Given "mux b t f", output t when b is True, and f when b is False.

(.==.) :: (Eq a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(.==.) :: Eq a => Signal a -> Signal a -> Signal Bool

It is a version of (==) that returns a Signal of Bool

(./=.) :: (Eq a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(./=.) :: Eq a => Signal a -> Signal a -> Signal Bool

It is a version of (/=) that returns a Signal of Bool

(.<.) :: (Ord a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(.<.) :: Ord a => Signal a -> Signal a -> Signal Bool

It is a version of (<) that returns a Signal of Bool

(.<=.) :: (Ord a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(.<=.) :: Ord a => Signal a -> Signal a -> Signal Bool

It is a version of (<=) that returns a Signal of Bool

(.>.) :: (Ord a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(.>.) :: Ord a => Signal a -> Signal a -> Signal Bool

It is a version of (>) that returns a Signal of Bool

(.>=.) :: (Ord a, Applicative f) => f a -> f a -> f Bool infix 4 Source #

The above type is a generalization for:

(.>=.) :: Ord a => Signal a -> Signal a -> Signal Bool

It is a version of (>=) that returns a Signal of Bool

fromList :: NFDataX a => [a] -> Signal dom a Source #

Create a Signal from a list

Every element in the list will correspond to a value of the signal for one clock cycle.

>>> sampleN 2 (fromList [1,2,3,4,5])
[1,2]

NB: This function is not synthesizable

fromList_lazy :: [a] -> Signal dom a Source #

Create a Signal from a list

Every element in the list will correspond to a value of the signal for one clock cycle.

>>> sampleN 2 (fromList [1,2,3,4,5] :: Signal System Int)
[1,2]

NB: This function is not synthesizable

hzToPeriod :: (HasCallStack, Integral a) => Ratio Natural -> a Source #

Calculate the period in ps, given a frequency in Hz

I.e., to calculate the clock period for a circuit to run at 240 MHz we get

>>> hzToPeriod 240e6
4166

If the value hzToPeriod is applied to is not of the type Ratio Natural, you can use hzToPeriod (realToFrac f). Note that if f is negative, realToFrac will give an Underflow :: ArithException without a call stack, making debugging cumbersome.

Before Clash 1.8, this function always returned a Natural. To get the old behavior of this function, use a type application:

>>> hzToPeriod @Natural 240e6
4166
  • NB: This function is not synthesizable
  • NB: This function is lossy. I.e., periodToHz . hzToPeriod /= id.

periodToHz :: (HasCallStack, Fractional a) => Natural -> a Source #

Calculate the frequency in Hz, given the period in ps

I.e., to calculate the clock frequency of a clock with a period of 5000 ps:

>>> periodToHz 5000
2.0e8

Note that if p in periodToHz (fromIntegral p) is negative, fromIntegral will give an Underflow :: ArithException without a call stack, making debugging cumbersome.

Before Clash 1.8, this function always returned a Ratio Natural. To get the old behavior of this function, use a type application:

>>> periodToHz @(Ratio Natural) 5000
200000000 % 1

NB: This function is not synthesizable

clockPeriod :: forall dom period. (KnownDomain dom, DomainPeriod dom ~ period) => SNat period Source #

Get the clock period from a KnownDomain context

activeEdge :: forall dom edge. (KnownDomain dom, DomainActiveEdge dom ~ edge) => SActiveEdge edge Source #

Get ActiveEdge from a KnownDomain context. Example usage:

f :: forall dom . KnownDomain dom => ....
f a b c =
  case activeEdge @dom of
    SRising -> foo
    SFalling -> bar

resetKind :: forall dom sync. (KnownDomain dom, DomainResetKind dom ~ sync) => SResetKind sync Source #

Get ResetKind from a KnownDomain context. Example usage:

f :: forall dom . KnownDomain dom => ....
f a b c =
  case resetKind @dom of
    SAsynchronous -> foo
    SSynchronous -> bar

initBehavior :: forall dom init. (KnownDomain dom, DomainInitBehavior dom ~ init) => SInitBehavior init Source #

Get InitBehavior from a KnownDomain context. Example usage:

f :: forall dom . KnownDomain dom => ....
f a b c =
  case initBehavior @dom of
    SDefined -> foo
    SUnknown -> bar

resetPolarity :: forall dom polarity. (KnownDomain dom, DomainResetPolarity dom ~ polarity) => SResetPolarity polarity Source #

Get ResetPolarity from a KnownDomain context. Example usage:

f :: forall dom . KnownDomain dom => ....
f a b c =
  case resetPolarity @dom of
    SActiveHigh -> foo
    SActiveLow -> bar

knownVDomain :: forall dom. KnownDomain dom => VDomainConfiguration Source #

Like 'knownDomain but yields a VDomainConfiguration. Should only be used in combination with createDomain.

class Bundle a where Source #

Isomorphism between a Signal of a product type (e.g. a tuple) and a product type of Signals.

Instances of Bundle must satisfy the following laws:

bundle . unbundle = id
unbundle . bundle = id

By default, bundle and unbundle, are defined as the identity, that is, writing:

data D = A | B

instance Bundle D

is the same as:

data D = A | B

instance Bundle D where
  type Unbundled clk D = Signal clk D
  bundle   s = s
  unbundle s = s

For custom product types you'll have to write the instance manually:

data Pair a b = MkPair { getA :: a, getB :: b }

instance Bundle (Pair a b) where
  type Unbundled dom (Pair a b) = Pair (Signal dom a) (Signal dom b)

  -- bundle :: Pair (Signal dom a) (Signal dom b) -> Signal dom (Pair a b)
  bundle   (MkPair as bs) = MkPair $ as * bs

  -- unbundle :: Signal dom (Pair a b) -> Pair (Signal dom a) (Signal dom b)
  unbundle pairs = MkPair (getA $ pairs) (getB $ pairs)

Minimal complete definition

Nothing

Associated Types

type Unbundled (dom :: Domain) a = res | res -> dom a Source #

type Unbundled dom a = Signal dom a

Methods

bundle :: Unbundled dom a -> Signal dom a Source #

Example:

bundle :: (Signal dom a, Signal dom b) -> Signal dom (a,b)

However:

bundle :: Signal dom Bit -> Signal dom Bit

default bundle :: Signal dom a ~ Unbundled dom a => Unbundled dom a -> Signal dom a Source #

unbundle :: Signal dom a -> Unbundled dom a Source #

Example:

unbundle :: Signal dom (a,b) -> (Signal dom a, Signal dom b)

However:

unbundle :: Signal dom Bit -> Signal dom Bit

default unbundle :: Unbundled dom a ~ Signal dom a => Signal dom a -> Unbundled dom a Source #

Instances

Instances details
Bundle Bool Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Bool = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Bool -> Signal dom Bool Source #

unbundle :: forall (dom :: Domain). Signal dom Bool -> Unbundled dom Bool Source #

Bundle Double Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Double = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Double -> Signal dom Double Source #

unbundle :: forall (dom :: Domain). Signal dom Double -> Unbundled dom Double Source #

Bundle Float Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Float = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Float -> Signal dom Float Source #

unbundle :: forall (dom :: Domain). Signal dom Float -> Unbundled dom Float Source #

Bundle Int Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Int = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Int -> Signal dom Int Source #

unbundle :: forall (dom :: Domain). Signal dom Int -> Unbundled dom Int Source #

Bundle Integer Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Integer = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Integer -> Signal dom Integer Source #

unbundle :: forall (dom :: Domain). Signal dom Integer -> Unbundled dom Integer Source #

Bundle () Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom () = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom () -> Signal dom () Source #

unbundle :: forall (dom :: Domain). Signal dom () -> Unbundled dom () Source #

Bundle Bit Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom Bit = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom Bit -> Signal dom Bit Source #

unbundle :: forall (dom :: Domain). Signal dom Bit -> Unbundled dom Bit Source #

Bundle EmptyTuple Source #

See commit 94b0bff5 and documentation for TaggedEmptyTuple.

Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom EmptyTuple = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom EmptyTuple -> Signal dom EmptyTuple Source #

unbundle :: forall (dom :: Domain). Signal dom EmptyTuple -> Unbundled dom EmptyTuple Source #

Bundle (Maybe a) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Maybe a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Maybe a) -> Signal dom (Maybe a) Source #

unbundle :: forall (dom :: Domain). Signal dom (Maybe a) -> Unbundled dom (Maybe a) Source #

Bundle (BitVector n) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (BitVector n) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (BitVector n) -> Signal dom (BitVector n) Source #

unbundle :: forall (dom :: Domain). Signal dom (BitVector n) -> Unbundled dom (BitVector n) Source #

Bundle (Index n) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Index n) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Index n) -> Signal dom (Index n) Source #

unbundle :: forall (dom :: Domain). Signal dom (Index n) -> Unbundled dom (Index n) Source #

Bundle (Unsigned n) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Unsigned n) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Unsigned n) -> Signal dom (Unsigned n) Source #

unbundle :: forall (dom :: Domain). Signal dom (Unsigned n) -> Unbundled dom (Unsigned n) Source #

Bundle (Signed n) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Signed n) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Signed n) -> Signal dom (Signed n) Source #

unbundle :: forall (dom :: Domain). Signal dom (Signed n) -> Unbundled dom (Signed n) Source #

Bundle (Either a b) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Either a b) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Either a b) -> Signal dom (Either a b) Source #

unbundle :: forall (dom :: Domain). Signal dom (Either a b) -> Unbundled dom (Either a b) Source #

Bundle (a1, a2) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (a1, a2) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (a1, a2) -> Signal dom (a1, a2) Source #

unbundle :: forall (dom :: Domain). Signal dom (a1, a2) -> Unbundled dom (a1, a2) Source #

KnownNat n => Bundle (Vec n a) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Vec n a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Vec n a) -> Signal dom (Vec n a) Source #

unbundle :: forall (dom :: Domain). Signal dom (Vec n a) -> Unbundled dom (Vec n a) Source #

KnownNat d => Bundle (RTree d a) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (RTree d a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (RTree d a) -> Signal dom (RTree d a) Source #

unbundle :: forall (dom :: Domain). Signal dom (RTree d a) -> Unbundled dom (RTree d a) Source #

Bundle (a1, a2, a3) Source #

NB: The documentation only shows instances up to 3-tuples. By default, instances up to and including 12-tuples will exist. If the flag large-tuples is set instances up to the GHC imposed limit will exist. The GHC imposed limit is either 62 or 64 depending on the GHC version.

Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (a1, a2, a3) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (a1, a2, a3) -> Signal dom (a1, a2, a3) Source #

unbundle :: forall (dom :: Domain). Signal dom (a1, a2, a3) -> Unbundled dom (a1, a2, a3) Source #

Bundle (Fixed rep int frac) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Fixed rep int frac) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Fixed rep int frac) -> Signal dom (Fixed rep int frac) Source #

unbundle :: forall (dom :: Domain). Signal dom (Fixed rep int frac) -> Unbundled dom (Fixed rep int frac) Source #

Bundle ((f :*: g) a) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom ((f :*: g) a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom ((f :*: g) a) -> Signal dom ((f :*: g) a) Source #

unbundle :: forall (dom :: Domain). Signal dom ((f :*: g) a) -> Unbundled dom ((f :*: g) a) Source #

data TaggedEmptyTuple (dom :: Domain) Source #

Helper type to emulate the "old" behavior of Bundle's unit instance. I.e., the instance for Bundle () used to be defined as:

class Bundle () where
  bundle   :: () -> Signal dom ()
  unbundle :: Signal dom () -> ()

In order to have sensible type inference, the Bundle class specifies that the argument type of bundle should uniquely identify the result type, and vice versa for unbundle. The type signatures in the snippet above don't though, as () doesn't uniquely map to a specific domain. In other words, domain should occur in both the argument and result of both functions.

TaggedEmptyTuple tackles this by carrying the domain in its type. The bundle and unbundle instance now looks like:

class Bundle EmptyTuple where
  bundle   :: TaggedEmptyTuple dom -> Signal dom EmptyTuple
  unbundle :: Signal dom EmptyTuple -> TaggedEmptyTuple dom

dom is now mentioned both the argument and result for both bundle and unbundle.

Constructors

TaggedEmptyTuple 

data EmptyTuple Source #

Constructors

EmptyTuple 

Instances

Instances details
Bundle EmptyTuple Source #

See commit 94b0bff5 and documentation for TaggedEmptyTuple.

Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom EmptyTuple = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom EmptyTuple -> Signal dom EmptyTuple Source #

unbundle :: forall (dom :: Domain). Signal dom EmptyTuple -> Unbundled dom EmptyTuple Source #

Bundle EmptyTuple Source #

See commit 94b0bff5 and documentation for TaggedEmptyTuple.

Instance details

Defined in Clash.Signal.Delayed.Bundle

Associated Types

type Unbundled dom d EmptyTuple = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain) (d :: Nat). Unbundled dom d EmptyTuple -> DSignal dom d EmptyTuple Source #

unbundle :: forall (dom :: Domain) (d :: Nat). DSignal dom d EmptyTuple -> Unbundled dom d EmptyTuple Source #

type Unbundled dom EmptyTuple Source # 
Instance details

Defined in Clash.Signal.Bundle

type Unbundled dom d EmptyTuple Source # 
Instance details

Defined in Clash.Signal.Delayed.Bundle

data BiSignalOut (ds :: BiSignalDefault) (dom :: Domain) (n :: Nat) Source #

The out part of an inout port

Wraps (multiple) writing signals. The semantics are such that only one of the signals may write at a single time step.

BiSignalOut has the type role

>>> :i BiSignalOut
type role BiSignalOut nominal nominal nominal
...

as it is not safe to coerce the default behaviour, synthesis domain or width of the data in the signal.

Instances

Instances details
Semigroup (BiSignalOut defaultState dom n) Source #

NB: Not synthesizable

Instance details

Defined in Clash.Signal.BiSignal

Methods

(<>) :: BiSignalOut defaultState dom n -> BiSignalOut defaultState dom n -> BiSignalOut defaultState dom n #

sconcat :: NonEmpty (BiSignalOut defaultState dom n) -> BiSignalOut defaultState dom n #

stimes :: Integral b => b -> BiSignalOut defaultState dom n -> BiSignalOut defaultState dom n #

Monoid (BiSignalOut defaultState dom n) Source #

Monoid instance to support concatenating

NB: Not synthesizable

Instance details

Defined in Clash.Signal.BiSignal

Methods

mempty :: BiSignalOut defaultState dom n #

mappend :: BiSignalOut defaultState dom n -> BiSignalOut defaultState dom n -> BiSignalOut defaultState dom n #

mconcat :: [BiSignalOut defaultState dom n] -> BiSignalOut defaultState dom n #

type HasDomain dom1 (BiSignalOut ds dom2 n) Source # 
Instance details

Defined in Clash.Signal.BiSignal

type HasDomain dom1 (BiSignalOut ds dom2 n) = DomEq dom1 dom2
type TryDomain t (BiSignalOut ds dom n) Source # 
Instance details

Defined in Clash.Signal.BiSignal

type TryDomain t (BiSignalOut ds dom n) = 'Found dom

data BiSignalIn (ds :: BiSignalDefault) (dom :: Domain) (n :: Nat) Source #

The in part of an inout port. BiSignalIn has the type role

>>> :i BiSignalIn
type role BiSignalIn nominal nominal nominal
...

as it is not safe to coerce the default behaviour, synthesis domain or width of the data in the signal.

data BiSignalDefault Source #

Used to specify the default behavior of a "BiSignal", i.e. what value is read when no value is being written to it.

Constructors

PullUp

inout port behaves as if connected to a pull-up resistor

PullDown

inout port behaves as if connected to a pull-down resistor

Floating

inout port behaves as if is floating. Reading a floating "BiSignal" value in simulation will yield an errorX (undefined value).

Instances

Instances details
Show BiSignalDefault Source # 
Instance details

Defined in Clash.Signal.BiSignal

readFromBiSignal Source #

Arguments

:: (HasCallStack, BitPack a) 
=> BiSignalIn ds d (BitSize a)

A BiSignalIn with a number of bits needed to represent a

-> Signal d a 

Read the value from an inout port

mergeBiSignalOuts :: (HasCallStack, KnownNat n) => Vec n (BiSignalOut defaultState dom m) -> BiSignalOut defaultState dom m Source #

Combine several inout signals into one.

writeToBiSignal Source #

Arguments

:: (HasCallStack, BitPack a, NFDataX a) 
=> BiSignalIn ds d (BitSize a) 
-> Signal d (Maybe a)

Value to write

  • Just a writes an a value
  • Nothing puts the port in a high-impedance state
-> BiSignalOut ds d (BitSize a) 

Write to an inout port

veryUnsafeToBiSignalIn :: (HasCallStack, KnownNat n, Given (SBiSignalDefault ds)) => BiSignalOut ds d n -> BiSignalIn ds d n Source #

Converts the out part of a BiSignal to an in part. In simulation it checks whether multiple components are writing and will error accordingly. Make sure this is only called ONCE for every BiSignal.

systemClockGen :: Clock System Source #

Clock generator for the System clock domain.

NB: Should only be used for simulation, and not for the testBench function. For the testBench function, used tbSystemClockGen

systemResetGen :: Reset System Source #

Reset generator for use in simulation, for the System clock domain. Asserts the reset for a single cycle.

NB: While this can be used in the testBench function, it cannot be synthesized to hardware.

Example

Expand
topEntity :: Vec 2 (Vec 3 (Unsigned 8)) -> Vec 6 (Unsigned 8)
topEntity = concat

testBench :: Signal System Bool
testBench = done
  where
    testInput      = pure ((1 :> 2 :> 3 :> Nil) :> (4 :> 5 :> 6 :> Nil) :> Nil)
    expectedOutput = outputVerifier' ((1:>2:>3:>4:>5:>6:>Nil):>Nil)
    done           = exposeClockResetEnable (expectedOutput (topEntity <$> testInput)) clk rst
    clk            = tbSystemClockGen (not <$> done)
    rst            = systemResetGen

resetSynchronizer :: forall dom. KnownDomain dom => Clock dom -> Reset dom -> Reset dom Source #

The resetSynchronizer will synchronize an incoming reset according to whether the domain is synchronous or asynchronous.

For asynchronous resets this synchronizer ensures the reset will only be de-asserted synchronously but it can still be asserted asynchronously. The reset assert is immediate, but reset de-assertion is delayed by two cycles.

Normally, asynchronous resets can be both asynchronously asserted and de-asserted. Asynchronous de-assertion can induce meta-stability in the component which is being reset. To ensure this doesn't happen, resetSynchronizer ensures that de-assertion of a reset happens synchronously. Assertion of the reset remains asynchronous.

Note that asynchronous assertion does not induce meta-stability in the component whose reset is asserted. However, when a component "A" in another clock or reset domain depends on the value of a component "B" being reset, then asynchronous assertion of the reset of component "B" can induce meta-stability in component "A". To prevent this from happening you need to use a proper synchronizer, for example one of the synchronizers in Clash.Explicit.Synchronizer.

For synchronous resets this function ensures that the reset is asserted and de-asserted synchronously. Both the assertion and de-assertion of the reset are delayed by two cycles.

Example 1

Expand

The circuit below detects a rising bit (i.e., a transition from 0 to 1) in a given argument. It takes a reset that is not synchronized to any of the other incoming signals and synchronizes it using resetSynchronizer.

topEntity
  :: Clock  System
  -> Reset  System
  -> Signal System Bit
  -> Signal System (BitVector 8)
topEntity clk asyncRst key1 =
  withClockResetEnable clk rst enableGen leds
 where
  rst   = resetSynchronizer clk asyncRst
  key1R = isRising 1 key1
  leds  = mealy blinkerT (1, False, 0) key1R

Example 2

Expand

Similar to Example 1 this circuit detects a rising bit (i.e., a transition from 0 to 1) in a given argument. It takes a clock that is not stable yet and a reset signal that is not synchronized to any other signals. It stabilizes the clock and then synchronizes the reset signal.

Note that the function altpllSync provides this functionality in a convenient form, obviating the need for resetSynchronizer for this use case.

topEntity
  :: Clock  System
  -> Reset  System
  -> Signal System Bit
  -> Signal System (BitVector 8)
topEntity clk rst key1 =
    let  (pllOut,pllStable) = unsafeAltpll clk rst
         rstSync            = resetSynchronizer pllOut (unsafeFromActiveLow pllStable)
    in   exposeClockResetEnable leds pllOut rstSync enableGen
  where
    key1R  = isRising 1 key1
    leds   = mealy blinkerT (1, False, 0) key1R

Implementation details

Expand

resetSynchronizer implements the following circuit for asynchronous domains:

                                  rst
  --------------------------------------+
                      |                 |
                 +----v----+       +----v----+
    deasserted   |         |       |         |
  --------------->         +------->         +-------->
                 |         |       |         |
             +---|>        |   +---|>        |
             |   |         |   |   |         |
             |   +---------+   |   +---------+
     clk     |                 |
  -----------------------------+

This corresponds to figure 3d at https://www.embedded.com/asynchronous-reset-synchronization-and-distribution-challenges-and-solutions/

For synchronous domains two sequential dflipflops are used:

                 +---------+       +---------+
    rst          |         |       |         |
  --------------->         +------->         +-------->
                 |         |       |         |
             +---|>        |   +---|>        |
             |   |         |   |   |         |
             |   +---------+   |   +---------+
     clk     |                 |
  -----------------------------+

resetGlitchFilter Source #

Arguments

:: forall dom glitchlessPeriod. (HasCallStack, HasDefinedInitialValues dom, 1 <= glitchlessPeriod) 
=> SNat glitchlessPeriod

Consider a reset signal to be properly asserted after having seen the reset asserted for glitchlessPeriod cycles straight.

-> Clock dom 
-> Reset dom 
-> Reset dom 

Filter glitches from reset signals by only triggering a reset after it has been asserted for glitchlessPeriod cycles. Similarly, it will stay asserted until a glitchlessPeriod number of deasserted cycles have been observed.

This circuit can only be used on platforms supporting initial values. This restriction can be worked around by using unsafeResetGlitchFilter but this is not recommended.

On platforms without initial values, you should instead use resetGlitchFilterWithReset with an additional power-on reset, or holdReset if filtering is only needed on deassertion.

At power-on, the reset will be asserted. If the filtered reset input remains unasserted, the output reset will deassert after glitchlessPeriod clock cycles.

If resetGlitchFilter is used in a domain with asynchronous resets (Asynchronous), resetGlitchFilter will first synchronize the reset input with dualFlipFlopSynchronizer.

Example 1

Expand
>>> let sampleResetN n = sampleN n . unsafeToActiveHigh
>>> let resetFromList = unsafeFromActiveHigh . fromList
>>> let rst = resetFromList [True, True, False, False, True, False, False, True, True, False, True, True]
>>> sampleResetN 12 (resetGlitchFilter d2 (clockGen @XilinxSystem) rst)
[True,True,True,True,False,False,False,False,False,True,True,True]

type HiddenClockResetEnable dom = (HiddenClock dom, HiddenReset dom, HiddenEnable dom) Source #

A constraint that indicates the component needs a Clock, a Reset, and an Enable belonging to the same dom.

Click here to read more about hidden clocks, resets, and enables

type HiddenEnable dom = (Hidden (HiddenEnableName dom) (Enable dom), KnownDomain dom) Source #

A constraint that indicates the component needs an Enable

Click here to read more about hidden clocks, resets, and enables

type HiddenReset dom = (Hidden (HiddenResetName dom) (Reset dom), KnownDomain dom) Source #

A constraint that indicates the component needs a Reset

Click here to read more about hidden clocks, resets, and enables

type HiddenClock dom = (Hidden (HiddenClockName dom) (Clock dom), KnownDomain dom) Source #

A constraint that indicates the component has a hidden Clock

Click here to read more about hidden clocks, resets, and enables

exposeClock Source #

Arguments

:: forall dom r. (HiddenClock dom => r)

The component with a hidden clock

-> KnownDomain dom => Clock dom -> r

The component with its clock argument exposed

Expose a hidden Clock argument of a component, so it can be applied explicitly.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = exposeClock reg clockGen
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force exposeClock to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = exposeClock @System reg clockGen
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hideClock Source #

Arguments

:: forall dom r. HiddenClock dom 
=> (Clock dom -> r)

Function whose clock argument you want to hide

-> r 

Hide the Clock argument of a component, so it can be routed implicitly.

Click here to read more about hidden clocks, resets, and enables

withClock Source #

Arguments

:: forall dom r. KnownDomain dom 
=> Clock dom

The Clock we want to connect

-> (HiddenClock dom => r)

The function with a hidden Clock argument

-> r 

Connect an explicit Clock to a function with a hidden Clock.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = withClock clockGen reg
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force withClock to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = withClock @System clockGen reg
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hasClock :: forall dom. HiddenClock dom => Clock dom Source #

Connect a hidden Clock to an argument where a normal Clock argument was expected.

Click here to read more about hidden clocks, resets, and enables

exposeReset Source #

Arguments

:: forall dom r. (HiddenReset dom => r)

The component with a hidden reset

-> KnownDomain dom => Reset dom -> r

The component with its reset argument exposed

Expose a hidden Reset argument of a component, so it can be applied explicitly.

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = exposeReset reg resetGen
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force exposeReset to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = exposeReset @System reg resetGen
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hideReset Source #

Arguments

:: forall dom r. HiddenReset dom 
=> (Reset dom -> r)

Component whose reset argument you want to hide

-> r 

Hide the Reset argument of a component, so it can be routed implicitly.

Click here to read more about hidden clocks, resets, and enables

withReset Source #

Arguments

:: forall dom r. KnownDomain dom 
=> Reset dom

The Reset we want to connect

-> (HiddenReset dom => r)

The function with a hidden Reset argument

-> r 

Connect an explicit Reset to a function with a hidden Reset.

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = withReset resetGen reg
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force withReset to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = withReset @System resetGen reg
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hasReset :: forall dom. HiddenReset dom => Reset dom Source #

Connect a hidden Reset to an argument where a normal Reset argument was expected.

Click here to read more about hidden clocks, resets, and enables

exposeEnable Source #

Arguments

:: forall dom r. (HiddenEnable dom => r)

The component with a hidden enable

-> KnownDomain dom => Enable dom -> r

The component with its enable argument exposed

Expose a hidden Enable argument of a component, so it can be applied explicitly.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = exposeEnable reg enableGen
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force exposeEnable to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = exposeEnable @System reg enableGen
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hideEnable Source #

Arguments

:: forall dom r. HiddenEnable dom 
=> (Enable dom -> r)

Component whose enable argument you want to hide

-> r 

Hide the Enable argument of a component, so it can be routed implicitly.

Click here to read more about hidden clocks, resets, and enables

withEnable Source #

Arguments

:: forall dom r. KnownDomain dom 
=> Enable dom

The Enable we want to connect

-> (HiddenEnable dom => r)

The function with a hidden Enable argument

-> r 

Connect an explicit Enable to a function with a hidden Enable.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = withEnable enableGen reg
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force withEnable to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = withEnable @System enableGen reg
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

hasEnable :: forall dom. HiddenEnable dom => Enable dom Source #

Connect a hidden Enable to an argument where a normal Enable argument was expected.

Click here to read more about hidden clocks, resets, and enables

andEnable Source #

Arguments

:: forall dom r. HiddenEnable dom 
=> Signal dom Bool

The signal to AND with

-> (HiddenEnable dom => r)

The component whose enable is modified

-> r 

Merge enable signal with signal of bools by applying the boolean AND operation.

NB: The component given to andEnable as an argument needs an explicit type signature. Please read Monomorphism restriction leads to surprising behavior.

The component whose enable is modified will only be enabled when both the encompassing HiddenEnable and the Signal dom Bool are asserted.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> f en = andEnable en reg
>>> sampleN @System 10 (f (riseEvery d2))
[5,5,5,6,6,7,7,8,8,9]

Force andEnable to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> f en = andEnable @System en reg
>>> sampleN 10 (f (riseEvery d2))
[5,5,5,6,6,7,7,8,8,9]

exposeClockResetEnable Source #

Arguments

:: forall dom r. (HiddenClockResetEnable dom => r)

The component with hidden clock, reset, and enable arguments

-> KnownDomain dom => Clock dom -> Reset dom -> Enable dom -> r

The component with its clock, reset, and enable arguments exposed

Expose hidden Clock, Reset, and Enable arguments of a component, so they can be applied explicitly.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = exposeClockResetEnable reg clockGen resetGen enableGen
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force exposeClockResetEnable to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = exposeClockResetEnable @System reg clockGen resetGen enableGen
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

Usage in a testbench context:

topEntity :: Vec 2 (Vec 3 (Unsigned 8)) -> Vec 6 (Unsigned 8)
topEntity = concat

testBench :: Signal System Bool
testBench = done
  where
    testInput      = pure ((1 :> 2 :> 3 :> Nil) :> (4 :> 5 :> 6 :> Nil) :> Nil)
    expectedOutput = outputVerifier' ((1:>2:>3:>4:>5:>6:>Nil):>Nil)
    done           = exposeClockResetEnable (expectedOutput (topEntity <$> testInput)) clk rst en
    clk            = tbSystemClockGen (not <$> done)
    rst            = systemResetGen
    en             = enableGen

hideClockResetEnable Source #

Arguments

:: forall dom r. HiddenClockResetEnable dom 
=> (KnownDomain dom => Clock dom -> Reset dom -> Enable dom -> r)

Component whose clock, reset, and enable argument you want to hide

-> r 

Hide the Clock, Reset, and Enable arguments of a component, so they can be routed implicitly.

Click here to read more about hidden clocks, resets, and enables

withClockResetEnable Source #

Arguments

:: forall dom r. KnownDomain dom 
=> Clock dom

The Clock we want to connect

-> Reset dom

The Reset we want to connect

-> Enable dom

The Enable we want to connect

-> (HiddenClockResetEnable dom => r)

The function with a hidden Clock, hidden Reset, and hidden Enable argument

-> r 

Connect an explicit Clock, Reset, and Enable to a function with a hidden Clock, Reset, and Enable.

Click here to read more about hidden clocks, resets, and enables

Example

Expand

Usage with a polymorphic domain:

>>> reg = register 5 (reg + 1)
>>> sig = withClockResetEnable clockGen resetGen enableGen reg
>>> sampleN @System 10 sig
[5,5,6,7,8,9,10,11,12,13]

Force withClockResetEnable to work on System (hence sampleN not needing an explicit domain later):

>>> reg = register 5 (reg + 1)
>>> sig = withClockResetEnable @System clockGen resetGen enableGen reg
>>> sampleN 10 sig
[5,5,6,7,8,9,10,11,12,13]

dflipflop :: forall dom a. (HiddenClock dom, NFDataX a) => Signal dom a -> Signal dom a Source #

Special version of delay that doesn't take enable signals of any kind. Initial value will be undefined.

delay Source #

Arguments

:: forall dom a. (NFDataX a, HiddenClock dom, HiddenEnable dom) 
=> a

Initial value

-> Signal dom a

Signal to delay

-> Signal dom a 

delay dflt s delays the values in Signal s for once cycle, the value at time 0 is dflt.

>>> sampleN @System 3 (delay 0 (fromList [1,2,3,4]))
[0,1,2]

delayMaybe Source #

Arguments

:: forall dom a. (NFDataX a, HiddenClock dom, HiddenEnable dom) 
=> a

Initial value

-> Signal dom (Maybe a) 
-> Signal dom a 

Version of delay that only updates when its second argument is a Just value.

>>> let input = fromList [Just 1, Just 2, Nothing, Nothing, Just 5, Just 6, Just (7::Int)]
>>> sampleN @System 7 (delayMaybe 0 input)
[0,1,2,2,2,5,6]

delayEn Source #

Arguments

:: forall dom a. (NFDataX a, HiddenClock dom, HiddenEnable dom) 
=> a

Initial value

-> Signal dom Bool

Enable

-> Signal dom a 
-> Signal dom a 

Version of delay that only updates when its second argument is asserted.

>>> let input = fromList [1,2,3,4,5,6,7::Int]
>>> let enable = fromList [True,True,False,False,True,True,True]
>>> sampleN @System 7 (delayEn 0 enable input)
[0,1,2,2,2,5,6]

register infixr 3 Source #

Arguments

:: forall dom a. (HiddenClockResetEnable dom, NFDataX a) 
=> a

Reset value. register outputs the reset value when the reset is active. If the domain has initial values enabled, the reset value will also be the initial value.

-> Signal dom a 
-> Signal dom a 

register i s delays the values in Signal s for one cycle, and sets the value at time 0 to i

>>> sampleN @System 5 (register 8 (fromList [1,1,2,3,4]))
[8,8,1,2,3]

regMaybe infixr 3 Source #

Arguments

:: forall dom a. (HiddenClockResetEnable dom, NFDataX a) 
=> a

Reset value. regMaybe outputs the reset value when the reset is active. If the domain has initial values enabled, the reset value will also be the initial value.

-> Signal dom (Maybe a) 
-> Signal dom a 

Version of register that only updates its content when its second argument is a Just value. So given:

sometimes1 = s where
  s = register Nothing (switch <$> s)

  switch Nothing = Just 1
  switch _       = Nothing

countSometimes = s where
  s     = regMaybe 0 (plusM (pure <$> s) sometimes1)
  plusM = liftA2 (liftA2 (+))

We get:

>>> sampleN @System 9 sometimes1
[Nothing,Nothing,Just 1,Nothing,Just 1,Nothing,Just 1,Nothing,Just 1]
>>> sampleN @System 9 countSometimes
[0,0,0,1,1,2,2,3,3]

regEn Source #

Arguments

:: forall dom a. (HiddenClockResetEnable dom, NFDataX a) 
=> a

Reset value. regEn outputs the reset value when the reset is active. If the domain has initial values enabled, the reset value will also be the initial value.

-> Signal dom Bool 
-> Signal dom a 
-> Signal dom a 

Version of register that only updates its content when its second argument is asserted. So given:

oscillate = register False (not <$> oscillate)
count     = regEn 0 oscillate (count + 1)

We get:

>>> sampleN @System 9 oscillate
[False,False,True,False,True,False,True,False,True]
>>> sampleN @System 9 count
[0,0,0,1,1,2,2,3,3]

sample Source #

Arguments

:: forall dom a. (KnownDomain dom, NFDataX a) 
=> (HiddenClockResetEnable dom => Signal dom a)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Get an infinite list of samples from a Signal

The elements in the list correspond to the values of the Signal at consecutive clock cycles

sample s == [s0, s1, s2, s3, ...

If the given component has not yet been given a clock, reset, or enable line, sample will supply them. The reset will be asserted for a single cycle. sample will not drop the value produced by the circuit while the reset was asserted. If you want this, or if you want more than a single cycle reset, consider using sampleWithReset.

NB: This function is not synthesizable

sampleN Source #

Arguments

:: forall dom a. (KnownDomain dom, NFDataX a) 
=> Int

Number of samples to produce

-> (HiddenClockResetEnable dom => Signal dom a)

Signal to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Get a list of n samples from a Signal

The elements in the list correspond to the values of the Signal at consecutive clock cycles

sampleN @System 3 s == [s0, s1, s2]

If the given component has not yet been given a clock, reset, or enable line, sampleN will supply them. The reset will be asserted for a single cycle. sampleN will not drop the value produced by the circuit while the reset was asserted. If you want this, or if you want more than a single cycle reset, consider using sampleWithResetN.

NB: This function is not synthesizable

sampleWithReset Source #

Arguments

:: forall dom a m. (KnownDomain dom, NFDataX a, 1 <= m) 
=> SNat m

Number of cycles to assert the reset

-> (HiddenClockResetEnable dom => Signal dom a)

Signal to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Get an infinite list of samples from a Signal, while asserting the reset line for m clock cycles. sampleWithReset does not return the first m cycles, i.e., when the reset is asserted.

NB: This function is not synthesizable

sampleWithResetN Source #

Arguments

:: forall dom a m. (KnownDomain dom, NFDataX a, 1 <= m) 
=> SNat m

Number of cycles to assert the reset

-> Int

Number of samples to produce

-> (HiddenClockResetEnable dom => Signal dom a)

Signal to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Get a list of n samples from a Signal, while asserting the reset line for m clock cycles. sampleWithReset does not return the first m cycles, i.e., while the reset is asserted.

NB: This function is not synthesizable

sample_lazy Source #

Arguments

:: forall dom a. KnownDomain dom 
=> (HiddenClockResetEnable dom => Signal dom a)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Lazily get an infinite list of samples from a Signal

The elements in the list correspond to the values of the Signal at consecutive clock cycles

sample s == [s0, s1, s2, s3, ...

If the given component has not yet been given a clock, reset, or enable line, sample_lazy will supply them. The reset will be asserted for a single cycle. sample_lazy will not drop the value produced by the circuit while the reset was asserted.

NB: This function is not synthesizable

sampleN_lazy Source #

Arguments

:: forall dom a. KnownDomain dom 
=> Int 
-> (HiddenClockResetEnable dom => Signal dom a)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 

Lazily get a list of n samples from a Signal

The elements in the list correspond to the values of the Signal at consecutive clock cycles

sampleN @System 3 s == [s0, s1, s2]

If the given component has not yet been given a clock, reset, or enable line, sampleN_lazy will supply them. The reset will be asserted for a single cycle. sampleN_lazy will not drop the value produced by the circuit while the reset was asserted.

NB: This function is not synthesizable

simulate Source #

Arguments

:: forall dom a b. (KnownDomain dom, NFDataX a, NFDataX b) 
=> (HiddenClockResetEnable dom => Signal dom a -> Signal dom b)

Circuit to simulate, whose source potentially has a hidden clock, reset, and/or enable.

-> [a] 
-> [b] 

Simulate a (Signal a -> Signal b) function given a list of samples of type a

>>> simulate @System (register 8) [1, 2, 3]
[8,1,2,3...
...

Where System denotes the domain to simulate on. The reset line is asserted for a single cycle. The first value is therefore supplied twice to the circuit: once while reset is high, and once directly after. The first output value (the value produced while the reset is asserted) is dropped.

If you only want to simulate a finite number of samples, see simulateN. If you need the reset line to be asserted for more than one cycle or if you need a custom reset value, see simulateWithReset and simulateWithResetN.

NB: This function is not synthesizable

simulateN Source #

Arguments

:: forall dom a b. (KnownDomain dom, NFDataX a, NFDataX b) 
=> Int

Number of cycles to simulate (excluding cycle spent in reset)

-> (HiddenClockResetEnable dom => Signal dom a -> Signal dom b)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 
-> [b] 

Same as simulate, but only sample the first Int output values.

NB: This function is not synthesizable

simulateWithReset Source #

Arguments

:: forall dom a b m. (KnownDomain dom, NFDataX a, NFDataX b, 1 <= m) 
=> SNat m

Number of cycles to assert the reset

-> a

Reset value

-> (HiddenClockResetEnable dom => Signal dom a -> Signal dom b)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 
-> [b] 

Same as simulate, but with the reset line asserted for n cycles. Similar to simulate, simulateWithReset will drop the output values produced while the reset is asserted. While the reset is asserted, the reset value a is supplied to the circuit.

simulateWithResetN Source #

Arguments

:: forall dom a b m. (KnownDomain dom, NFDataX a, NFDataX b, 1 <= m) 
=> SNat m

Number of cycles to assert the reset

-> a

Reset value

-> Int

Number of cycles to simulate (excluding cycles spent in reset)

-> (HiddenClockResetEnable dom => Signal dom a -> Signal dom b)

Signal we want to sample, whose source potentially has a hidden clock (and reset)

-> [a] 
-> [b] 

Same as simulateWithReset, but only sample the first Int output values.

simulate_lazy Source #

Arguments

:: forall dom a b. KnownDomain dom 
=> (HiddenClockResetEnable dom => Signal dom a -> Signal dom b)

Function we want to simulate, whose components potentially have a hidden clock (and reset)

-> [a] 
-> [b] 

Lazily simulate a (Signal a -> Signal b) function given a list of samples of type a

>>> simulate @System (register 8) [1, 2, 3]
[8,1,2,3...
...

NB: This function is not synthesizable

simulateB Source #

Arguments

:: forall dom a b. (KnownDomain dom, Bundle a, Bundle b, NFDataX a, NFDataX b) 
=> (HiddenClockResetEnable dom => Unbundled dom a -> Unbundled dom b)

Function we want to simulate, whose components potentially have a hidden clock (and reset)

-> [a] 
-> [b] 

Simulate a (Unbundled a -> Unbundled b) function given a list of samples of type a

>>> simulateB @System (unbundle . register (8,8) . bundle) [(1,1), (2,2), (3,3)] :: [(Int,Int)]
[(8,8),(1,1),(2,2),(3,3)...
...

NB: This function is not synthesizable

simulateB_lazy Source #

Arguments

:: forall dom a b. (KnownDomain dom, Bundle a, Bundle b) 
=> (HiddenClockResetEnable dom => Unbundled dom a -> Unbundled dom b)

Function we want to simulate, whose components potentially have a hidden clock (and reset)

-> [a] 
-> [b] 

Lazily simulate a (Unbundled a -> Unbundled b) function given a list of samples of type a

>>> simulateB @System (unbundle . register (8,8) . bundle) [(1,1), (2,2), (3,3)] :: [(Int,Int)]
[(8,8),(1,1),(2,2),(3,3)...
...

NB: This function is not synthesizable

runUntil Source #

Arguments

:: forall dom a. (KnownDomain dom, NFDataX a, ShowX a) 
=> (a -> Bool)

Condition checking function, should return True to finish run

-> (HiddenClockResetEnable dom => Signal dom a)

Signal we want to sample for the condition, potentially having a hidden clock, reset and/or enable

-> IO () 

Simulate a component until it matches a condition

If the given component has not yet been given a clock, reset, or enable line, runUntil will supply them. The reset will be asserted for a single cycle.

It prints a message of the form

Signal sampled for N cycles until value X

NB: This function is not synthesizable

Example with test bench

Expand

A common usage is with a test bench using outputVerifier.

NB: Since this uses assert, when using clashi, read the note at Clash.Explicit.Testbench.

import Clash.Prelude
import Clash.Explicit.Testbench

topEntity
  :: Signal System Int
  -> Signal System Int
topEntity = id

testBench
  :: Signal System Bool
testBench = done
 where
  testInput = stimuliGenerator clk rst $(listToVecTH [1 :: Int .. 10])
  expectedOutput =
    outputVerifier' clk rst $(listToVecTH $ [1 :: Int .. 9] <> [42])
  done = expectedOutput $ topEntity testInput
  clk = tbSystemClockGen (not <$> done)
  rst = systemResetGen
> runUntil id testBench


cycle(<Clock: System>): 10, outputVerifier
expected value: 42, not equal to actual value: 10
Signal sampled for 11 cycles until value True

When you need to verify multiple test benches, the following invocations come in handy:

> mapM_ (runUntil id) [ testBenchA, testBenchB ]

or when the test benches are in different clock domains:

testBenchA :: Signal DomA Bool
testBenchB :: Signal DomB Bool
> sequence_ [ runUntil id testBenchA, runUntil id testBenchB ]

testFor Source #

Arguments

:: KnownDomain dom 
=> Int

The number of cycles we want to test for

-> (HiddenClockResetEnable dom => Signal dom Bool)

Signal we want to evaluate, whose source potentially has a hidden clock (and reset)

-> Property 

testFor n s tests the signal s for n cycles.

NB: This function is not synthesizable

holdReset Source #

Arguments

:: forall dom m. HiddenClockResetEnable dom 
=> SNat m

Hold for m cycles, counting from the moment the incoming reset signal becomes deasserted.

-> Reset dom 

Hold reset for a number of cycles relative to an implicit reset signal.

Example:

>>> sampleN @System 8 (unsafeToActiveHigh (holdReset (SNat @2)))
[True,True,True,False,False,False,False,False]

holdReset holds the reset for an additional 2 clock cycles for a total of 3 clock cycles where the reset is asserted.

fromListWithReset :: forall dom a. (HiddenReset dom, NFDataX a) => a -> [a] -> Signal dom a Source #

Like fromList, but resets on reset and has a defined reset value.

>>> let rst = unsafeFromActiveHigh (fromList [True, True, False, False, True, False])
>>> let res = withReset rst (fromListWithReset Nothing [Just 'a', Just 'b', Just 'c'])
>>> sampleN @System 6 res
[Nothing,Nothing,Just 'a',Just 'b',Nothing,Just 'a']

NB: This function is not synthesizable

signalAutomaton :: forall dom a b. KnownDomain dom => (HiddenClockResetEnable dom => Signal dom a -> Signal dom b) -> Automaton (->) a b Source #

Build an Automaton from a function over Signals.

NB: Consumption of continuation of the Automaton must be affine; that is, you can only apply the continuation associated with a particular element at most once.

Datatypes

Bit vectors

Arbitrary-width numbers

Fixed point numbers

Fixed size vectors

data Vec :: Nat -> Type -> Type where Source #

Fixed size vectors.

  • Lists with their length encoded in their type
  • Vector elements have an ASCENDING subscript starting from 0 and ending at length - 1.

Constructors

Nil :: Vec 0 a 
Cons :: a -> Vec n a -> Vec (n + 1) a infixr 5 

Bundled Patterns

pattern (:>) :: a -> Vec n a -> Vec (n + 1) a infixr 5

Add an element to the head of a vector.

>>> 3:>4:>5:>Nil
3 :> 4 :> 5 :> Nil
>>> let x = 3:>4:>5:>Nil
>>> :t x
x :: Num a => Vec 3 a

Can be used as a pattern:

>>> let f (x :> y :> _) = x + y
>>> :t f
f :: Num a => Vec ((n + 1) + 1) a -> a
>>> f (3:>4:>5:>6:>7:>Nil)
7

Also in conjunctions with (:<):

>>> let g (a :> b :> (_ :< y :< x)) = a + b +  x + y
>>> :t g
g :: Num a => Vec ((((n + 1) + 1) + 1) + 1) a -> a
>>> g (1:>2:>3:>4:>5:>Nil)
12
pattern (:<) :: Vec n a -> a -> Vec (n + 1) a infixl 5

Add an element to the tail of a vector.

>>> (3:>4:>5:>Nil) :< 1
3 :> 4 :> 5 :> 1 :> Nil
>>> let x = (3:>4:>5:>Nil) :< 1
>>> :t x
x :: Num a => Vec 4 a

Can be used as a pattern:

>>> let f (_ :< y :< x) = y + x
>>> :t f
f :: Num a => Vec ((n + 1) + 1) a -> a
>>> f (3:>4:>5:>6:>7:>Nil)
13

Also in conjunctions with (:>):

>>> let g (a :> b :> (_ :< y :< x)) = a + b +  x + y
>>> :t g
g :: Num a => Vec ((((n + 1) + 1) + 1) + 1) a -> a
>>> g (1:>2:>3:>4:>5:>Nil)
12

Instances

Instances details
Lift a => Lift (Vec n a :: Type) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

lift :: Vec n a -> Q Exp #

liftTyped :: Vec n a -> Q (TExp (Vec n a)) #

Functor (Vec n) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

fmap :: (a -> b) -> Vec n a -> Vec n b #

(<$) :: a -> Vec n b -> Vec n a #

KnownNat n => Applicative (Vec n) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

pure :: a -> Vec n a #

(<*>) :: Vec n (a -> b) -> Vec n a -> Vec n b #

liftA2 :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c #

(*>) :: Vec n a -> Vec n b -> Vec n b #

(<*) :: Vec n a -> Vec n b -> Vec n a #

KnownNat n => Foldable (Vec n) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

fold :: Monoid m => Vec n m -> m #

foldMap :: Monoid m => (a -> m) -> Vec n a -> m #

foldMap' :: Monoid m => (a -> m) -> Vec n a -> m #

foldr :: (a -> b -> b) -> b -> Vec n a -> b #

foldr' :: (a -> b -> b) -> b -> Vec n a -> b #

foldl :: (b -> a -> b) -> b -> Vec n a -> b #

foldl' :: (b -> a -> b) -> b -> Vec n a -> b #

foldr1 :: (a -> a -> a) -> Vec n a -> a #

foldl1 :: (a -> a -> a) -> Vec n a -> a #

toList :: Vec n a -> [a] #

null :: Vec n a -> Bool #

length :: Vec n a -> Int #

elem :: Eq a => a -> Vec n a -> Bool #

maximum :: Ord a => Vec n a -> a #

minimum :: Ord a => Vec n a -> a #

sum :: Num a => Vec n a -> a #

product :: Num a => Vec n a -> a #

KnownNat n => Traversable (Vec n) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

traverse :: Applicative f => (a -> f b) -> Vec n a -> f (Vec n b) #

sequenceA :: Applicative f => Vec n (f a) -> f (Vec n a) #

mapM :: Monad m => (a -> m b) -> Vec n a -> m (Vec n b) #

sequence :: Monad m => Vec n (m a) -> m (Vec n a) #

(KnownNat n, Eq a) => Eq (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

(==) :: Vec n a -> Vec n a -> Bool #

(/=) :: Vec n a -> Vec n a -> Bool #

(KnownNat n, Typeable a, Data a) => Data (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vec n a -> c (Vec n a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vec n a) #

toConstr :: Vec n a -> Constr #

dataTypeOf :: Vec n a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vec n a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vec n a)) #

gmapT :: (forall b. Data b => b -> b) -> Vec n a -> Vec n a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vec n a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vec n a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Vec n a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Vec n a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vec n a -> m (Vec n a) #

(KnownNat n, Ord a) => Ord (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

compare :: Vec n a -> Vec n a -> Ordering #

(<) :: Vec n a -> Vec n a -> Bool #

(<=) :: Vec n a -> Vec n a -> Bool #

(>) :: Vec n a -> Vec n a -> Bool #

(>=) :: Vec n a -> Vec n a -> Bool #

max :: Vec n a -> Vec n a -> Vec n a #

min :: Vec n a -> Vec n a -> Vec n a #

Show a => Show (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

showsPrec :: Int -> Vec n a -> ShowS #

show :: Vec n a -> String #

showList :: [Vec n a] -> ShowS #

KnownNat n => Generic (Vec n a) Source #

In many cases, this Generic instance only allows generic functions/instances over vectors of at least size 1, due to the n-1 in the Rep (Vec n a) definition.

We'll have to wait for things like https://ryanglscott.github.io/2018/02/11/how-to-derive-generic-for-some-gadts/ before we can work around this limitation

Instance details

Defined in Clash.Sized.Vector

Associated Types

type Rep (Vec n a) :: Type -> Type #

Methods

from :: Vec n a -> Rep (Vec n a) x #

to :: Rep (Vec n a) x -> Vec n a #

(KnownNat n, Semigroup a) => Semigroup (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

(<>) :: Vec n a -> Vec n a -> Vec n a #

sconcat :: NonEmpty (Vec n a) -> Vec n a #

stimes :: Integral b => b -> Vec n a -> Vec n a #

(KnownNat n, Monoid a) => Monoid (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

mempty :: Vec n a #

mappend :: Vec n a -> Vec n a -> Vec n a #

mconcat :: [Vec n a] -> Vec n a #

(KnownNat n, Arbitrary a) => Arbitrary (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

arbitrary :: Gen (Vec n a) #

shrink :: Vec n a -> [Vec n a] #

CoArbitrary a => CoArbitrary (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

coarbitrary :: Vec n a -> Gen b -> Gen b #

(Default a, KnownNat n) => Default (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

def :: Vec n a #

NFData a => NFData (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

rnf :: Vec n a -> () #

KnownNat n => Ixed (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

ix :: Index (Vec n a) -> Traversal' (Vec n a) (IxValue (Vec n a)) #

(NFDataX a, KnownNat n) => NFDataX (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

deepErrorX :: String -> Vec n a Source #

hasUndefined :: Vec n a -> Bool Source #

ensureSpine :: Vec n a -> Vec n a Source #

rnfX :: Vec n a -> () Source #

ShowX a => ShowX (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

showsPrecX :: Int -> Vec n a -> ShowS Source #

showX :: Vec n a -> String Source #

showListX :: [Vec n a] -> ShowS Source #

(KnownNat n, BitPack a) => BitPack (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

Associated Types

type BitSize (Vec n a) :: Nat Source #

Methods

pack :: Vec n a -> BitVector (BitSize (Vec n a)) Source #

unpack :: BitVector (BitSize (Vec n a)) -> Vec n a Source #

KnownNat n => Bundle (Vec n a) Source # 
Instance details

Defined in Clash.Signal.Bundle

Associated Types

type Unbundled dom (Vec n a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain). Unbundled dom (Vec n a) -> Signal dom (Vec n a) Source #

unbundle :: forall (dom :: Domain). Signal dom (Vec n a) -> Unbundled dom (Vec n a) Source #

KnownNat n => Bundle (Vec n a) Source # 
Instance details

Defined in Clash.Signal.Delayed.Bundle

Associated Types

type Unbundled dom d (Vec n a) = (res :: Type) Source #

Methods

bundle :: forall (dom :: Domain) (d :: Nat). Unbundled dom d (Vec n a) -> DSignal dom d (Vec n a) Source #

unbundle :: forall (dom :: Domain) (d :: Nat). DSignal dom d (Vec n a) -> Unbundled dom d (Vec n a) Source #

(KnownNat n, AutoReg a) => AutoReg (Vec n a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Vec n a -> Signal dom (Vec n a) -> Signal dom (Vec n a) Source #

(LockStep en a, KnownNat n) => LockStep (Vec n en) (Vec n a) Source # 
Instance details

Defined in Clash.Prelude.DataFlow

Methods

lockStep :: forall (dom :: Domain). DataFlow dom (Vec n en) Bool (Vec n a) (Vec n a) Source #

stepLock :: forall (dom :: Domain). DataFlow dom Bool (Vec n en) (Vec n a) (Vec n a) Source #

type Unbundled t d (Vec n a) Source # 
Instance details

Defined in Clash.Signal.Delayed.Bundle

type Unbundled t d (Vec n a) = Vec n (DSignal t d a)
type HasDomain dom (Vec n a) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSpecificDomain

type HasDomain dom (Vec n a) = HasDomain dom a
type Unbundled t (Vec n a) Source # 
Instance details

Defined in Clash.Signal.Bundle

type Unbundled t (Vec n a) = Vec n (Signal t a)
type TryDomain t (Vec n a) Source # 
Instance details

Defined in Clash.Class.HasDomain.HasSingleDomain

type TryDomain t (Vec n a) = TryDomain t a
type Rep (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

type Rep (Vec n a) = D1 ('MetaData "Vec" "Clash.Data.Vector" "clash-prelude" 'False) (C1 ('MetaCons "Nil" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Cons" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Vec (n - 1) a))))
type Index (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

type Index (Vec n a) = Index n
type IxValue (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

type IxValue (Vec n a) = a
type BitSize (Vec n a) Source # 
Instance details

Defined in Clash.Sized.Vector

type BitSize (Vec n a) = n * BitSize a

foldl :: (b -> a -> b) -> b -> Vec n a -> b Source #

foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a vector, reduces the vector using the binary operator, from left to right:

foldl f z (x1 :> x2 :> ... :> xn :> Nil) == (...((z `f` x1) `f` x2) `f`...) `f` xn
foldl f z Nil                            == z
>>> foldl (/) 1 (5 :> 4 :> 3 :> 2 :> Nil)
8.333333333333333e-3

"foldl f z xs" corresponds to the following circuit layout:

NB: "foldl f z xs" produces a linear structure, which has a depth, or delay, of O(length xs). Use fold if your binary operator f is associative, as "fold f xs" produces a structure with a depth of O(log_2(length xs)).

foldr :: (a -> b -> b) -> b -> Vec n a -> b Source #

foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a vector, reduces the vector using the binary operator, from right to left:

foldr f z (x1 :> ... :> xn1 :> xn :> Nil) == x1 `f` (... (xn1 `f` (xn `f` z))...)
foldr r z Nil                             == z
>>> foldr (/) 1 (5 :> 4 :> 3 :> 2 :> Nil)
1.875

"foldr f z xs" corresponds to the following circuit layout:

NB: "foldr f z xs" produces a linear structure, which has a depth, or delay, of O(length xs). Use fold if your binary operator f is associative, as "fold f xs" produces a structure with a depth of O(log_2(length xs)).

map :: (a -> b) -> Vec n a -> Vec n b Source #

"map f xs" is the vector obtained by applying f to each element of xs, i.e.,

map f (x1 :> x2 :>  ... :> xn :> Nil) == (f x1 :> f x2 :> ... :> f xn :> Nil)

and corresponds to the following circuit layout:

bv2v :: KnownNat n => BitVector n -> Vec n Bit Source #

Convert a BitVector to a Vec of Bits.

>>> let x = 6 :: BitVector 8
>>> x
0b0000_0110
>>> bv2v x
0 :> 0 :> 0 :> 0 :> 0 :> 1 :> 1 :> 0 :> Nil

data VCons (a :: Type) (f :: TyFun Nat Type) :: Type Source #

To be used as the motive p for dfold, when the f in "dfold p f" is a variation on (:>), e.g.:

map' :: forall n a b . KnownNat n => (a -> b) -> Vec n a -> Vec n b
map' f = dfold (Proxy @(VCons b)) (_ x xs -> f x :> xs)

Instances

Instances details
type Apply (VCons a :: TyFun Nat Type -> Type) (l :: Nat) Source # 
Instance details

Defined in Clash.Sized.Vector

type Apply (VCons a :: TyFun Nat Type -> Type) (l :: Nat) = Vec l a

traverse# :: forall a f b n. Applicative f => (a -> f b) -> Vec n a -> f (Vec n b) Source #

singleton :: a -> Vec 1 a Source #

Create a vector of one element

>>> singleton 5
5 :> Nil

head :: Vec (n + 1) a -> a Source #

Extract the first element of a vector

>>> head (1:>2:>3:>Nil)
1
>>> head Nil

<interactive>:...
    • Couldn't match type ‘1’ with ‘0’
      Expected type: Vec (0 + 1) a
        Actual type: Vec 0 a
    • In the first argument of ‘head’, namely ‘Nil’
      In the expression: head Nil
      In an equation for ‘it’: it = head Nil

tail :: Vec (n + 1) a -> Vec n a Source #

Extract the elements after the head of a vector

>>> tail (1:>2:>3:>Nil)
2 :> 3 :> Nil
>>> tail Nil

<interactive>:...
    • Couldn't match type ‘1’ with ‘0’
      Expected type: Vec (0 + 1) a
        Actual type: Vec 0 a
    • In the first argument of ‘tail’, namely ‘Nil’
      In the expression: tail Nil
      In an equation for ‘it’: it = tail Nil

last :: Vec (n + 1) a -> a Source #

Extract the last element of a vector

>>> last (1:>2:>3:>Nil)
3
>>> last Nil

<interactive>:...
    • Couldn't match type ‘1’ with ‘0’
      Expected type: Vec (0 + 1) a
        Actual type: Vec 0 a
    • In the first argument of ‘last’, namely ‘Nil’
      In the expression: last Nil
      In an equation for ‘it’: it = last Nil

init :: Vec (n + 1) a -> Vec n a Source #

Extract all the elements of a vector except the last element

>>> init (1:>2:>3:>Nil)
1 :> 2 :> Nil
>>> init Nil

<interactive>:...
    • Couldn't match type ‘1’ with ‘0’
      Expected type: Vec (0 + 1) a
        Actual type: Vec 0 a
    • In the first argument of ‘init’, namely ‘Nil’
      In the expression: init Nil
      In an equation for ‘it’: it = init Nil

shiftInAt0 Source #

Arguments

:: KnownNat n 
=> Vec n a

The old vector

-> Vec m a

The elements to shift in at the head

-> (Vec n a, Vec m a)

(The new vector, shifted out elements)

Shift in elements to the head of a vector, bumping out elements at the tail. The result is a tuple containing:

  • The new vector
  • The shifted out elements
>>> shiftInAt0 (1 :> 2 :> 3 :> 4 :> Nil) ((-1) :> 0 :> Nil)
(-1 :> 0 :> 1 :> 2 :> Nil,3 :> 4 :> Nil)
>>> shiftInAt0 (1 :> Nil) ((-1) :> 0 :> Nil)
(-1 :> Nil,0 :> 1 :> Nil)

shiftInAtN Source #

Arguments

:: KnownNat m 
=> Vec n a

The old vector

-> Vec m a

The elements to shift in at the tail

-> (Vec n a, Vec m a)

(The new vector, shifted out elements)

Shift in element to the tail of a vector, bumping out elements at the head. The result is a tuple containing:

  • The new vector
  • The shifted out elements
>>> shiftInAtN (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> Nil)
(3 :> 4 :> 5 :> 6 :> Nil,1 :> 2 :> Nil)
>>> shiftInAtN (1 :> Nil) (2 :> 3 :> Nil)
(3 :> Nil,1 :> 2 :> Nil)

(+>>) :: KnownNat n => a -> Vec n a -> Vec n a infixr 4 Source #

Add an element to the head of a vector, and extract all but the last element.

>>> 1 +>> (3:>4:>5:>Nil)
1 :> 3 :> 4 :> Nil
>>> 1 +>> Nil
Nil

(<<+) :: Vec n a -> a -> Vec n a infixl 4 Source #

Add an element to the tail of a vector, and extract all but the first element.

>>> (3:>4:>5:>Nil) <<+ 1
4 :> 5 :> 1 :> Nil
>>> Nil <<+ 1
Nil

shiftOutFrom0 Source #

Arguments

:: (Default a, KnownNat m) 
=> SNat m

m, the number of elements to shift out

-> Vec (m + n) a

The old vector

-> (Vec (m + n) a, Vec m a)

(The new vector, shifted out elements)

Shift m elements out from the head of a vector, filling up the tail with Default values. The result is a tuple containing:

  • The new vector
  • The shifted out values
>>> shiftOutFrom0 d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer)
(3 :> 4 :> 5 :> 0 :> 0 :> Nil,1 :> 2 :> Nil)

shiftOutFromN Source #

Arguments

:: (Default a, KnownNat n) 
=> SNat m

m, the number of elements to shift out

-> Vec (m + n) a

The old vector

-> (Vec (m + n) a, Vec m a)

(The new vector, shifted out elements)

Shift m elements out from the tail of a vector, filling up the head with Default values. The result is a tuple containing:

  • The new vector
  • The shifted out values
>>> shiftOutFromN d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer)
(0 :> 0 :> 1 :> 2 :> 3 :> Nil,4 :> 5 :> Nil)

(++) :: Vec n a -> Vec m a -> Vec (n + m) a infixr 5 Source #

Append two vectors.

>>> (1:>2:>3:>Nil) ++ (7:>8:>Nil)
1 :> 2 :> 3 :> 7 :> 8 :> Nil

splitAt :: SNat m -> Vec (m + n) a -> (Vec m a, Vec n a) Source #

Split a vector into two vectors at the given point.

>>> splitAt (SNat :: SNat 3) (1:>2:>3:>7:>8:>Nil)
(1 :> 2 :> 3 :> Nil,7 :> 8 :> Nil)
>>> splitAt d3 (1:>2:>3:>7:>8:>Nil)
(1 :> 2 :> 3 :> Nil,7 :> 8 :> Nil)

splitAtI :: KnownNat m => Vec (m + n) a -> (Vec m a, Vec n a) Source #

Split a vector into two vectors where the length of the two is determined by the context.

>>> splitAtI (1:>2:>3:>7:>8:>Nil) :: (Vec 2 Int, Vec 3 Int)
(1 :> 2 :> Nil,3 :> 7 :> 8 :> Nil)

concat :: Vec n (Vec m a) -> Vec (n * m) a Source #

Concatenate a vector of vectors.

>>> concat ((1:>2:>3:>Nil) :> (4:>5:>6:>Nil) :> (7:>8:>9:>Nil) :> (10:>11:>12:>Nil) :> Nil)
1 :> 2 :> 3 :> 4 :> 5 :> 6 :> 7 :> 8 :> 9 :> 10 :> 11 :> 12 :> Nil

concatMap :: (a -> Vec m b) -> Vec n a -> Vec (n * m) b Source #

Map a function over all the elements of a vector and concatentate the resulting vectors.

>>> concatMap (replicate d3) (1:>2:>3:>Nil)
1 :> 1 :> 1 :> 2 :> 2 :> 2 :> 3 :> 3 :> 3 :> Nil

unconcat :: KnownNat n => SNat m -> Vec (n * m) a -> Vec n (Vec m a) Source #

Split a vector of (n * m) elements into a vector of "vectors of length m", where the length m is given.

>>> unconcat d4 (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil)
(1 :> 2 :> 3 :> 4 :> Nil) :> (5 :> 6 :> 7 :> 8 :> Nil) :> (9 :> 10 :> 11 :> 12 :> Nil) :> Nil

unconcatI :: (KnownNat n, KnownNat m) => Vec (n * m) a -> Vec n (Vec m a) Source #

Split a vector of (n * m) elements into a vector of "vectors of length m", where the length m is determined by the context.

>>> unconcatI (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil) :: Vec 2 (Vec 6 Int)
(1 :> 2 :> 3 :> 4 :> 5 :> 6 :> Nil) :> (7 :> 8 :> 9 :> 10 :> 11 :> 12 :> Nil) :> Nil

merge :: KnownNat n => Vec n a -> Vec n a -> Vec (2 * n) a Source #

Merge two vectors, alternating their elements, i.e.,

>>> merge (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> 7 :> 8 :> Nil)
1 :> 5 :> 2 :> 6 :> 3 :> 7 :> 4 :> 8 :> Nil

reverse :: Vec n a -> Vec n a Source #

The elements in a vector in reverse order.

>>> reverse (1:>2:>3:>4:>Nil)
4 :> 3 :> 2 :> 1 :> Nil

imap :: forall n a b. KnownNat n => (Index n -> a -> b) -> Vec n a -> Vec n b Source #

Apply a function of every element of a vector and its index.

>>> :t imap (+) (2 :> 2 :> 2 :> 2 :> Nil)
imap (+) (2 :> 2 :> 2 :> 2 :> Nil) :: Vec 4 (Index 4)
>>> imap (+) (2 :> 2 :> 2 :> 2 :> Nil)
2 :> 3 :> *** Exception: X: Clash.Sized.Index: result 4 is out of bounds: [0..3]
...
>>> imap (\i a -> extend (bitCoerce i) + a) (2 :> 2 :> 2 :> 2 :> Nil) :: Vec 4 (Unsigned 8)
2 :> 3 :> 4 :> 5 :> Nil

"imap f xs" corresponds to the following circuit layout:

izipWith :: KnownNat n => (Index n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c Source #

Zip two vectors with a functions that also takes the elements' indices.

>>> izipWith (\i a b -> i + a + b) (2 :> 2 :> Nil)  (3 :> 3:> Nil)
*** Exception: X: Clash.Sized.Index: result 3 is out of bounds: [0..1]
...
>>> izipWith (\i a b -> extend (bitCoerce i) + a + b) (2 :> 2 :> Nil) (3 :> 3 :> Nil) :: Vec 2 (Unsigned 8)
5 :> 6 :> Nil

"imap f xs" corresponds to the following circuit layout:

NB: izipWith is strict in its second argument, and lazy in its third. This matters when izipWith is used in a recursive setting. See lazyV for more information.

ifoldr :: KnownNat n => (Index n -> a -> b -> b) -> b -> Vec n a -> b Source #

Right fold (function applied to each element and its index)

>>> let findLeftmost x xs = ifoldr (\i a b -> if a == x then Just i else b) Nothing xs
>>> findLeftmost 3 (1:>3:>2:>4:>3:>5:>6:>Nil)
Just 1
>>> findLeftmost 8 (1:>3:>2:>4:>3:>5:>6:>Nil)
Nothing

"ifoldr f z xs" corresponds to the following circuit layout:

ifoldl :: KnownNat n => (a -> Index n -> b -> a) -> a -> Vec n b -> a Source #

Left fold (function applied to each element and its index)

>>> let findRightmost x xs = ifoldl (\a i b -> if b == x then Just i else a) Nothing xs
>>> findRightmost 3 (1:>3:>2:>4:>3:>5:>6:>Nil)
Just 4
>>> findRightmost 8 (1:>3:>2:>4:>3:>5:>6:>Nil)
Nothing

"ifoldl f z xs" corresponds to the following circuit layout:

indices :: KnownNat n => SNat n -> Vec n (Index n) Source #

Generate a vector of indices.

>>> indices d4
0 :> 1 :> 2 :> 3 :> Nil

indicesI :: KnownNat n => Vec n (Index n) Source #

Generate a vector of indices, where the length of the vector is determined by the context.

>>> indicesI :: Vec 4 (Index 4)
0 :> 1 :> 2 :> 3 :> Nil

findIndex :: KnownNat n => (a -> Bool) -> Vec n a -> Maybe (Index n) Source #

"findIndex p xs" returns the index of the first element of xs satisfying the predicate p, or Nothing if there is no such element.

>>> findIndex (> 3) (1:>3:>2:>4:>3:>5:>6:>Nil)
Just 3
>>> findIndex (> 8) (1:>3:>2:>4:>3:>5:>6:>Nil)
Nothing

elemIndex :: (KnownNat n, Eq a) => a -> Vec n a -> Maybe (Index n) Source #

"elemIndex a xs" returns the index of the first element which is equal (by ==) to the query element a, or Nothing if there is no such element.

>>> elemIndex 3 (1:>3:>2:>4:>3:>5:>6:>Nil)
Just 1
>>> elemIndex 8 (1:>3:>2:>4:>3:>5:>6:>Nil)
Nothing

zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c Source #

zipWith generalizes zip by zipping with the function given as the first argument, instead of a tupling function. For example, "zipWith (+)" applied to two vectors produces the vector of corresponding sums.

zipWith f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) == (f x1 y1 :> f x2 y2 :> ... :> f xn yn :> Nil)

"zipWith f xs ys" corresponds to the following circuit layout:

NB: zipWith is strict in its second argument, and lazy in its third. This matters when zipWith is used in a recursive setting. See lazyV for more information.

zipWith3 :: (a -> b -> c -> d) -> Vec n a -> Vec n b -> Vec n c -> Vec n d Source #

zipWith3 generalizes zip3 by zipping with the function given as the first argument, instead of a tupling function.

zipWith3 f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) (z1 :> z2 :> ... :> zn :> Nil) == (f x1 y1 z1 :> f x2 y2 z2 :> ... :> f xn yn zn :> Nil)

"zipWith3 f xs ys zs" corresponds to the following circuit layout:

NB: zipWith3 is strict in its second argument, and lazy in its third and fourth. This matters when zipWith3 is used in a recursive setting. See lazyV for more information.

zipWith4 :: (a -> b -> c -> d -> e) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e Source #

zipWith5 :: (a -> b -> c -> d -> e -> f) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f Source #

zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g Source #

zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n h Source #

foldr1 :: (a -> a -> a) -> Vec (n + 1) a -> a Source #

foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-empty vectors.

foldr1 f (x1 :> ... :> xn2 :> xn1 :> xn :> Nil) == x1 `f` (... (xn2 `f` (xn1 `f` xn))...)
foldr1 f (x1 :> Nil)                            == x1
foldr1 f Nil                                    == TYPE ERROR
>>> foldr1 (/) (5 :> 4 :> 3 :> 2 :> 1 :> Nil)
1.875

"foldr1 f xs" corresponds to the following circuit layout:

NB: "foldr1 f z xs" produces a linear structure, which has a depth, or delay, of O(length xs). Use fold if your binary operator f is associative, as "fold f xs" produces a structure with a depth of O(log_2(length xs)).

foldl1 :: (a -> a -> a) -> Vec (n + 1) a -> a Source #

foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty vectors.

foldl1 f (x1 :> x2 :> x3 :> ... :> xn :> Nil) == (...((x1 `f` x2) `f` x3) `f`...) `f` xn
foldl1 f (x1 :> Nil)                          == x1
foldl1 f Nil                                  == TYPE ERROR
>>> foldl1 (/) (1 :> 5 :> 4 :> 3 :> 2 :> Nil)
8.333333333333333e-3

"foldl1 f xs" corresponds to the following circuit layout:

NB: "foldl1 f z xs" produces a linear structure, which has a depth, or delay, of O(length xs). Use fold if your binary operator f is associative, as "fold f xs" produces a structure with a depth of O(log_2(length xs)).

fold :: forall n a. (a -> a -> a) -> Vec (n + 1) a -> a Source #

fold is a variant of foldr1 and foldl1, but instead of reducing from right to left, or left to right, it reduces a vector using a tree-like structure. The depth, or delay, of the structure produced by "fold f xs", is hence O(log_2(length xs)), and not O(length xs).

NB: The binary operator "f" in "fold f xs" must be associative.

fold f (x1 :> x2 :> ... :> xn1 :> xn :> Nil) == ((x1 `f` x2) `f` ...) `f` (... `f` (xn1 `f` xn))
fold f (x1 :> Nil)                           == x1
fold f Nil                                   == TYPE ERROR
>>> fold (+) (5 :> 4 :> 3 :> 2 :> 1 :> Nil)
15

"fold f xs" corresponds to the following circuit layout:

scanl :: (b -> a -> b) -> b -> Vec n a -> Vec (n + 1) b Source #

scanl is similar to foldl, but returns a vector of successive reduced values from the left:

scanl f z (x1 :> x2 :> ... :> Nil) == z :> (z `f` x1) :> ((z `f` x1) `f` x2) :> ... :> Nil
>>> scanl (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)
0 :> 5 :> 9 :> 12 :> 14 :> Nil

"scanl f z xs" corresponds to the following circuit layout:

  • NB:

    last (scanl f z xs) == foldl f z xs
  • For a different trade-off between circuit size and logic depth for associative operators, see Clash.Sized.RTree

scanl1 :: KnownNat n => (a -> a -> a) -> Vec (n + 1) a -> Vec (n + 1) a Source #

scanl with no seed value

>>> scanl1 (-) (1 :> 2 :> 3 :> 4 :> Nil)
1 :> -1 :> -4 :> -8 :> Nil

scanr1 :: KnownNat n => (a -> a -> a) -> Vec (n + 1) a -> Vec (n + 1) a Source #

scanr with no seed value

>>> scanr1 (-) (1 :> 2 :> 3 :> 4 :> Nil)
-2 :> 3 :> -1 :> 4 :> Nil

postscanl :: (b -> a -> b) -> b -> Vec n a -> Vec n b Source #

postscanl is a variant of scanl where the first result is dropped:

postscanl f z (x1 :> x2 :> ... :> Nil) == (z `f` x1) :> ((z `f` x1) `f` x2) :> ... :> Nil
>>> postscanl (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)
5 :> 9 :> 12 :> 14 :> Nil

"postscanl f z xs" corresponds to the following circuit layout:

scanr :: (a -> b -> b) -> b -> Vec n a -> Vec (n + 1) b Source #

scanr is similar to foldr, but returns a vector of successive reduced values from the right:

scanr f z (... :> xn1 :> xn :> Nil) == ... :> (xn1 `f` (xn `f` z)) :> (xn `f` z) :> z :> Nil
>>> scanr (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)
14 :> 9 :> 5 :> 2 :> 0 :> Nil

"scanr f z xs" corresponds to the following circuit layout:

  • NB:

    head (scanr f z xs) == foldr f z xs
  • For a different trade-off between circuit size and logic depth for associative operators, see Clash.Sized.RTree

postscanr :: (a -> b -> b) -> b -> Vec n a -> Vec n b Source #

postscanr is a variant of scanr that where the last result is dropped:

postscanr f z (... :> xn1 :> xn :> Nil) == ... :> (xn1 `f` (xn `f` z)) :> (xn `f` z) :> Nil
>>> postscanr (+) 0 (5 :> 4 :> 3 :> 2 :> Nil)
14 :> 9 :> 5 :> 2 :> Nil

"postscanr f z xs" corresponds to the following circuit layout:

mapAccumL :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y) Source #

The mapAccumL function behaves like a combination of map and foldl; it applies a function to each element of a vector, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new vector.

>>> mapAccumL (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil)
(10,1 :> 2 :> 4 :> 7 :> Nil)

"mapAccumL f acc xs" corresponds to the following circuit layout:

mapAccumR :: (acc -> x -> (acc, y)) -> acc -> Vec n x -> (acc, Vec n y) Source #

The mapAccumR function behaves like a combination of map and foldr; it applies a function to each element of a vector, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new vector.

>>> mapAccumR (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil)
(10,10 :> 8 :> 5 :> 1 :> Nil)

"mapAccumR f acc xs" corresponds to the following circuit layout:

zip :: Vec n a -> Vec n b -> Vec n (a, b) Source #

zip takes two vectors and returns a vector of corresponding pairs.

>>> zip (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil)
(1,4) :> (2,3) :> (3,2) :> (4,1) :> Nil

zip3 :: Vec n a -> Vec n b -> Vec n c -> Vec n (a, b, c) Source #

zip3 takes three vectors and returns a vector of corresponding triplets.

>>> zip3 (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil) (5:>6:>7:>8:>Nil)
(1,4,5) :> (2,3,6) :> (3,2,7) :> (4,1,8) :> Nil

zip4 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n (a, b, c, d) Source #

zip4 takes four vectors and returns a list of quadruples, analogous to zip.

zip5 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n (a, b, c, d, e) Source #

zip5 takes five vectors and returns a list of five-tuples, analogous to zip.

zip6 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n (a, b, c, d, e, f) Source #

zip6 takes six vectors and returns a list of six-tuples, analogous to zip.

zip7 :: Vec n a -> Vec n b -> Vec n c -> Vec n d -> Vec n e -> Vec n f -> Vec n g -> Vec n (a, b, c, d, e, f, g) Source #

zip7 takes seven vectors and returns a list of seven-tuples, analogous to zip.

unzip :: Vec n (a, b) -> (Vec n a, Vec n b) Source #

unzip transforms a vector of pairs into a vector of first components and a vector of second components.

>>> unzip ((1,4):>(2,3):>(3,2):>(4,1):>Nil)
(1 :> 2 :> 3 :> 4 :> Nil,4 :> 3 :> 2 :> 1 :> Nil)

unzip3 :: Vec n (a, b, c) -> (Vec n a, Vec n b, Vec n c) Source #

unzip3 transforms a vector of triplets into a vector of first components, a vector of second components, and a vector of third components.

>>> unzip3 ((1,4,5):>(2,3,6):>(3,2,7):>(4,1,8):>Nil)
(1 :> 2 :> 3 :> 4 :> Nil,4 :> 3 :> 2 :> 1 :> Nil,5 :> 6 :> 7 :> 8 :> Nil)

unzip4 :: Vec n (a, b, c, d) -> (Vec n a, Vec n b, Vec n c, Vec n d) Source #

unzip4 takes a vector of quadruples and returns four vectors, analogous to unzip.

unzip5 :: Vec n (a, b, c, d, e) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e) Source #

unzip5 takes a vector of five-tuples and returns five vectors, analogous to unzip.

unzip6 :: Vec n (a, b, c, d, e, f) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f) Source #

unzip6 takes a vector of six-tuples and returns six vectors, analogous to unzip.

unzip7 :: Vec n (a, b, c, d, e, f, g) -> (Vec n a, Vec n b, Vec n c, Vec n d, Vec n e, Vec n f, Vec n g) Source #

unzip7 takes a vector of seven-tuples and returns seven vectors, analogous to unzip.

(!!) :: (KnownNat n, Enum i) => Vec n a -> i -> a Source #

"xs !! n" returns the n'th element of xs.

NB: Vector elements have an ASCENDING subscript starting from 0 and ending at length - 1.

>>> (1:>2:>3:>4:>5:>Nil) !! 4
5
>>> (1:>2:>3:>4:>5:>Nil) !! (length (1:>2:>3:>4:>5:>Nil) - 1)
5
>>> (1:>2:>3:>4:>5:>Nil) !! 1
2
>>> (1:>2:>3:>4:>5:>Nil) !! 14
*** Exception: Clash.Sized.Vector.(!!): index 14 is larger than maximum index 4
...

length :: KnownNat n => Vec n a -> Int Source #

The length of a Vector as an Int value.

>>> length (6 :> 7 :> 8 :> Nil)
3

replace :: (KnownNat n, Enum i) => i -> a -> Vec n a -> Vec n a Source #

"replace n a xs" returns the vector xs where the n'th element is replaced by a.

NB: Vector elements have an ASCENDING subscript starting from 0 and ending at length - 1.

>>> replace 3 7 (1:>2:>3:>4:>5:>Nil)
1 :> 2 :> 3 :> 7 :> 5 :> Nil
>>> replace 0 7 (1:>2:>3:>4:>5:>Nil)
7 :> 2 :> 3 :> 4 :> 5 :> Nil
>>> replace 9 7 (1:>2:>3:>4:>5:>Nil)
1 :> 2 :> 3 :> 4 :> 5 :> *** Exception: Clash.Sized.Vector.replace: index 9 is larger than maximum index 4
...

take :: SNat m -> Vec (m + n) a -> Vec m a Source #

"take n xs" returns the n-length prefix of xs.

>>> take (SNat :: SNat 3) (1:>2:>3:>4:>5:>Nil)
1 :> 2 :> 3 :> Nil
>>> take d3               (1:>2:>3:>4:>5:>Nil)
1 :> 2 :> 3 :> Nil
>>> take d0               (1:>2:>Nil)
Nil
>>> take d4               (1:>2:>Nil)

<interactive>:...
    • Couldn't match type ‘4 + n0’ with ‘2’
      Expected type: Vec (4 + n0) a
        Actual type: Vec (1 + 1) a
      The type variable ‘n0’ is ambiguous
    • In the second argument of ‘take’, namely ‘(1 :> 2 :> Nil)’
      In the expression: take d4 (1 :> 2 :> Nil)
      In an equation for ‘it’: it = take d4 (1 :> 2 :> Nil)

takeI :: KnownNat m => Vec (m + n) a -> Vec m a Source #

"takeI xs" returns the prefix of xs as demanded by the context.

>>> takeI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int
1 :> 2 :> Nil

drop :: SNat m -> Vec (m + n) a -> Vec n a Source #

"drop n xs" returns the suffix of xs after the first n elements.

>>> drop (SNat :: SNat 3) (1:>2:>3:>4:>5:>Nil)
4 :> 5 :> Nil
>>> drop d3               (1:>2:>3:>4:>5:>Nil)
4 :> 5 :> Nil
>>> drop d0               (1:>2:>Nil)
1 :> 2 :> Nil
>>> drop d4               (1:>2:>Nil)

<interactive>:...: error:...
    • Couldn't match...type ‘4 + n0...
      The type variable ‘n0’ is ambiguous
    • In the first argument of ‘print’, namely ‘it’
      In a stmt of an interactive GHCi command: print it

dropI :: KnownNat m => Vec (m + n) a -> Vec n a Source #

"dropI xs" returns the suffix of xs as demanded by the context.

>>> dropI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int
4 :> 5 :> Nil

at :: SNat m -> Vec (m + (n + 1)) a -> a Source #

"at n xs" returns n'th element of xs

NB: Vector elements have an ASCENDING subscript starting from 0 and ending at length - 1.

>>> at (SNat :: SNat 1) (1:>2:>3:>4:>5:>Nil)
2
>>> at d1               (1:>2:>3:>4:>5:>Nil)
2

select :: CmpNat (i + s) (s * n) ~ 'GT => SNat f -> SNat s -> SNat n -> Vec (f + i) a -> Vec n a Source #

"select f s n xs" selects n elements with step-size s and offset f from xs.

>>> select (SNat :: SNat 1) (SNat :: SNat 2) (SNat :: SNat 3) (1:>2:>3:>4:>5:>6:>7:>8:>Nil)
2 :> 4 :> 6 :> Nil
>>> select d1 d2 d3 (1:>2:>3:>4:>5:>6:>7:>8:>Nil)
2 :> 4 :> 6 :> Nil

selectI :: (CmpNat (i + s) (s * n) ~ 'GT, KnownNat n) => SNat f -> SNat s -> Vec (f + i) a -> Vec n a Source #

"selectI f s xs" selects as many elements as demanded by the context with step-size s and offset f from xs.

>>> selectI d1 d2 (1:>2:>3:>4:>5:>6:>7:>8:>Nil) :: Vec 2 Int
2 :> 4 :> Nil

replicate :: SNat n -> a -> Vec n a Source #

"replicate n a" returns a vector that has n copies of a.

>>> replicate (SNat :: SNat 3) 6
6 :> 6 :> 6 :> Nil
>>> replicate d3 6
6 :> 6 :> 6 :> Nil

repeat :: KnownNat n => a -> Vec n a Source #

"repeat a" creates a vector with as many copies of a as demanded by the context.

>>> repeat 6 :: Vec 5 Int
6 :> 6 :> 6 :> 6 :> 6 :> Nil

iterate :: SNat n -> (a -> a) -> a -> Vec n a Source #

"iterate n f x" returns a vector starting with x followed by n repeated applications of f to x.

iterate (SNat :: SNat 4) f x == (x :> f x :> f (f x) :> f (f (f x)) :> Nil)
iterate d4 f x               == (x :> f x :> f (f x) :> f (f (f x)) :> Nil)
>>> iterate d4 (+1) 1
1 :> 2 :> 3 :> 4 :> Nil

"iterate n f z" corresponds to the following circuit layout:

iterateI :: forall n a. KnownNat n => (a -> a) -> a -> Vec n a Source #

"iterateI f x" returns a vector starting with x followed by n repeated applications of f to x, where n is determined by the context.

iterateI f x :: Vec 3 a == (x :> f x :> f (f x) :> Nil)
>>> iterateI (+1) 1 :: Vec 3 Int
1 :> 2 :> 3 :> Nil

"iterateI f z" corresponds to the following circuit layout:

unfoldr :: SNat n -> (s -> (a, s)) -> s -> Vec n a Source #

"unfoldr n f s" builds a vector of length n from a seed value s, where every element a is created by successive calls of f on s. Unlike unfoldr from Data.List the generating function f cannot dictate the length of the resulting vector, it must be statically known.

a simple use of unfoldr:

>>> unfoldr d10 (\s -> (s,s-1)) 10
10 :> 9 :> 8 :> 7 :> 6 :> 5 :> 4 :> 3 :> 2 :> 1 :> Nil

unfoldrI :: KnownNat n => (s -> (a, s)) -> s -> Vec n a Source #

"unfoldrI f s" builds a vector from a seed value s, where every element a is created by successive calls of f on s; the length of the vector is inferred from the context. Unlike unfoldr from Data.List the generating function f cannot dictate the length of the resulting vector, it must be statically known.

a simple use of unfoldrI:

>>> unfoldrI (\s -> (s,s-1)) 10 :: Vec 10 Int
10 :> 9 :> 8 :> 7 :> 6 :> 5 :> 4 :> 3 :> 2 :> 1 :> Nil

generate :: SNat n -> (a -> a) -> a -> Vec n a Source #

"generate n f x" returns a vector with n repeated applications of f to x.

generate (SNat :: SNat 4) f x == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil)
generate d4 f x               == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil)
>>> generate d4 (+1) 1
2 :> 3 :> 4 :> 5 :> Nil

"generate n f z" corresponds to the following circuit layout:

generateI :: KnownNat n => (a -> a) -> a -> Vec n a Source #

"generateI f x" returns a vector with n repeated applications of f to x, where n is determined by the context.

generateI f x :: Vec 3 a == (f x :> f (f x) :> f (f (f x)) :> Nil)
>>> generateI (+1) 1 :: Vec 3 Int
2 :> 3 :> 4 :> Nil

"generateI f z" corresponds to the following circuit layout:

transpose :: KnownNat n => Vec m (Vec n a) -> Vec n (Vec m a) Source #

Transpose a matrix: go from row-major to column-major

>>> let xss = (1:>2:>Nil):>(3:>4:>Nil):>(5:>6:>Nil):>Nil
>>> xss
(1 :> 2 :> Nil) :> (3 :> 4 :> Nil) :> (5 :> 6 :> Nil) :> Nil
>>> transpose xss
(1 :> 3 :> 5 :> Nil) :> (2 :> 4 :> 6 :> Nil) :> Nil

stencil1d Source #

Arguments

:: KnownNat n 
=> SNat (stX + 1)

Windows length stX, at least size 1

-> (Vec (stX + 1) a -> b)

The stencil (function)

-> Vec ((stX + n) + 1) a 
-> Vec (n + 1) b 

1-dimensional stencil computations

"stencil1d stX f xs", where xs has stX + n elements, applies the stencil computation f on: n + 1 overlapping (1D) windows of length stX, drawn from xs. The resulting vector has n + 1 elements.

>>> let xs = (1:>2:>3:>4:>5:>6:>Nil)
>>> :t xs
xs :: Num a => Vec 6 a
>>> :t stencil1d d2 sum xs
stencil1d d2 sum xs :: Num b => Vec 5 b
>>> stencil1d d2 sum xs
3 :> 5 :> 7 :> 9 :> 11 :> Nil

stencil2d Source #

Arguments

:: (KnownNat n, KnownNat m) 
=> SNat (stY + 1)

Window hight stY, at least size 1

-> SNat (stX + 1)

Window width stX, at least size 1

-> (Vec (stY + 1) (Vec (stX + 1) a) -> b)

The stencil (function)

-> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) 
-> Vec (m + 1) (Vec (n + 1) b) 

2-dimensional stencil computations

"stencil2d stY stX f xss", where xss is a matrix of stY + m rows of stX + n elements, applies the stencil computation f on: (m + 1) * (n + 1) overlapping (2D) windows of stY rows of stX elements, drawn from xss. The result matrix has m + 1 rows of n + 1 elements.

>>> let xss = ((1:>2:>3:>4:>Nil):>(5:>6:>7:>8:>Nil):>(9:>10:>11:>12:>Nil):>(13:>14:>15:>16:>Nil):>Nil)
>>> :t xss
xss :: Num a => Vec 4 (Vec 4 a)
>>> :t stencil2d d2 d2 (sum . map sum) xss
stencil2d d2 d2 (sum . map sum) xss :: Num b => Vec 3 (Vec 3 b)
>>> stencil2d d2 d2 (sum . map sum) xss
(14 :> 18 :> 22 :> Nil) :> (30 :> 34 :> 38 :> Nil) :> (46 :> 50 :> 54 :> Nil) :> Nil

windows1d Source #

Arguments

:: KnownNat n 
=> SNat (stX + 1)

Length of the window, at least size 1

-> Vec ((stX + n) + 1) a 
-> Vec (n + 1) (Vec (stX + 1) a) 

"windows1d stX xs", where the vector xs has stX + n elements, returns a vector of n + 1 overlapping (1D) windows of xs of length stX.

>>> let xs = (1:>2:>3:>4:>5:>6:>Nil)
>>> :t xs
xs :: Num a => Vec 6 a
>>> :t windows1d d2 xs
windows1d d2 xs :: Num a => Vec 5 (Vec 2 a)
>>> windows1d d2 xs
(1 :> 2 :> Nil) :> (2 :> 3 :> Nil) :> (3 :> 4 :> Nil) :> (4 :> 5 :> Nil) :> (5 :> 6 :> Nil) :> Nil

windows2d Source #

Arguments

:: (KnownNat n, KnownNat m) 
=> SNat (stY + 1)

Window hight stY, at least size 1

-> SNat (stX + 1)

Window width stX, at least size 1

-> Vec ((stY + m) + 1) (Vec ((stX + n) + 1) a) 
-> Vec (m + 1) (Vec (n + 1) (Vec (stY + 1) (Vec (stX + 1) a))) 

"windows2d stY stX xss", where matrix xss has stY + m rows of stX + n, returns a matrix of m+1 rows of n+1 elements. The elements of this new matrix are the overlapping (2D) windows of xss, where every window has stY rows of stX elements.

>>> let xss = ((1:>2:>3:>4:>Nil):>(5:>6:>7:>8:>Nil):>(9:>10:>11:>12:>Nil):>(13:>14:>15:>16:>Nil):>Nil)
>>> :t xss
xss :: Num a => Vec 4 (Vec 4 a)
>>> :t windows2d d2 d2 xss
windows2d d2 d2 xss :: Num a => Vec 3 (Vec 3 (Vec 2 (Vec 2 a)))
>>> windows2d d2 d2 xss
(((1 :> 2 :> Nil) :> (5 :> 6 :> Nil) :> Nil) :> ((2 :> 3 :> Nil) :> (6 :> 7 :> Nil) :> Nil) :> ((3 :> 4 :> Nil) :> (7 :> 8 :> Nil) :> Nil) :> Nil) :> (((5 :> 6 :> Nil) :> (9 :> 10 :> Nil) :> Nil) :> ((6 :> 7 :> Nil) :> (10 :> 11 :> Nil) :> Nil) :> ((7 :> 8 :> Nil) :> (11 :> 12 :> Nil) :> Nil) :> Nil) :> (((9 :> 10 :> Nil) :> (13 :> 14 :> Nil) :> Nil) :> ((10 :> 11 :> Nil) :> (14 :> 15 :> Nil) :> Nil) :> ((11 :> 12 :> Nil) :> (15 :> 16 :> Nil) :> Nil) :> Nil) :> Nil

permute Source #

Arguments

:: (Enum i, KnownNat n, KnownNat m) 
=> (a -> a -> a)

Combination function, f

-> Vec n a

Default values, def

-> Vec m i

Index mapping, is

-> Vec (m + k) a

Vector to be permuted, xs

-> Vec n a 

Forward permutation specified by an index mapping, ix. The result vector is initialized by the given defaults, def, and an further values that are permuted into the result are added to the current value using the given combination function, f.

The combination function must be associative and commutative.

backpermute Source #

Arguments

:: (Enum i, KnownNat n) 
=> Vec n a

Source vector, xs

-> Vec m i

Index mapping, is

-> Vec m a 

Backwards permutation specified by an index mapping, is, from the destination vector specifying which element of the source vector xs to read.

"backpermute xs is" is equivalent to "map (xs !!) is".

For example:

>>> let input = 1:>9:>6:>4:>4:>2:>0:>1:>2:>Nil
>>> let from  = 1:>3:>7:>2:>5:>3:>Nil
>>> backpermute input from
9 :> 4 :> 1 :> 6 :> 2 :> 4 :> Nil

scatter Source #

Arguments

:: (Enum i, KnownNat n, KnownNat m) 
=> Vec n a

Default values, def

-> Vec m i

Index mapping, is

-> Vec (m + k) a

Vector to be scattered, xs

-> Vec n a 

Copy elements from the source vector, xs, to the destination vector according to an index mapping is. This is a forward permute operation where a to vector encodes an input to output index mapping. Output elements for indices that are not mapped assume the value in the default vector def.

For example:

>>> let defVec = 0:>0:>0:>0:>0:>0:>0:>0:>0:>Nil
>>> let to = 1:>3:>7:>2:>5:>8:>Nil
>>> let input = 1:>9:>6:>4:>4:>2:>5:>Nil
>>> scatter defVec to input
0 :> 1 :> 4 :> 9 :> 0 :> 4 :> 0 :> 6 :> 2 :> Nil

NB: If the same index appears in the index mapping more than once, the latest mapping is chosen.

gather Source #

Arguments

:: (Enum i, KnownNat n) 
=> Vec n a

Source vector, xs

-> Vec m i

Index mapping, is

-> Vec m a 

Backwards permutation specified by an index mapping, is, from the destination vector specifying which element of the source vector xs to read.

"gather xs is" is equivalent to "map (xs !!) is".

For example:

>>> let input = 1:>9:>6:>4:>4:>2:>0:>1:>2:>Nil
>>> let from  = 1:>3:>7:>2:>5:>3:>Nil
>>> gather input from
9 :> 4 :> 1 :> 6 :> 2 :> 4 :> Nil

interleave Source #

Arguments

:: (KnownNat n, KnownNat d) 
=> SNat d

Interleave step, d

-> Vec (n * d) a 
-> Vec (d * n) a 

"interleave d xs" creates a vector:

<x_0,x_d,x_(2d),...,x_1,x_(d+1),x_(2d+1),...,x_(d-1),x_(2d-1),x_(3d-1)>
>>> let xs = 1 :> 2 :> 3 :> 4 :> 5 :> 6 :> 7 :> 8 :> 9 :> Nil
>>> interleave d3 xs
1 :> 4 :> 7 :> 2 :> 5 :> 8 :> 3 :> 6 :> 9 :> Nil

rotateLeft :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a Source #

Dynamically rotate a Vector to the left:

>>> let xs = 1 :> 2 :> 3 :> 4 :> Nil
>>> rotateLeft xs 1
2 :> 3 :> 4 :> 1 :> Nil
>>> rotateLeft xs 2
3 :> 4 :> 1 :> 2 :> Nil
>>> rotateLeft xs (-1)
4 :> 1 :> 2 :> 3 :> Nil

NB: Use rotateLeftS if you want to rotate left by a static amount.

rotateRight :: (Enum i, KnownNat n) => Vec n a -> i -> Vec n a Source #

Dynamically rotate a Vector to the right:

>>> let xs = 1 :> 2 :> 3 :> 4 :> Nil
>>> rotateRight xs 1
4 :> 1 :> 2 :> 3 :> Nil
>>> rotateRight xs 2
3 :> 4 :> 1 :> 2 :> Nil
>>> rotateRight xs (-1)
2 :> 3 :> 4 :> 1 :> Nil

NB: Use rotateRightS if you want to rotate right by a static amount.

rotateLeftS :: KnownNat n => Vec n a -> SNat d -> Vec n a Source #

Statically rotate a Vector to the left:

>>> let xs = 1 :> 2 :> 3 :> 4 :> Nil
>>> rotateLeftS xs d1
2 :> 3 :> 4 :> 1 :> Nil

NB: Use rotateLeft if you want to rotate left by a dynamic amount.

rotateRightS :: KnownNat n => Vec n a -> SNat d -> Vec n a Source #

Statically rotate a Vector to the right:

>>> let xs = 1 :> 2 :> 3 :> 4 :> Nil
>>> rotateRightS xs d1
4 :> 1 :> 2 :> 3 :> Nil

NB: Use rotateRight if you want to rotate right by a dynamic amount.

toList :: Vec n a -> [a] Source #

Convert a vector to a list.

>>> toList (1:>2:>3:>Nil)
[1,2,3]

NB: This function is not synthesizable

listToVecTH :: Lift a => [a] -> ExpQ Source #

Create a vector literal from a list literal.

$(listToVecTH [1::Signed 8,2,3,4,5]) == (8:>2:>3:>4:>5:>Nil) :: Vec 5 (Signed 8)
>>> [1 :: Signed 8,2,3,4,5]
[1,2,3,4,5]
>>> $(listToVecTH [1::Signed 8,2,3,4,5])
1 :> 2 :> 3 :> 4 :> 5 :> Nil

asNatProxy :: Vec n a -> Proxy n Source #

Vector as a Proxy for Nat

lengthS :: KnownNat n => Vec n a -> SNat n Source #

Length of a Vector as an SNat value

lazyV :: KnownNat n => Vec n a -> Vec n a Source #

What you should use when your vector functions are too strict in their arguments.

doctests setup

Expand
>>> let compareSwapL a b = if a < b then (a,b) else (b,a)
>>> :{
let sortVL :: (Ord a, KnownNat (n + 1)) => Vec ((n + 1) + 1) a -> Vec ((n + 1) + 1) a
    sortVL xs = map fst sorted :< (snd (last sorted))
      where
        lefts  = head xs :> map snd (init sorted)
        rights = tail xs
        sorted = zipWith compareSwapL (lazyV lefts) rights
:}
>>> :{
let sortV_flip xs = map fst sorted :< (snd (last sorted))
      where
        lefts  = head xs :> map snd (init sorted)
        rights = tail xs
        sorted = zipWith (flip compareSwapL) rights lefts
:}

Example usage

For example:

-- Bubble sort for 1 iteration
sortV xs = map fst sorted :< (snd (last sorted))
 where
   lefts  = head xs :> map snd (init sorted)
   rights = tail xs
   sorted = zipWith compareSwapL lefts rights

-- Compare and swap
compareSwapL a b = if a < b then (a,b)
                            else (b,a)

Will not terminate because zipWith is too strict in its second argument.

In this case, adding lazyV on zipWiths second argument:

sortVL xs = map fst sorted :< (snd (last sorted))
 where
   lefts  = head xs :> map snd (init sorted)
   rights = tail xs
   sorted = zipWith compareSwapL (lazyV lefts) rights

Results in a successful computation:

>>> sortVL (4 :> 1 :> 2 :> 3 :> Nil)
1 :> 2 :> 3 :> 4 :> Nil

NB: There is also a solution using flip, but it slightly obfuscates the meaning of the code:

sortV_flip xs = map fst sorted :< (snd (last sorted))
 where
   lefts  = head xs :> map snd (init sorted)
   rights = tail xs
   sorted = zipWith (flip compareSwapL) rights lefts
>>> sortV_flip (4 :> 1 :> 2 :> 3 :> Nil)
1 :> 2 :> 3 :> 4 :> Nil

dfold Source #

Arguments

:: forall p k a. KnownNat k 
=> Proxy (p :: TyFun Nat Type -> Type)

The motive

-> (forall l. SNat l -> a -> (p @@ l) -> p @@ (l + 1))

Function to fold.

NB: The SNat l is not the index (see (!!)) to the element a. SNat l is the number of elements that occur to the right of a.

-> (p @@ 0)

Initial element

-> Vec k a

Vector to fold over

-> p @@ k 

A dependently typed fold.

doctests setup

Expand
>>> :seti -fplugin GHC.TypeLits.Normalise
>>> import Data.Singletons (Apply, Proxy (..), TyFun)
>>> data Append (m :: Nat) (a :: Type) (f :: TyFun Nat Type) :: Type
>>> type instance Apply (Append m a) l = Vec (l + m) a
>>> let append' xs ys = dfold (Proxy :: Proxy (Append m a)) (const (:>)) ys xs

Example usage

Using lists, we can define append (a.k.a. Data.List.++) in terms of Data.List.foldr:

>>> import qualified Data.List
>>> let append xs ys = Data.List.foldr (:) ys xs
>>> append [1,2] [3,4]
[1,2,3,4]

However, when we try to do the same for Vec, by defining append' in terms of Clash.Sized.Vector.foldr:

append' xs ys = foldr (:>) ys xs

we get a type error:

>>> let append' xs ys = foldr (:>) ys xs

<interactive>:...
    • Occurs check: cannot construct the infinite type: ... ~ ... + 1
      Expected type: a -> Vec ... a -> Vec ... a
        Actual type: a -> Vec ... a -> Vec (... + 1) a
    • In the first argument of ‘foldr’, namely ‘(:>)’
      In the expression: foldr (:>) ys xs
      In an equation for ‘append'’: append' xs ys = foldr (:>) ys xs
    • Relevant bindings include
        ys :: Vec ... a (bound at ...)
        append' :: Vec n a -> Vec ... a -> Vec ... a
          (bound at ...)

The reason is that the type of foldr is:

>>> :t foldr
foldr :: (a -> b -> b) -> b -> Vec n a -> b

While the type of (:>) is:

>>> :t (:>)
(:>) :: a -> Vec n a -> Vec (n + 1) a

We thus need a fold function that can handle the growing vector type: dfold. Compared to foldr, dfold takes an extra parameter, called the motive, that allows the folded function to have an argument and result type that depends on the current length of the vector. Using dfold, we can now correctly define append':

import Data.Singletons
import Data.Proxy

data Append (m :: Nat) (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (Append m a) l = Vec (l + m) a

append' xs ys = dfold (Proxy :: Proxy (Append m a)) (const (:>)) ys xs

We now see that append' has the appropriate type:

>>> :t append'
append' :: KnownNat k => Vec k a -> Vec m a -> Vec (k + m) a

And that it works:

>>> append' (1 :> 2 :> Nil) (3 :> 4 :> Nil)
1 :> 2 :> 3 :> 4 :> Nil

NB: "dfold m f z xs" creates a linear structure, which has a depth, or delay, of O(length xs). Look at dtfold for a dependently typed fold that produces a structure with a depth of O(log_2(length xs)).

dtfold Source #

Arguments

:: forall p k a. KnownNat k 
=> Proxy (p :: TyFun Nat Type -> Type)

The motive

-> (a -> p @@ 0)

Function to apply to every element

-> (forall l. SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))

Function to combine results.

NB: The SNat l indicates the depth/height of the node in the tree that is created by applying this function. The leafs of the tree have depth/height 0, and the root of the tree has height k.

-> Vec (2 ^ k) a

Vector to fold over.

NB: Must have a length that is a power of 2.

-> p @@ k 

A combination of dfold and fold: a dependently typed fold that reduces a vector in a tree-like structure.

doctests setup

Expand
>>> :seti -XUndecidableInstances
>>> import Data.Singletons (Apply, Proxy (..), TyFun)
>>> data IIndex (f :: TyFun Nat Type) :: Type
>>> type instance Apply IIndex l = Index ((2^l)+1)
>>> :{
let populationCount' :: (KnownNat k, KnownNat (2^k)) => BitVector (2^k) -> Index ((2^k)+1)
    populationCount' bv = dtfold (Proxy @IIndex)
                                 fromIntegral
                                 (\_ x y -> add x y)
                                 (bv2v bv)
:}

Example usage

As an example of when you might want to use dtfold we will build a population counter: a circuit that counts the number of bits set to '1' in a BitVector. Given a vector of n bits, we only need we need a data type that can represent the number n: Index (n+1). Index k has a range of [0 .. k-1] (using ceil(log2(k)) bits), hence we need Index n+1. As an initial attempt we will use sum, because it gives a nice (log2(n)) tree-structure of adders:

populationCount :: (KnownNat (n+1), KnownNat (n+2))
                => BitVector (n+1) -> Index (n+2)
populationCount = sum . map fromIntegral . bv2v

The "problem" with this description is that all adders have the same bit-width, i.e. all adders are of the type:

(+) :: Index (n+2) -> Index (n+2) -> Index (n+2).

This is a "problem" because we could have a more efficient structure: one where each layer of adders is precisely wide enough to count the number of bits at that layer. That is, at height d we want the adder to be of type:

Index ((2^d)+1) -> Index ((2^d)+1) -> Index ((2^(d+1))+1)

We have such an adder in the form of the add function, as defined in the instance ExtendingNum instance of Index. However, we cannot simply use fold to create a tree-structure of addes:

>>> :{
let populationCount' :: (KnownNat (n+1), KnownNat (n+2))
                     => BitVector (n+1) -> Index (n+2)
    populationCount' = fold add . map fromIntegral . bv2v
:}

<interactive>:...
    • Couldn't match type ‘((n + 2) + (n + 2)) - 1’ with ‘n + 2’
      Expected type: Index (n + 2) -> Index (n + 2) -> Index (n + 2)
        Actual type: Index (n + 2)
                     -> Index (n + 2) -> AResult (Index (n + 2)) (Index (n + 2))
    • In the first argument of ‘fold’, namely ‘add’
      In the first argument of ‘(.)’, namely ‘fold add’
      In the expression: fold add . map fromIntegral . bv2v
    • Relevant bindings include
        populationCount' :: BitVector (n + 1) -> Index (n + 2)
          (bound at ...)

because fold expects a function of type "a -> a -> a", i.e. a function where the arguments and result all have exactly the same type.

In order to accommodate the type of our add, where the result is larger than the arguments, we must use a dependently typed fold in the form of dtfold:

{-# LANGUAGE UndecidableInstances #-}
import Data.Singletons
import Data.Proxy

data IIndex (f :: TyFun Nat Type) :: Type
type instance Apply IIndex l = Index ((2^l)+1)

populationCount' :: (KnownNat k, KnownNat (2^k))
                 => BitVector (2^k) -> Index ((2^k)+1)
populationCount' bv = dtfold (Proxy @IIndex)
                             fromIntegral
                             (\_ x y -> add x y)
                             (bv2v bv)

And we can test that it works:

>>> :t populationCount' (7 :: BitVector 16)
populationCount' (7 :: BitVector 16) :: Index 17
>>> populationCount' (7 :: BitVector 16)
3

Some final remarks:

  • By using dtfold instead of fold, we had to restrict our BitVector argument to have bit-width that is a power of 2.
  • Even though our original populationCount function specified a structure where all adders had the same width. Most VHDL/(System)Verilog synthesis tools will create a more efficient circuit, i.e. one where the adders have an increasing bit-width for every layer, from the VHDL/(System)Verilog produced by the Clash compiler.

NB: The depth, or delay, of the structure produced by "dtfold m f g xs" is O(log_2(length xs)).

vfold :: forall k a b. KnownNat k => (forall l. SNat l -> a -> Vec l b -> Vec (l + 1) b) -> Vec k a -> Vec k b Source #

Specialised version of dfold that builds a triangular computational structure.

doctests setup

Expand
>>> let compareSwap a b = if a > b then (a,b) else (b,a)
>>> let insert y xs = let (y',xs') = mapAccumL compareSwap y xs in xs' :< y'
>>> let insertionSort = vfold (const insert)

Example usage

compareSwap a b = if a > b then (a,b) else (b,a)
insert y xs     = let (y',xs') = mapAccumL compareSwap y xs in xs' :< y'
insertionSort   = vfold (const insert)

Builds a triangular structure of compare and swaps to sort a row.

>>> insertionSort (7 :> 3 :> 9 :> 1 :> Nil)
1 :> 3 :> 7 :> 9 :> Nil

The circuit layout of insertionSort, build using vfold, is:

maximum :: Ord a => Vec (n + 1) a -> a Source #

The largest element of a non-empty vector

minimum :: Ord a => Vec (n + 1) a -> a Source #

The least element of a non-empty vector

smap :: forall k a b. KnownNat k => (forall l. SNat l -> a -> b) -> Vec k a -> Vec k b Source #

Apply a function to every element of a vector and the element's position (as an SNat value) in the vector.

>>> let rotateMatrix = smap (flip rotateRightS)
>>> let xss = (1:>2:>3:>Nil):>(1:>2:>3:>Nil):>(1:>2:>3:>Nil):>Nil
>>> xss
(1 :> 2 :> 3 :> Nil) :> (1 :> 2 :> 3 :> Nil) :> (1 :> 2 :> 3 :> Nil) :> Nil
>>> rotateMatrix xss
(1 :> 2 :> 3 :> Nil) :> (3 :> 1 :> 2 :> Nil) :> (2 :> 3 :> 1 :> Nil) :> Nil

concatBitVector# :: forall n m. (KnownNat n, KnownNat m) => Vec n (BitVector m) -> BitVector (n * m) Source #

unconcatBitVector# :: forall n m. (KnownNat n, KnownNat m) => BitVector (n * m) -> Vec n (BitVector m) Source #

v2bv :: KnownNat n => Vec n Bit -> BitVector n Source #

Convert a Vec of Bits to a BitVector.

>>> let x = (0:>0:>0:>1:>0:>0:>1:>0:>Nil) :: Vec 8 Bit
>>> x
0 :> 0 :> 0 :> 1 :> 0 :> 0 :> 1 :> 0 :> Nil
>>> v2bv x
0b0001_0010

seqV :: KnownNat n => Vec n a -> b -> b infixr 0 Source #

Evaluate all elements of a vector to WHNF, returning the second argument

forceV :: KnownNat n => Vec n a -> Vec n a Source #

Evaluate all elements of a vector to WHNF

seqVX :: KnownNat n => Vec n a -> b -> b infixr 0 Source #

Evaluate all elements of a vector to WHNF, returning the second argument. Does not propagate XExceptions.

forceVX :: KnownNat n => Vec n a -> Vec n a Source #

Evaluate all elements of a vector to WHNF. Does not propagate XExceptions.

Perfect depth trees

Annotations

Generics type-classes

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

A Generic instance must satisfy the following laws:

from . toid
to . fromid

Minimal complete definition

from, to

Instances

Instances details
Generic Bool

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep Bool :: Type -> Type #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic Ordering

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep Ordering :: Type -> Type #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic Exp 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Exp :: Type -> Type #

Methods

from :: Exp -> Rep Exp x #

to :: Rep Exp x -> Exp #

Generic Match 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Match :: Type -> Type #

Methods

from :: Match -> Rep Match x #

to :: Rep Match x -> Match #

Generic Clause 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Clause :: Type -> Type #

Methods

from :: Clause -> Rep Clause x #

to :: Rep Clause x -> Clause #

Generic Pat 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Pat :: Type -> Type #

Methods

from :: Pat -> Rep Pat x #

to :: Rep Pat x -> Pat #

Generic Type 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Type :: Type -> Type #

Methods

from :: Type -> Rep Type x #

to :: Rep Type x -> Type #

Generic Dec 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Dec :: Type -> Type #

Methods

from :: Dec -> Rep Dec x #

to :: Rep Dec x -> Dec #

Generic Name 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Name :: Type -> Type #

Methods

from :: Name -> Rep Name x #

to :: Rep Name x -> Name #

Generic FunDep 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep FunDep :: Type -> Type #

Methods

from :: FunDep -> Rep FunDep x #

to :: Rep FunDep x -> FunDep #

Generic InjectivityAnn 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep InjectivityAnn :: Type -> Type #

Generic Overlap 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Overlap :: Type -> Type #

Methods

from :: Overlap -> Rep Overlap x #

to :: Rep Overlap x -> Overlap #

Generic ()

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep () :: Type -> Type #

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Version

Since: base-4.9.0.0

Instance details

Defined in Data.Version

Associated Types

type Rep Version :: Type -> Type #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic Void

Since: base-4.8.0.0

Instance details

Defined in Data.Void

Associated Types

type Rep Void :: Type -> Type #

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic ExitCode 
Instance details

Defined in GHC.IO.Exception

Associated Types

type Rep ExitCode :: Type -> Type #

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic All

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep All :: Type -> Type #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Generic Any

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep Any :: Type -> Type #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Generic Fixity

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep Fixity :: Type -> Type #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic Associativity

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep Associativity :: Type -> Type #

Generic SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep SourceUnpackedness :: Type -> Type #

Generic SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep SourceStrictness :: Type -> Type #

Generic DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep DecidedStrictness :: Type -> Type #

Generic Extension 
Instance details

Defined in GHC.LanguageExtensions.Type

Associated Types

type Rep Extension :: Type -> Type #

Generic ForeignSrcLang 
Instance details

Defined in GHC.ForeignSrcLang.Type

Associated Types

type Rep ForeignSrcLang :: Type -> Type #

Generic Half 
Instance details

Defined in Numeric.Half.Internal

Associated Types

type Rep Half :: Type -> Type #

Methods

from :: Half -> Rep Half x #

to :: Rep Half x -> Half #

Generic Boxed 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep Boxed :: Type -> Type #

Methods

from :: Boxed -> Rep Boxed x #

to :: Rep Boxed x -> Boxed #

Generic Tool 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep Tool :: Type -> Type #

Methods

from :: Tool -> Rep Tool x #

to :: Rep Tool x -> Tool #

Generic SrcLoc 
Instance details

Defined in Language.Haskell.Exts.SrcLoc

Associated Types

type Rep SrcLoc :: Type -> Type #

Methods

from :: SrcLoc -> Rep SrcLoc x #

to :: Rep SrcLoc x -> SrcLoc #

Generic SrcSpan 
Instance details

Defined in Language.Haskell.Exts.SrcLoc

Associated Types

type Rep SrcSpan :: Type -> Type #

Methods

from :: SrcSpan -> Rep SrcSpan x #

to :: Rep SrcSpan x -> SrcSpan #

Generic SrcSpanInfo 
Instance details

Defined in Language.Haskell.Exts.SrcLoc

Associated Types

type Rep SrcSpanInfo :: Type -> Type #

Generic Mode 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Associated Types

type Rep Mode :: Type -> Type #

Methods

from :: Mode -> Rep Mode x #

to :: Rep Mode x -> Mode #

Generic Style 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Associated Types

type Rep Style :: Type -> Type #

Methods

from :: Style -> Rep Style x #

to :: Rep Style x -> Style #

Generic Stmt 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Stmt :: Type -> Type #

Methods

from :: Stmt -> Rep Stmt x #

to :: Rep Stmt x -> Stmt #

Generic ModName 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep ModName :: Type -> Type #

Methods

from :: ModName -> Rep ModName x #

to :: Rep ModName x -> ModName #

Generic Phases 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Phases :: Type -> Type #

Methods

from :: Phases -> Rep Phases x #

to :: Rep Phases x -> Phases #

Generic RuleBndr 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep RuleBndr :: Type -> Type #

Methods

from :: RuleBndr -> Rep RuleBndr x #

to :: Rep RuleBndr x -> RuleBndr #

Generic Pragma 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Pragma :: Type -> Type #

Methods

from :: Pragma -> Rep Pragma x #

to :: Rep Pragma x -> Pragma #

Generic DerivClause 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep DerivClause :: Type -> Type #

Generic Con 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Con :: Type -> Type #

Methods

from :: Con -> Rep Con x #

to :: Rep Con x -> Con #

Generic DerivStrategy 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep DerivStrategy :: Type -> Type #

Generic TySynEqn 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep TySynEqn :: Type -> Type #

Methods

from :: TySynEqn -> Rep TySynEqn x #

to :: Rep TySynEqn x -> TySynEqn #

Generic TyVarBndr 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep TyVarBndr :: Type -> Type #

Generic Doc 
Instance details

Defined in Text.PrettyPrint.HughesPJ

Associated Types

type Rep Doc :: Type -> Type #

Methods

from :: Doc -> Rep Doc x #

to :: Rep Doc x -> Doc #

Generic TextDetails 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Associated Types

type Rep TextDetails :: Type -> Type #

Generic PkgName 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep PkgName :: Type -> Type #

Methods

from :: PkgName -> Rep PkgName x #

to :: Rep PkgName x -> PkgName #

Generic Module 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Module :: Type -> Type #

Methods

from :: Module -> Rep Module x #

to :: Rep Module x -> Module #

Generic OccName 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep OccName :: Type -> Type #

Methods

from :: OccName -> Rep OccName x #

to :: Rep OccName x -> OccName #

Generic NameFlavour 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep NameFlavour :: Type -> Type #

Generic NameSpace 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep NameSpace :: Type -> Type #

Generic Loc 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Loc :: Type -> Type #

Methods

from :: Loc -> Rep Loc x #

to :: Rep Loc x -> Loc #

Generic Info 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Info :: Type -> Type #

Methods

from :: Info -> Rep Info x #

to :: Rep Info x -> Info #

Generic ModuleInfo 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep ModuleInfo :: Type -> Type #

Generic Fixity 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Fixity :: Type -> Type #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic FixityDirection 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep FixityDirection :: Type -> Type #

Generic Lit 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Lit :: Type -> Type #

Methods

from :: Lit -> Rep Lit x #

to :: Rep Lit x -> Lit #

Generic Bytes 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Bytes :: Type -> Type #

Methods

from :: Bytes -> Rep Bytes x #

to :: Rep Bytes x -> Bytes #

Generic Body 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Body :: Type -> Type #

Methods

from :: Body -> Rep Body x #

to :: Rep Body x -> Body #

Generic Guard 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Guard :: Type -> Type #

Methods

from :: Guard -> Rep Guard x #

to :: Rep Guard x -> Guard #

Generic Range 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Range :: Type -> Type #

Methods

from :: Range -> Rep Range x #

to :: Rep Range x -> Range #

Generic TypeFamilyHead 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep TypeFamilyHead :: Type -> Type #

Generic Foreign 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Foreign :: Type -> Type #

Methods

from :: Foreign -> Rep Foreign x #

to :: Rep Foreign x -> Foreign #

Generic Callconv 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Callconv :: Type -> Type #

Methods

from :: Callconv -> Rep Callconv x #

to :: Rep Callconv x -> Callconv #

Generic Safety 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Safety :: Type -> Type #

Methods

from :: Safety -> Rep Safety x #

to :: Rep Safety x -> Safety #

Generic Inline 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Inline :: Type -> Type #

Methods

from :: Inline -> Rep Inline x #

to :: Rep Inline x -> Inline #

Generic RuleMatch 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep RuleMatch :: Type -> Type #

Generic AnnTarget 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep AnnTarget :: Type -> Type #

Generic SourceUnpackedness 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep SourceUnpackedness :: Type -> Type #

Generic SourceStrictness 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep SourceStrictness :: Type -> Type #

Generic DecidedStrictness 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep DecidedStrictness :: Type -> Type #

Generic Bang 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Bang :: Type -> Type #

Methods

from :: Bang -> Rep Bang x #

to :: Rep Bang x -> Bang #

Generic PatSynDir 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep PatSynDir :: Type -> Type #

Generic PatSynArgs 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep PatSynArgs :: Type -> Type #

Generic FamilyResultSig 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep FamilyResultSig :: Type -> Type #

Generic TyLit 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep TyLit :: Type -> Type #

Methods

from :: TyLit -> Rep TyLit x #

to :: Rep TyLit x -> TyLit #

Generic Role 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep Role :: Type -> Type #

Methods

from :: Role -> Rep Role x #

to :: Rep Role x -> Role #

Generic AnnLookup 
Instance details

Defined in Language.Haskell.TH.Syntax

Associated Types

type Rep AnnLookup :: Type -> Type #

Generic DatatypeInfo 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep DatatypeInfo :: Type -> Type #

Generic DatatypeVariant 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep DatatypeVariant :: Type -> Type #

Generic ConstructorInfo 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep ConstructorInfo :: Type -> Type #

Generic ConstructorVariant 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep ConstructorVariant :: Type -> Type #

Generic FieldStrictness 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep FieldStrictness :: Type -> Type #

Generic Unpackedness 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep Unpackedness :: Type -> Type #

Generic Strictness 
Instance details

Defined in Language.Haskell.TH.Datatype

Associated Types

type Rep Strictness :: Type -> Type #

Generic Specificity 
Instance details

Defined in Language.Haskell.TH.Datatype.TyVarBndr

Associated Types

type Rep Specificity :: Type -> Type #

Generic DTypeArg 
Instance details

Defined in Language.Haskell.TH.Desugar.Core

Associated Types

type Rep DTypeArg :: Type -> Type #

Methods

from :: DTypeArg -> Rep DTypeArg x #

to :: Rep DTypeArg x -> DTypeArg #

Generic DFunArgs 
Instance details

Defined in Language.Haskell.TH.Desugar.Core

Associated Types

type Rep DFunArgs :: Type -> Type #

Methods

from :: DFunArgs -> Rep DFunArgs x #

to :: Rep DFunArgs x -> DFunArgs #

Generic DVisFunArg 
Instance details

Defined in Language.Haskell.TH.Desugar.Core

Associated Types

type Rep DVisFunArg :: Type -> Type #

Generic DExp 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DExp :: Type -> Type #

Methods

from :: DExp -> Rep DExp x #

to :: Rep DExp x -> DExp #

Generic DPat 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DPat :: Type -> Type #

Methods

from :: DPat -> Rep DPat x #

to :: Rep DPat x -> DPat #

Generic DType 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DType :: Type -> Type #

Methods

from :: DType -> Rep DType x #

to :: Rep DType x -> DType #

Generic DTyVarBndr 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DTyVarBndr :: Type -> Type #

Generic DMatch 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DMatch :: Type -> Type #

Methods

from :: DMatch -> Rep DMatch x #

to :: Rep DMatch x -> DMatch #

Generic DClause 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DClause :: Type -> Type #

Methods

from :: DClause -> Rep DClause x #

to :: Rep DClause x -> DClause #

Generic DLetDec 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DLetDec :: Type -> Type #

Methods

from :: DLetDec -> Rep DLetDec x #

to :: Rep DLetDec x -> DLetDec #

Generic NewOrData 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep NewOrData :: Type -> Type #

Generic DDec 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DDec :: Type -> Type #

Methods

from :: DDec -> Rep DDec x #

to :: Rep DDec x -> DDec #

Generic DPatSynDir 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DPatSynDir :: Type -> Type #

Generic DTypeFamilyHead 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DTypeFamilyHead :: Type -> Type #

Generic DFamilyResultSig 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DFamilyResultSig :: Type -> Type #

Generic DCon 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DCon :: Type -> Type #

Methods

from :: DCon -> Rep DCon x #

to :: Rep DCon x -> DCon #

Generic DConFields 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DConFields :: Type -> Type #

Generic DForeign 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DForeign :: Type -> Type #

Methods

from :: DForeign -> Rep DForeign x #

to :: Rep DForeign x -> DForeign #

Generic DPragma 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DPragma :: Type -> Type #

Methods

from :: DPragma -> Rep DPragma x #

to :: Rep DPragma x -> DPragma #

Generic DRuleBndr 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DRuleBndr :: Type -> Type #

Generic DTySynEqn 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DTySynEqn :: Type -> Type #

Generic DInfo 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DInfo :: Type -> Type #

Methods

from :: DInfo -> Rep DInfo x #

to :: Rep DInfo x -> DInfo #

Generic DDerivClause 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DDerivClause :: Type -> Type #

Generic DDerivStrategy 
Instance details

Defined in Language.Haskell.TH.Desugar.AST

Associated Types

type Rep DDerivStrategy :: Type -> Type #

Generic ConstrRepr Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation

Associated Types

type Rep ConstrRepr :: Type -> Type #

Generic DataReprAnn Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation

Associated Types

type Rep DataReprAnn :: Type -> Type #

Generic ConstrRepr' Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation.Internal

Associated Types

type Rep ConstrRepr' :: Type -> Type #

Generic DataRepr' Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation.Internal

Associated Types

type Rep DataRepr' :: Type -> Type #

Generic Type' Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation.Internal

Associated Types

type Rep Type' :: Type -> Type #

Methods

from :: Type' -> Rep Type' x #

to :: Rep Type' x -> Type' #

Generic PrimitiveWarning Source # 
Instance details

Defined in Clash.Annotations.Primitive

Associated Types

type Rep PrimitiveWarning :: Type -> Type #

Generic Primitive Source # 
Instance details

Defined in Clash.Annotations.Primitive

Associated Types

type Rep Primitive :: Type -> Type #

Generic HDL Source # 
Instance details

Defined in Clash.Annotations.Primitive

Associated Types

type Rep HDL :: Type -> Type #

Methods

from :: HDL -> Rep HDL x #

to :: Rep HDL x -> HDL #

Generic Bit Source # 
Instance details

Defined in Clash.Sized.Internal.BitVector

Associated Types

type Rep Bit :: Type -> Type #

Methods

from :: Bit -> Rep Bit x #

to :: Rep Bit x -> Bit #

Generic ClockAB Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ClockAB :: Type -> Type #

Methods

from :: ClockAB -> Rep ClockAB x #

to :: Rep ClockAB x -> ClockAB #

Generic Femtoseconds Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep Femtoseconds :: Type -> Type #

Generic VDomainConfiguration Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep VDomainConfiguration :: Type -> Type #

Generic InitBehavior Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep InitBehavior :: Type -> Type #

Generic ResetPolarity Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ResetPolarity :: Type -> Type #

Generic ResetKind Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ResetKind :: Type -> Type #

Generic ActiveEdge Source # 
Instance details

Defined in Clash.Signal.Internal

Associated Types

type Rep ActiveEdge :: Type -> Type #

Generic PortName Source # 
Instance details

Defined in Clash.Annotations.TopEntity

Associated Types

type Rep PortName :: Type -> Type #

Methods

from :: PortName -> Rep PortName x #

to :: Rep PortName x -> PortName #

Generic TopEntity Source # 
Instance details

Defined in Clash.Annotations.TopEntity

Associated Types

type Rep TopEntity :: Type -> Type #

Generic RxReg Source # 
Instance details

Defined in Clash.Examples.Internal

Associated Types

type Rep RxReg :: Type -> Type #

Methods

from :: RxReg -> Rep RxReg x #

to :: Rep RxReg x -> RxReg #

Generic TxReg Source # 
Instance details

Defined in Clash.Examples.Internal

Associated Types

type Rep TxReg :: Type -> Type #

Methods

from :: TxReg -> Rep TxReg x #

to :: Rep TxReg x -> TxReg #

Generic [a]

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep [a] :: Type -> Type #

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (Maybe a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Maybe a) :: Type -> Type #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Par1 p) :: Type -> Type #

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Solo a) 
Instance details

Defined in Data.Tuple.Solo

Associated Types

type Rep (Solo a) :: Type -> Type #

Methods

from :: Solo a -> Rep (Solo a) x #

to :: Rep (Solo a) x -> Solo a #

Generic (Complex a)

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Associated Types

type Rep (Complex a) :: Type -> Type #

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

Generic (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Min a) :: Type -> Type #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Max a) :: Type -> Type #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (First a) :: Type -> Type #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Last a) :: Type -> Type #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (WrappedMonoid m) :: Type -> Type #

Generic (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Option a) :: Type -> Type #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Generic (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep (ZipList a) :: Type -> Type #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Identity a)

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Associated Types

type Rep (Identity a) :: Type -> Type #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (First a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (First a) :: Type -> Type #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (Last a) :: Type -> Type #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (Dual a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Dual a) :: Type -> Type #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Generic (Endo a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a) :: Type -> Type #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Generic (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Sum a) :: Type -> Type #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Generic (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Product a) :: Type -> Type #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Generic (Down a)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Down a) :: Type -> Type #

Methods

from :: Down a -> Rep (Down a) x #

to :: Rep (Down a) x -> Down a #

Generic (NonEmpty a)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (NonEmpty a) :: Type -> Type #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (Tree a)

Since: containers-0.5.8

Instance details

Defined in Data.Tree

Associated Types

type Rep (Tree a) :: Type -> Type #

Methods

from :: Tree a -> Rep (Tree a) x #

to :: Rep (Tree a) x -> Tree a #

Generic (FingerTree a)

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (FingerTree a) :: Type -> Type #

Methods

from :: FingerTree a -> Rep (FingerTree a) x #

to :: Rep (FingerTree a) x -> FingerTree a #

Generic (Digit a)

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (Digit a) :: Type -> Type #

Methods

from :: Digit a -> Rep (Digit a) x #

to :: Rep (Digit a) x -> Digit a #

Generic (Node a)

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (Node a) :: Type -> Type #

Methods

from :: Node a -> Rep (Node a) x #

to :: Rep (Node a) x -> Node a #

Generic (Elem a)

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (Elem a) :: Type -> Type #

Methods

from :: Elem a -> Rep (Elem a) x #

to :: Rep (Elem a) x -> Elem a #

Generic (ViewL a)

Since: containers-0.5.8

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (ViewL a) :: Type -> Type #

Methods

from :: ViewL a -> Rep (ViewL a) x #

to :: Rep (ViewL a) x -> ViewL a #

Generic (ViewR a)

Since: containers-0.5.8

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep (ViewR a) :: Type -> Type #

Methods

from :: ViewR a -> Rep (ViewR a) x #

to :: Rep (ViewR a) x -> ViewR a #

Generic (Fix f) 
Instance details

Defined in Data.Fix

Associated Types

type Rep (Fix f) :: Type -> Type #

Methods

from :: Fix f -> Rep (Fix f) x #

to :: Rep (Fix f) x -> Fix f #

Generic (ModuleName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ModuleName l) :: Type -> Type #

Methods

from :: ModuleName l -> Rep (ModuleName l) x #

to :: Rep (ModuleName l) x -> ModuleName l #

Generic (SpecialCon l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (SpecialCon l) :: Type -> Type #

Methods

from :: SpecialCon l -> Rep (SpecialCon l) x #

to :: Rep (SpecialCon l) x -> SpecialCon l #

Generic (QName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (QName l) :: Type -> Type #

Methods

from :: QName l -> Rep (QName l) x #

to :: Rep (QName l) x -> QName l #

Generic (Name l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Name l) :: Type -> Type #

Methods

from :: Name l -> Rep (Name l) x #

to :: Rep (Name l) x -> Name l #

Generic (IPName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (IPName l) :: Type -> Type #

Methods

from :: IPName l -> Rep (IPName l) x #

to :: Rep (IPName l) x -> IPName l #

Generic (QOp l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (QOp l) :: Type -> Type #

Methods

from :: QOp l -> Rep (QOp l) x #

to :: Rep (QOp l) x -> QOp l #

Generic (Op l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Op l) :: Type -> Type #

Methods

from :: Op l -> Rep (Op l) x #

to :: Rep (Op l) x -> Op l #

Generic (CName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (CName l) :: Type -> Type #

Methods

from :: CName l -> Rep (CName l) x #

to :: Rep (CName l) x -> CName l #

Generic (Module l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Module l) :: Type -> Type #

Methods

from :: Module l -> Rep (Module l) x #

to :: Rep (Module l) x -> Module l #

Generic (ModuleHead l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ModuleHead l) :: Type -> Type #

Methods

from :: ModuleHead l -> Rep (ModuleHead l) x #

to :: Rep (ModuleHead l) x -> ModuleHead l #

Generic (ExportSpecList l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ExportSpecList l) :: Type -> Type #

Generic (ExportSpec l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ExportSpec l) :: Type -> Type #

Methods

from :: ExportSpec l -> Rep (ExportSpec l) x #

to :: Rep (ExportSpec l) x -> ExportSpec l #

Generic (EWildcard l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (EWildcard l) :: Type -> Type #

Methods

from :: EWildcard l -> Rep (EWildcard l) x #

to :: Rep (EWildcard l) x -> EWildcard l #

Generic (Namespace l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Namespace l) :: Type -> Type #

Methods

from :: Namespace l -> Rep (Namespace l) x #

to :: Rep (Namespace l) x -> Namespace l #

Generic (ImportDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ImportDecl l) :: Type -> Type #

Methods

from :: ImportDecl l -> Rep (ImportDecl l) x #

to :: Rep (ImportDecl l) x -> ImportDecl l #

Generic (ImportSpecList l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ImportSpecList l) :: Type -> Type #

Generic (ImportSpec l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ImportSpec l) :: Type -> Type #

Methods

from :: ImportSpec l -> Rep (ImportSpec l) x #

to :: Rep (ImportSpec l) x -> ImportSpec l #

Generic (Assoc l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Assoc l) :: Type -> Type #

Methods

from :: Assoc l -> Rep (Assoc l) x #

to :: Rep (Assoc l) x -> Assoc l #

Generic (Decl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Decl l) :: Type -> Type #

Methods

from :: Decl l -> Rep (Decl l) x #

to :: Rep (Decl l) x -> Decl l #

Generic (PatternSynDirection l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (PatternSynDirection l) :: Type -> Type #

Generic (TypeEqn l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (TypeEqn l) :: Type -> Type #

Methods

from :: TypeEqn l -> Rep (TypeEqn l) x #

to :: Rep (TypeEqn l) x -> TypeEqn l #

Generic (Annotation l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Annotation l) :: Type -> Type #

Methods

from :: Annotation l -> Rep (Annotation l) x #

to :: Rep (Annotation l) x -> Annotation l #

Generic (BooleanFormula l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (BooleanFormula l) :: Type -> Type #

Generic (Role l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Role l) :: Type -> Type #

Methods

from :: Role l -> Rep (Role l) x #

to :: Rep (Role l) x -> Role l #

Generic (DataOrNew l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (DataOrNew l) :: Type -> Type #

Methods

from :: DataOrNew l -> Rep (DataOrNew l) x #

to :: Rep (DataOrNew l) x -> DataOrNew l #

Generic (InjectivityInfo l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (InjectivityInfo l) :: Type -> Type #

Generic (ResultSig l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ResultSig l) :: Type -> Type #

Methods

from :: ResultSig l -> Rep (ResultSig l) x #

to :: Rep (ResultSig l) x -> ResultSig l #

Generic (DeclHead l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (DeclHead l) :: Type -> Type #

Methods

from :: DeclHead l -> Rep (DeclHead l) x #

to :: Rep (DeclHead l) x -> DeclHead l #

Generic (InstRule l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (InstRule l) :: Type -> Type #

Methods

from :: InstRule l -> Rep (InstRule l) x #

to :: Rep (InstRule l) x -> InstRule l #

Generic (InstHead l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (InstHead l) :: Type -> Type #

Methods

from :: InstHead l -> Rep (InstHead l) x #

to :: Rep (InstHead l) x -> InstHead l #

Generic (Deriving l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Deriving l) :: Type -> Type #

Methods

from :: Deriving l -> Rep (Deriving l) x #

to :: Rep (Deriving l) x -> Deriving l #

Generic (DerivStrategy l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (DerivStrategy l) :: Type -> Type #

Generic (Binds l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Binds l) :: Type -> Type #

Methods

from :: Binds l -> Rep (Binds l) x #

to :: Rep (Binds l) x -> Binds l #

Generic (IPBind l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (IPBind l) :: Type -> Type #

Methods

from :: IPBind l -> Rep (IPBind l) x #

to :: Rep (IPBind l) x -> IPBind l #

Generic (Match l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Match l) :: Type -> Type #

Methods

from :: Match l -> Rep (Match l) x #

to :: Rep (Match l) x -> Match l #

Generic (QualConDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (QualConDecl l) :: Type -> Type #

Methods

from :: QualConDecl l -> Rep (QualConDecl l) x #

to :: Rep (QualConDecl l) x -> QualConDecl l #

Generic (ConDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ConDecl l) :: Type -> Type #

Methods

from :: ConDecl l -> Rep (ConDecl l) x #

to :: Rep (ConDecl l) x -> ConDecl l #

Generic (FieldDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (FieldDecl l) :: Type -> Type #

Methods

from :: FieldDecl l -> Rep (FieldDecl l) x #

to :: Rep (FieldDecl l) x -> FieldDecl l #

Generic (GadtDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (GadtDecl l) :: Type -> Type #

Methods

from :: GadtDecl l -> Rep (GadtDecl l) x #

to :: Rep (GadtDecl l) x -> GadtDecl l #

Generic (ClassDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ClassDecl l) :: Type -> Type #

Methods

from :: ClassDecl l -> Rep (ClassDecl l) x #

to :: Rep (ClassDecl l) x -> ClassDecl l #

Generic (InstDecl l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (InstDecl l) :: Type -> Type #

Methods

from :: InstDecl l -> Rep (InstDecl l) x #

to :: Rep (InstDecl l) x -> InstDecl l #

Generic (BangType l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (BangType l) :: Type -> Type #

Methods

from :: BangType l -> Rep (BangType l) x #

to :: Rep (BangType l) x -> BangType l #

Generic (Unpackedness l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Unpackedness l) :: Type -> Type #

Methods

from :: Unpackedness l -> Rep (Unpackedness l) x #

to :: Rep (Unpackedness l) x -> Unpackedness l #

Generic (Rhs l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Rhs l) :: Type -> Type #

Methods

from :: Rhs l -> Rep (Rhs l) x #

to :: Rep (Rhs l) x -> Rhs l #

Generic (GuardedRhs l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (GuardedRhs l) :: Type -> Type #

Methods

from :: GuardedRhs l -> Rep (GuardedRhs l) x #

to :: Rep (GuardedRhs l) x -> GuardedRhs l #

Generic (Type l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Type l) :: Type -> Type #

Methods

from :: Type l -> Rep (Type l) x #

to :: Rep (Type l) x -> Type l #

Generic (MaybePromotedName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (MaybePromotedName l) :: Type -> Type #

Generic (Promoted l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Promoted l) :: Type -> Type #

Methods

from :: Promoted l -> Rep (Promoted l) x #

to :: Rep (Promoted l) x -> Promoted l #

Generic (TyVarBind l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (TyVarBind l) :: Type -> Type #

Methods

from :: TyVarBind l -> Rep (TyVarBind l) x #

to :: Rep (TyVarBind l) x -> TyVarBind l #

Generic (FunDep l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (FunDep l) :: Type -> Type #

Methods

from :: FunDep l -> Rep (FunDep l) x #

to :: Rep (FunDep l) x -> FunDep l #

Generic (Context l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Context l) :: Type -> Type #

Methods

from :: Context l -> Rep (Context l) x #

to :: Rep (Context l) x -> Context l #

Generic (Asst l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Asst l) :: Type -> Type #

Methods

from :: Asst l -> Rep (Asst l) x #

to :: Rep (Asst l) x -> Asst l #

Generic (Literal l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Literal l) :: Type -> Type #

Methods

from :: Literal l -> Rep (Literal l) x #

to :: Rep (Literal l) x -> Literal l #

Generic (Sign l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Sign l) :: Type -> Type #

Methods

from :: Sign l -> Rep (Sign l) x #

to :: Rep (Sign l) x -> Sign l #

Generic (Exp l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Exp l) :: Type -> Type #

Methods

from :: Exp l -> Rep (Exp l) x #

to :: Rep (Exp l) x -> Exp l #

Generic (XName l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (XName l) :: Type -> Type #

Methods

from :: XName l -> Rep (XName l) x #

to :: Rep (XName l) x -> XName l #

Generic (XAttr l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (XAttr l) :: Type -> Type #

Methods

from :: XAttr l -> Rep (XAttr l) x #

to :: Rep (XAttr l) x -> XAttr l #

Generic (Bracket l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Bracket l) :: Type -> Type #

Methods

from :: Bracket l -> Rep (Bracket l) x #

to :: Rep (Bracket l) x -> Bracket l #

Generic (Splice l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Splice l) :: Type -> Type #

Methods

from :: Splice l -> Rep (Splice l) x #

to :: Rep (Splice l) x -> Splice l #

Generic (Safety l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Safety l) :: Type -> Type #

Methods

from :: Safety l -> Rep (Safety l) x #

to :: Rep (Safety l) x -> Safety l #

Generic (CallConv l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (CallConv l) :: Type -> Type #

Methods

from :: CallConv l -> Rep (CallConv l) x #

to :: Rep (CallConv l) x -> CallConv l #

Generic (ModulePragma l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (ModulePragma l) :: Type -> Type #

Methods

from :: ModulePragma l -> Rep (ModulePragma l) x #

to :: Rep (ModulePragma l) x -> ModulePragma l #

Generic (Overlap l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Overlap l) :: Type -> Type #

Methods

from :: Overlap l -> Rep (Overlap l) x #

to :: Rep (Overlap l) x -> Overlap l #

Generic (Activation l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Activation l) :: Type -> Type #

Methods

from :: Activation l -> Rep (Activation l) x #

to :: Rep (Activation l) x -> Activation l #

Generic (Rule l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Rule l) :: Type -> Type #

Methods

from :: Rule l -> Rep (Rule l) x #

to :: Rep (Rule l) x -> Rule l #

Generic (RuleVar l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (RuleVar l) :: Type -> Type #

Methods

from :: RuleVar l -> Rep (RuleVar l) x #

to :: Rep (RuleVar l) x -> RuleVar l #

Generic (WarningText l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (WarningText l) :: Type -> Type #

Methods

from :: WarningText l -> Rep (WarningText l) x #

to :: Rep (WarningText l) x -> WarningText l #

Generic (Pat l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Pat l) :: Type -> Type #

Methods

from :: Pat l -> Rep (Pat l) x #

to :: Rep (Pat l) x -> Pat l #

Generic (PXAttr l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (PXAttr l) :: Type -> Type #

Methods

from :: PXAttr l -> Rep (PXAttr l) x #

to :: Rep (PXAttr l) x -> PXAttr l #

Generic (RPatOp l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (RPatOp l) :: Type -> Type #

Methods

from :: RPatOp l -> Rep (RPatOp l) x #

to :: Rep (RPatOp l) x -> RPatOp l #

Generic (RPat l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (RPat l) :: Type -> Type #

Methods

from :: RPat l -> Rep (RPat l) x #

to :: Rep (RPat l) x -> RPat l #

Generic (PatField l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (PatField l) :: Type -> Type #

Methods

from :: PatField l -> Rep (PatField l) x #

to :: Rep (PatField l) x -> PatField l #

Generic (Stmt l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Stmt l) :: Type -> Type #

Methods

from :: Stmt l -> Rep (Stmt l) x #

to :: Rep (Stmt l) x -> Stmt l #

Generic (QualStmt l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (QualStmt l) :: Type -> Type #

Methods

from :: QualStmt l -> Rep (QualStmt l) x #

to :: Rep (QualStmt l) x -> QualStmt l #

Generic (FieldUpdate l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (FieldUpdate l) :: Type -> Type #

Methods

from :: FieldUpdate l -> Rep (FieldUpdate l) x #

to :: Rep (FieldUpdate l) x -> FieldUpdate l #

Generic (Alt l) 
Instance details

Defined in Language.Haskell.Exts.Syntax

Associated Types

type Rep (Alt l) :: Type -> Type #

Methods

from :: Alt l -> Rep (Alt l) x #

to :: Rep (Alt l) x -> Alt l #

Generic (Loc a) 
Instance details

Defined in Language.Haskell.Exts.SrcLoc

Associated Types

type Rep (Loc a) :: Type -> Type #

Methods

from :: Loc a -> Rep (Loc a) x #

to :: Rep (Loc a) x -> Loc a #

Generic (Doc a) 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Associated Types

type Rep (Doc a) :: Type -> Type #

Methods

from :: Doc a -> Rep (Doc a) x #

to :: Rep (Doc a) x -> Doc a #

Generic (Maybe a) 
Instance details

Defined in Data.Strict.Maybe

Associated Types

type Rep (Maybe a) :: Type -> Type #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (PrimitiveGuard a) Source # 
Instance details

Defined in Clash.Annotations.Primitive

Associated Types

type Rep (PrimitiveGuard a) :: Type -> Type #

Generic (BitVector n) Source # 
Instance details

Defined in Clash.Sized.Internal.BitVector

Associated Types

type Rep (BitVector n) :: Type -> Type #

Methods

from :: BitVector n -> Rep (BitVector n) x #

to :: Rep (BitVector n) x -> BitVector n #

Generic (Index n) Source # 
Instance details

Defined in Clash.Sized.Internal.Index

Associated Types

type Rep (Index n) :: Type -> Type #

Methods

from :: Index n -> Rep (Index n) x #

to :: Rep (Index n) x -> Index n #

Generic (Unsigned n) Source # 
Instance details

Defined in Clash.Sized.Internal.Unsigned

Associated Types

type Rep (Unsigned n) :: Type -> Type #

Methods

from :: Unsigned n -> Rep (Unsigned n) x #

to :: Rep (Unsigned n) x -> Unsigned n #

Generic (Signed n) Source # 
Instance details

Defined in Clash.Sized.Internal.Signed

Associated Types

type Rep (Signed n) :: Type -> Type #

Methods

from :: Signed n -> Rep (Signed n) x #

to :: Rep (Signed n) x -> Signed n #

Generic (Attr a) Source # 
Instance details

Defined in Clash.Annotations.SynthesisAttributes

Associated Types

type Rep (Attr a) :: Type -> Type #

Methods

from :: Attr a -> Rep (Attr a) x #

to :: Rep (Attr a) x -> Attr a #

Generic (Overflowing a) Source # 
Instance details

Defined in Clash.Num.Overflowing

Associated Types

type Rep (Overflowing a) :: Type -> Type #

Methods

from :: Overflowing a -> Rep (Overflowing a) x #

to :: Rep (Overflowing a) x -> Overflowing a #

Generic (Either a b)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Either a b) :: Type -> Type #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (V1 p) :: Type -> Type #

Methods

from :: V1 p -> Rep (V1 p) x #

to :: Rep (V1 p) x -> V1 p #

Generic (U1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (U1 p) :: Type -> Type #

Methods

from :: U1 p -> Rep (U1 p) x #

to :: Rep (U1 p) x -> U1 p #

Generic (a, b)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b) :: Type -> Type #

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Arg a b) :: Type -> Type #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (WrappedMonad m a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep (WrappedMonad m a) :: Type -> Type #

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Proxy t)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Proxy t) :: Type -> Type #

Methods

from :: Proxy t -> Rep (Proxy t) x #

to :: Rep (Proxy t) x -> Proxy t #

Generic (Free f a) 
Instance details

Defined in Control.Monad.Free

Associated Types

type Rep (Free f a) :: Type -> Type #

Methods

from :: Free f a -> Rep (Free f a) x #

to :: Rep (Free f a) x -> Free f a #

Generic (Cofree f a) 
Instance details

Defined in Control.Comonad.Cofree

Associated Types

type Rep (Cofree f a) :: Type -> Type #

Methods

from :: Cofree f a -> Rep (Cofree f a) x #

to :: Rep (Cofree f a) x -> Cofree f a #

Generic (ListF a b) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep (ListF a b) :: Type -> Type #

Methods

from :: ListF a b -> Rep (ListF a b) x #

to :: Rep (ListF a b) x -> ListF a b #

Generic (NonEmptyF a b) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep (NonEmptyF a b) :: Type -> Type #

Methods

from :: NonEmptyF a b -> Rep (NonEmptyF a b) x #

to :: Rep (NonEmptyF a b) x -> NonEmptyF a b #

Generic (TreeF a b) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep (TreeF a b) :: Type -> Type #

Methods

from :: TreeF a b -> Rep (TreeF a b) x #

to :: Rep (TreeF a b) x -> TreeF a b #

Generic (Pair a b) 
Instance details

Defined in Data.Strict.Tuple

Associated Types

type Rep (Pair a b) :: Type -> Type #

Methods

from :: Pair a b -> Rep (Pair a b) x #

to :: Rep (Pair a b) x -> Pair a b #

Generic (These a b) 
Instance details

Defined in Data.Strict.These

Associated Types

type Rep (These a b) :: Type -> Type #

Methods

from :: These a b -> Rep (These a b) x #

to :: Rep (These a b) x -> These a b #

Generic (Either a b) 
Instance details

Defined in Data.Strict.Either

Associated Types

type Rep (Either a b) :: Type -> Type #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (These a b) 
Instance details

Defined in Data.These

Associated Types

type Rep (These a b) :: Type -> Type #

Methods

from :: These a b -> Rep (These a b) x #

to :: Rep (These a b) x -> These a b #

KnownNat n => Generic (Vec n a) Source #

In many cases, this Generic instance only allows generic functions/instances over vectors of at least size 1, due to the n-1 in the Rep (Vec n a) definition.

We'll have to wait for things like https://ryanglscott.github.io/2018/02/11/how-to-derive-generic-for-some-gadts/ before we can work around this limitation

Instance details

Defined in Clash.Sized.Vector

Associated Types

type Rep (Vec n a) :: Type -> Type #

Methods

from :: Vec n a -> Rep (Vec n a) x #

to :: Rep (Vec n a) x -> Vec n a #

Generic (RamOp n a) Source # 
Instance details

Defined in Clash.Explicit.BlockRam

Associated Types

type Rep (RamOp n a) :: Type -> Type #

Methods

from :: RamOp n a -> Rep (RamOp n a) x #

to :: Rep (RamOp n a) x -> RamOp n a #

Generic (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (Rec1 f p) :: Type -> Type #

Methods

from :: Rec1 f p -> Rep (Rec1 f p) x #

to :: Rep (Rec1 f p) x -> Rec1 f p #

Generic (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec (Ptr ()) p) :: Type -> Type #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p #

Generic (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Char p) :: Type -> Type #

Methods

from :: URec Char p -> Rep (URec Char p) x #

to :: Rep (URec Char p) x -> URec Char p #

Generic (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Double p) :: Type -> Type #

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Generic (URec Float p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Float p) :: Type -> Type #

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Generic (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Int p) :: Type -> Type #

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

Generic (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Word p) :: Type -> Type #

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

Generic (a, b, c)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b, c) :: Type -> Type #

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (Kleisli m a b)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Associated Types

type Rep (Kleisli m a b) :: Type -> Type #

Methods

from :: Kleisli m a b -> Rep (Kleisli m a b) x #

to :: Rep (Kleisli m a b) x -> Kleisli m a b #

Generic (WrappedArrow a b c)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep (WrappedArrow a b c) :: Type -> Type #

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type #

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Generic (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (Ap f a) :: Type -> Type #

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

Generic (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Alt f a) :: Type -> Type #

Methods

from :: Alt f a -> Rep (Alt f a) x #

to :: Rep (Alt f a) x -> Alt f a #

Generic (Join p a) 
Instance details

Defined in Data.Bifunctor.Join

Associated Types

type Rep (Join p a) :: Type -> Type #

Methods

from :: Join p a -> Rep (Join p a) x #

to :: Rep (Join p a) x -> Join p a #

Generic (Fix p a) 
Instance details

Defined in Data.Bifunctor.Fix

Associated Types

type Rep (Fix p a) :: Type -> Type #

Methods

from :: Fix p a -> Rep (Fix p a) x #

to :: Rep (Fix p a) x -> Fix p a #

Generic (FreeF f a b) 
Instance details

Defined in Control.Monad.Trans.Free

Associated Types

type Rep (FreeF f a b) :: Type -> Type #

Methods

from :: FreeF f a b -> Rep (FreeF f a b) x #

to :: Rep (FreeF f a b) x -> FreeF f a b #

Generic (CofreeF f a b) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Associated Types

type Rep (CofreeF f a b) :: Type -> Type #

Methods

from :: CofreeF f a b -> Rep (CofreeF f a b) x #

to :: Rep (CofreeF f a b) x -> CofreeF f a b #

Generic (Tagged s b) 
Instance details

Defined in Data.Tagged

Associated Types

type Rep (Tagged s b) :: Type -> Type #

Methods

from :: Tagged s b -> Rep (Tagged s b) x #

to :: Rep (Tagged s b) x -> Tagged s b #

Generic (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (K1 i c p) :: Type -> Type #

Methods

from :: K1 i c p -> Rep (K1 i c p) x #

to :: Rep (K1 i c p) x -> K1 i c p #

Generic ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep ((f :+: g) p) :: Type -> Type #

Methods

from :: (f :+: g) p -> Rep ((f :+: g) p) x #

to :: Rep ((f :+: g) p) x -> (f :+: g) p #

Generic ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep ((f :*: g) p) :: Type -> Type #

Methods

from :: (f :*: g) p -> Rep ((f :*: g) p) x #

to :: Rep ((f :*: g) p) x -> (f :*: g) p #

Generic (a, b, c, d)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b, c, d) :: Type -> Type #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (Product f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Associated Types

type Rep (Product f g a) :: Type -> Type #

Methods

from :: Product f g a -> Rep (Product f g a) x #

to :: Rep (Product f g a) x -> Product f g a #

Generic (Sum f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Associated Types

type Rep (Sum f g a) :: Type -> Type #

Methods

from :: Sum f g a -> Rep (Sum f g a) x #

to :: Rep (Sum f g a) x -> Sum f g a #

Generic (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (M1 i c f p) :: Type -> Type #

Methods

from :: M1 i c f p -> Rep (M1 i c f p) x #

to :: Rep (M1 i c f p) x -> M1 i c f p #

Generic ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep ((f :.: g) p) :: Type -> Type #

Methods

from :: (f :.: g) p -> Rep ((f :.: g) p) x #

to :: Rep ((f :.: g) p) x -> (f :.: g) p #

Generic (a, b, c, d, e)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b, c, d, e) :: Type -> Type #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (Compose f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep (Compose f g a) :: Type -> Type #

Methods

from :: Compose f g a -> Rep (Compose f g a) x #

to :: Rep (Compose f g a) x -> Compose f g a #

Generic (WrappedBifunctor p a b) 
Instance details

Defined in Data.Bifunctor.Wrapped

Associated Types

type Rep (WrappedBifunctor p a b) :: Type -> Type #

Methods

from :: WrappedBifunctor p a b -> Rep (WrappedBifunctor p a b) x #

to :: Rep (WrappedBifunctor p a b) x -> WrappedBifunctor p a b #

Generic (Joker g a b) 
Instance details

Defined in Data.Bifunctor.Joker

Associated Types

type Rep (Joker g a b) :: Type -> Type #

Methods

from :: Joker g a b -> Rep (Joker g a b) x #

to :: Rep (Joker g a b) x -> Joker g a b #

Generic (Flip p a b) 
Instance details

Defined in Data.Bifunctor.Flip

Associated Types

type Rep (Flip p a b) :: Type -> Type #

Methods

from :: Flip p a b -> Rep (Flip p a b) x #

to :: Rep (Flip p a b) x -> Flip p a b #

Generic (Clown f a b) 
Instance details

Defined in Data.Bifunctor.Clown

Associated Types

type Rep (Clown f a b) :: Type -> Type #

Methods

from :: Clown f a b -> Rep (Clown f a b) x #

to :: Rep (Clown f a b) x -> Clown f a b #

Generic (a, b, c, d, e, f)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b, c, d, e, f) :: Type -> Type #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (Sum p q a b) 
Instance details

Defined in Data.Bifunctor.Sum

Associated Types

type Rep (Sum p q a b) :: Type -> Type #

Methods

from :: Sum p q a b -> Rep (Sum p q a b) x #

to :: Rep (Sum p q a b) x -> Sum p q a b #

Generic (Product f g a b) 
Instance details

Defined in Data.Bifunctor.Product

Associated Types

type Rep (Product f g a b) :: Type -> Type #

Methods

from :: Product f g a b -> Rep (Product f g a b) x #

to :: Rep (Product f g a b) x -> Product f g a b #

Generic (a, b, c, d, e, f, g)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (a, b, c, d, e, f, g) :: Type -> Type #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

Generic (Tannen f p a b) 
Instance details

Defined in Data.Bifunctor.Tannen

Associated Types

type Rep (Tannen f p a b) :: Type -> Type #

Methods

from :: Tannen f p a b -> Rep (Tannen f p a b) x #

to :: Rep (Tannen f p a b) x -> Tannen f p a b #

Generic (Biff p f g a b) 
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep (Biff p f g a b) :: Type -> Type #

Methods

from :: Biff p f g a b -> Rep (Biff p f g a b) x #

to :: Rep (Biff p f g a b) x -> Biff p f g a b #

class Generic1 (f :: k -> Type) #

Representable types of kind * -> * (or kind k -> *, when PolyKinds is enabled). This class is derivable in GHC with the DeriveGeneric flag on.

A Generic1 instance must satisfy the following laws:

from1 . to1id
to1 . from1id

Minimal complete definition

from1, to1

Instances

Instances details
Generic1 (V1 :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 V1 :: k -> Type #

Methods

from1 :: forall (a :: k0). V1 a -> Rep1 V1 a #

to1 :: forall (a :: k0). Rep1 V1 a -> V1 a #

Generic1 (U1 :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 U1 :: k -> Type #

Methods

from1 :: forall (a :: k0). U1 a -> Rep1 U1 a #

to1 :: forall (a :: k0). Rep1 U1 a -> U1 a #

Generic1 (Proxy :: k -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Proxy :: k -> Type #

Methods

from1 :: forall (a :: k0). Proxy a -> Rep1 Proxy a #

to1 :: forall (a :: k0). Rep1 Proxy a -> Proxy a #

Generic1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 (Alt f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Alt f a -> Rep1 (Alt f) a #

to1 :: forall (a :: k0). Rep1 (Alt f) a -> Alt f a #

Generic1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 (Ap f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k0). Rep1 (Ap f) a -> Ap f a #

Generic1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type #

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0 #

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0 #

Generic1 (URec (Ptr ()) :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec (Ptr ())) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec (Ptr ()) a -> Rep1 (URec (Ptr ())) a #

to1 :: forall (a :: k0). Rep1 (URec (Ptr ())) a -> URec (Ptr ()) a #

Generic1 (URec Char :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Char) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Char a -> Rep1 (URec Char) a #

to1 :: forall (a :: k0). Rep1 (URec Char) a -> URec Char a #

Generic1 (URec Double :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Double) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Double a -> Rep1 (URec Double) a #

to1 :: forall (a :: k0). Rep1 (URec Double) a -> URec Double a #

Generic1 (URec Float :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Float) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Float a -> Rep1 (URec Float) a #

to1 :: forall (a :: k0). Rep1 (URec Float) a -> URec Float a #

Generic1 (URec Int :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Int) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Int a -> Rep1 (URec Int) a #

to1 :: forall (a :: k0). Rep1 (URec Int) a -> URec Int a #

Generic1 (URec Word :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Word) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Word a -> Rep1 (URec Word) a #

to1 :: forall (a :: k0). Rep1 (URec Word) a -> URec Word a #

Generic1 (Rec1 f :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (Rec1 f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Rec1 f a -> Rep1 (Rec1 f) a #

to1 :: forall (a :: k0). Rep1 (Rec1 f) a -> Rec1 f a #

Generic1 (Sum f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Associated Types

type Rep1 (Sum f g) :: k -> Type #

Methods

from1 :: forall (a :: k0). Sum f g a -> Rep1 (Sum f g) a #

to1 :: forall (a :: k0). Rep1 (Sum f g) a -> Sum f g a #

Generic1 (Product f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Associated Types

type Rep1 (Product f g) :: k -> Type #

Methods

from1 :: forall (a :: k0). Product f g a -> Rep1 (Product f g) a #

to1 :: forall (a :: k0). Rep1 (Product f g) a -> Product f g a #

Generic1 (K1 i c :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (K1 i c) :: k -> Type #

Methods

from1 :: forall (a :: k0). K1 i c a -> Rep1 (K1 i c) a #

to1 :: forall (a :: k0). Rep1 (K1 i c) a -> K1 i c a #

Generic1 (f :+: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :+: g) :: k -> Type #

Methods

from1 :: forall (a :: k0). (f :+: g) a -> Rep1 (f :+: g) a #

to1 :: forall (a :: k0). Rep1 (f :+: g) a -> (f :+: g) a #

Generic1 (f :*: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :*: g) :: k -> Type #

Methods

from1 :: forall (a :: k0). (f :*: g) a -> Rep1 (f :*: g) a #

to1 :: forall (a :: k0). Rep1 (f :*: g) a -> (f :*: g) a #

Generic1 (WrappedBifunctor p a :: k1 -> Type) 
Instance details

Defined in Data.Bifunctor.Wrapped

Associated Types

type Rep1 (WrappedBifunctor p a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). WrappedBifunctor p a a0 -> Rep1 (WrappedBifunctor p a) a0 #

to1 :: forall (a0 :: k). Rep1 (WrappedBifunctor p a) a0 -> WrappedBifunctor p a a0 #

Generic1 (Joker g a :: k1 -> Type) 
Instance details

Defined in Data.Bifunctor.Joker

Associated Types

type Rep1 (Joker g a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Joker g a a0 -> Rep1 (Joker g a) a0 #

to1 :: forall (a0 :: k). Rep1 (Joker g a) a0 -> Joker g a a0 #

Generic1 (Clown f a :: k1 -> Type) 
Instance details

Defined in Data.Bifunctor.Clown

Associated Types

type Rep1 (Clown f a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Clown f a a0 -> Rep1 (Clown f a) a0 #

to1 :: forall (a0 :: k). Rep1 (Clown f a) a0 -> Clown f a a0 #

Functor f => Generic1 (Compose f g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep1 (Compose f g) :: k -> Type #

Methods

from1 :: forall (a :: k0). Compose f g a -> Rep1 (Compose f g) a #

to1 :: forall (a :: k0). Rep1 (Compose f g) a -> Compose f g a #

Generic1 (M1 i c f :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (M1 i c f) :: k -> Type #

Methods

from1 :: forall (a :: k0). M1 i c f a -> Rep1 (M1 i c f) a #

to1 :: forall (a :: k0). Rep1 (M1 i c f) a -> M1 i c f a #

Functor f => Generic1 (f :.: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :.: g) :: k -> Type #

Methods

from1 :: forall (a :: k0). (f :.: g) a -> Rep1 (f :.: g) a #

to1 :: forall (a :: k0). Rep1 (f :.: g) a -> (f :.: g) a #

Generic1 (Sum p q a :: k1 -> Type) 
Instance details

Defined in Data.Bifunctor.Sum

Associated Types

type Rep1 (Sum p q a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Sum p q a a0 -> Rep1 (Sum p q a) a0 #

to1 :: forall (a0 :: k). Rep1 (Sum p q a) a0 -> Sum p q a a0 #

Generic1 (Product f g a :: k1 -> Type) 
Instance details

Defined in Data.Bifunctor.Product

Associated Types

type Rep1 (Product f g a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Product f g a a0 -> Rep1 (Product f g a) a0 #

to1 :: forall (a0 :: k). Rep1 (Product f g a) a0 -> Product f g a a0 #

Functor f => Generic1 (Tannen f p a :: k2 -> Type) 
Instance details

Defined in Data.Bifunctor.Tannen

Associated Types

type Rep1 (Tannen f p a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Tannen f p a a0 -> Rep1 (Tannen f p a) a0 #

to1 :: forall (a0 :: k). Rep1 (Tannen f p a) a0 -> Tannen f p a a0 #

Functor (p (f a)) => Generic1 (Biff p f g a :: k3 -> Type) 
Instance details

Defined in Data.Bifunctor.Biff

Associated Types

type Rep1 (Biff p f g a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Biff p f g a a0 -> Rep1 (Biff p f g a) a0 #

to1 :: forall (a0 :: k). Rep1 (Biff p f g a) a0 -> Biff p f g a a0 #

Generic1 []

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 [] :: k -> Type #

Methods

from1 :: forall (a :: k). [a] -> Rep1 [] a #

to1 :: forall (a :: k). Rep1 [] a -> [a] #

Generic1 Maybe

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Maybe :: k -> Type #

Methods

from1 :: forall (a :: k). Maybe a -> Rep1 Maybe a #

to1 :: forall (a :: k). Rep1 Maybe a -> Maybe a #

Generic1 Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Par1 :: k -> Type #

Methods

from1 :: forall (a :: k). Par1 a -> Rep1 Par1 a #

to1 :: forall (a :: k). Rep1 Par1 a -> Par1 a #

Generic1 Solo 
Instance details

Defined in Data.Tuple.Solo

Associated Types

type Rep1 Solo :: k -> Type #

Methods

from1 :: forall (a :: k). Solo a -> Rep1 Solo a #

to1 :: forall (a :: k). Rep1 Solo a -> Solo a #

Generic1 Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Associated Types

type Rep1 Complex :: k -> Type #

Methods

from1 :: forall (a :: k). Complex a -> Rep1 Complex a #

to1 :: forall (a :: k). Rep1 Complex a -> Complex a #

Generic1 Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Min :: k -> Type #

Methods

from1 :: forall (a :: k). Min a -> Rep1 Min a #

to1 :: forall (a :: k). Rep1 Min a -> Min a #

Generic1 Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Max :: k -> Type #

Methods

from1 :: forall (a :: k). Max a -> Rep1 Max a #

to1 :: forall (a :: k). Rep1 Max a -> Max a #

Generic1 First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 First :: k -> Type #

Methods

from1 :: forall (a :: k). First a -> Rep1 First a #

to1 :: forall (a :: k). Rep1 First a -> First a #

Generic1 Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Last :: k -> Type #

Methods

from1 :: forall (a :: k). Last a -> Rep1 Last a #

to1 :: forall (a :: k). Rep1 Last a -> Last a #

Generic1 WrappedMonoid

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 WrappedMonoid :: k -> Type #

Methods

from1 :: forall (a :: k). WrappedMonoid a -> Rep1 WrappedMonoid a #

to1 :: forall (a :: k). Rep1 WrappedMonoid a -> WrappedMonoid a #

Generic1 Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Option :: k -> Type #

Methods

from1 :: forall (a :: k). Option a -> Rep1 Option a #

to1 :: forall (a :: k). Rep1 Option a -> Option a #

Generic1 ZipList

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep1 ZipList :: k -> Type #

Methods

from1 :: forall (a :: k). ZipList a -> Rep1 ZipList a #

to1 :: forall (a :: k). Rep1 ZipList a -> ZipList a #

Generic1 Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Associated Types

type Rep1 Identity :: k -> Type #

Methods

from1 :: forall (a :: k). Identity a -> Rep1 Identity a #

to1 :: forall (a :: k). Rep1 Identity a -> Identity a #

Generic1 First

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 First :: k -> Type #

Methods

from1 :: forall (a :: k). First a -> Rep1 First a #

to1 :: forall (a :: k). Rep1 First a -> First a #

Generic1 Last

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 Last :: k -> Type #

Methods

from1 :: forall (a :: k). Last a -> Rep1 Last a #

to1 :: forall (a :: k). Rep1 Last a -> Last a #

Generic1 Dual

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual :: k -> Type #

Methods

from1 :: forall (a :: k). Dual a -> Rep1 Dual a #

to1 :: forall (a :: k). Rep1 Dual a -> Dual a #

Generic1 Sum

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum :: k -> Type #

Methods

from1 :: forall (a :: k). Sum a -> Rep1 Sum a #

to1 :: forall (a :: k). Rep1 Sum a -> Sum a #

Generic1 Product

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product :: k -> Type #

Methods

from1 :: forall (a :: k). Product a -> Rep1 Product a #

to1 :: forall (a :: k). Rep1 Product a -> Product a #

Generic1 Down

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Down :: k -> Type #

Methods

from1 :: forall (a :: k). Down a -> Rep1 Down a #

to1 :: forall (a :: k). Rep1 Down a -> Down a #

Generic1 NonEmpty

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 NonEmpty :: k -> Type #

Methods

from1 :: forall (a :: k). NonEmpty a -> Rep1 NonEmpty a #

to1 :: forall (a :: k). Rep1 NonEmpty a -> NonEmpty a #

Generic1 Tree

Since: containers-0.5.8

Instance details

Defined in Data.Tree

Associated Types

type Rep1 Tree :: k -> Type #

Methods

from1 :: forall (a :: k). Tree a -> Rep1 Tree a #

to1 :: forall (a :: k). Rep1 Tree a -> Tree a #

Generic1 FingerTree

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 FingerTree :: k -> Type #

Methods

from1 :: forall (a :: k). FingerTree a -> Rep1 FingerTree a #

to1 :: forall (a :: k). Rep1 FingerTree a -> FingerTree a #

Generic1 Digit

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 Digit :: k -> Type #

Methods

from1 :: forall (a :: k). Digit a -> Rep1 Digit a #

to1 :: forall (a :: k). Rep1 Digit a -> Digit a #

Generic1 Node

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 Node :: k -> Type #

Methods

from1 :: forall (a :: k). Node a -> Rep1 Node a #

to1 :: forall (a :: k). Rep1 Node a -> Node a #

Generic1 Elem

Since: containers-0.6.1

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 Elem :: k -> Type #

Methods

from1 :: forall (a :: k). Elem a -> Rep1 Elem a #

to1 :: forall (a :: k). Rep1 Elem a -> Elem a #

Generic1 ViewL

Since: containers-0.5.8

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 ViewL :: k -> Type #

Methods

from1 :: forall (a :: k). ViewL a -> Rep1 ViewL a #

to1 :: forall (a :: k). Rep1 ViewL a -> ViewL a #

Generic1 ViewR

Since: containers-0.5.8

Instance details

Defined in Data.Sequence.Internal

Associated Types

type Rep1 ViewR :: k -> Type #

Methods

from1 :: forall (a :: k). ViewR a -> Rep1 ViewR a #

to1 :: forall (a :: k). Rep1 ViewR a -> ViewR a #

Generic1 Maybe 
Instance details

Defined in Data.Strict.Maybe

Associated Types

type Rep1 Maybe :: k -> Type #

Methods

from1 :: forall (a :: k). Maybe a -> Rep1 Maybe a #

to1 :: forall (a :: k). Rep1 Maybe a -> Maybe a #

Generic1 (Either a :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (Either a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Either a a0 -> Rep1 (Either a) a0 #

to1 :: forall (a0 :: k). Rep1 (Either a) a0 -> Either a a0 #

Generic1 ((,) a :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,) a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, a0) -> Rep1 ((,) a) a0 #

to1 :: forall (a0 :: k). Rep1 ((,) a) a0 -> (a, a0) #

Generic1 (Arg a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 (Arg a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Arg a a0 -> Rep1 (Arg a) a0 #

to1 :: forall (a0 :: k). Rep1 (Arg a) a0 -> Arg a a0 #

Generic1 (WrappedMonad m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedMonad m) :: k -> Type #

Methods

from1 :: forall (a :: k). WrappedMonad m a -> Rep1 (WrappedMonad m) a #

to1 :: forall (a :: k). Rep1 (WrappedMonad m) a -> WrappedMonad m a #

Functor f => Generic1 (Free f :: Type -> Type) 
Instance details

Defined in Control.Monad.Free

Associated Types

type Rep1 (Free f) :: k -> Type #

Methods

from1 :: forall (a :: k). Free f a -> Rep1 (Free f) a #

to1 :: forall (a :: k). Rep1 (Free f) a -> Free f a #

Functor f => Generic1 (Cofree f :: Type -> Type) 
Instance details

Defined in Control.Comonad.Cofree

Associated Types

type Rep1 (Cofree f) :: k -> Type #

Methods

from1 :: forall (a :: k). Cofree f a -> Rep1 (Cofree f) a #

to1 :: forall (a :: k). Rep1 (Cofree f) a -> Cofree f a #

Generic1 (ListF a :: Type -> Type) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep1 (ListF a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). ListF a a0 -> Rep1 (ListF a) a0 #

to1 :: forall (a0 :: k). Rep1 (ListF a) a0 -> ListF a a0 #

Generic1 (NonEmptyF a :: Type -> Type) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep1 (NonEmptyF a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). NonEmptyF a a0 -> Rep1 (NonEmptyF a) a0 #

to1 :: forall (a0 :: k). Rep1 (NonEmptyF a) a0 -> NonEmptyF a a0 #

Generic1 (TreeF a :: Type -> Type) 
Instance details

Defined in Data.Functor.Base

Associated Types

type Rep1 (TreeF a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). TreeF a a0 -> Rep1 (TreeF a) a0 #

to1 :: forall (a0 :: k). Rep1 (TreeF a) a0 -> TreeF a a0 #

Generic1 (Pair a :: Type -> Type) 
Instance details

Defined in Data.Strict.Tuple

Associated Types

type Rep1 (Pair a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Pair a a0 -> Rep1 (Pair a) a0 #

to1 :: forall (a0 :: k). Rep1 (Pair a) a0 -> Pair a a0 #

Generic1 (These a :: Type -> Type) 
Instance details

Defined in Data.Strict.These

Associated Types

type Rep1 (These a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). These a a0 -> Rep1 (These a) a0 #

to1 :: forall (a0 :: k). Rep1 (These a) a0 -> These a a0 #

Generic1 (Either a :: Type -> Type) 
Instance details

Defined in Data.Strict.Either

Associated Types

type Rep1 (Either a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Either a a0 -> Rep1 (Either a) a0 #

to1 :: forall (a0 :: k). Rep1 (Either a) a0 -> Either a a0 #

Generic1 (These a :: Type -> Type) 
Instance details

Defined in Data.These

Associated Types

type Rep1 (These a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). These a a0 -> Rep1 (These a) a0 #

to1 :: forall (a0 :: k). Rep1 (These a) a0 -> These a a0 #

Generic1 ((,,) a b :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,) a b) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, b, a0) -> Rep1 ((,,) a b) a0 #

to1 :: forall (a0 :: k). Rep1 ((,,) a b) a0 -> (a, b, a0) #

Generic1 (Kleisli m a :: Type -> Type)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Associated Types

type Rep1 (Kleisli m a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). Kleisli m a a0 -> Rep1 (Kleisli m a) a0 #

to1 :: forall (a0 :: k). Rep1 (Kleisli m a) a0 -> Kleisli m a a0 #

Generic1 (WrappedArrow a b :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedArrow a b) :: k -> Type #

Methods

from1 :: forall (a0 :: k). WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 #

to1 :: forall (a0 :: k). Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 #

Generic1 (FreeF f a :: Type -> Type) 
Instance details

Defined in Control.Monad.Trans.Free

Associated Types

type Rep1 (FreeF f a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). FreeF f a a0 -> Rep1 (FreeF f a) a0 #

to1 :: forall (a0 :: k). Rep1 (FreeF f a) a0 -> FreeF f a a0 #

Generic1 (CofreeF f a :: Type -> Type) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Associated Types

type Rep1 (CofreeF f a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). CofreeF f a a0 -> Rep1 (CofreeF f a) a0 #

to1 :: forall (a0 :: k). Rep1 (CofreeF f a) a0 -> CofreeF f a a0 #

Generic1 (Tagged s :: Type -> Type) 
Instance details

Defined in Data.Tagged

Associated Types

type Rep1 (Tagged s) :: k -> Type #

Methods

from1 :: forall (a :: k). Tagged s a -> Rep1 (Tagged s) a #

to1 :: forall (a :: k). Rep1 (Tagged s) a -> Tagged s a #

Generic1 ((,,,) a b c :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,) a b c) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, b, c, a0) -> Rep1 ((,,,) a b c) a0 #

to1 :: forall (a0 :: k). Rep1 ((,,,) a b c) a0 -> (a, b, c, a0) #

Generic1 ((,,,,) a b c d :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,) a b c d) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, b, c, d, a0) -> Rep1 ((,,,,) a b c d) a0 #

to1 :: forall (a0 :: k). Rep1 ((,,,,) a b c d) a0 -> (a, b, c, d, a0) #

Generic1 ((,,,,,) a b c d e :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,,) a b c d e) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, b, c, d, e, a0) -> Rep1 ((,,,,,) a b c d e) a0 #

to1 :: forall (a0 :: k). Rep1 ((,,,,,) a b c d e) a0 -> (a, b, c, d, e, a0) #

Generic1 ((,,,,,,) a b c d e f :: Type -> Type)

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,,,) a b c d e f) :: k -> Type #

Methods

from1 :: forall (a0 :: k). (a, b, c, d, e, f, a0) -> Rep1 ((,,,,,,) a b c d e f) a0 #

to1 :: forall (a0 :: k). Rep1 ((,,,,,,) a b c d e f) a0 -> (a, b, c, d, e, f, a0) #

Type-level natural numbers

Type-level strings

Template Haskell

class Lift (t :: TYPE r) where #

A Lift instance can have any of its values turned into a Template Haskell expression. This is needed when a value used within a Template Haskell quotation is bound outside the Oxford brackets ([| ... |] or [|| ... ||]) but not at the top level. As an example:

add1 :: Int -> Q (TExp Int)
add1 x = [|| x + 1 ||]

Template Haskell has no way of knowing what value x will take on at splice-time, so it requires the type of x to be an instance of Lift.

A Lift instance must satisfy $(lift x) ≡ x and $$(liftTyped x) ≡ x for all x, where $(...) and $$(...) are Template Haskell splices. It is additionally expected that lift x ≡ unTypeQ (liftTyped x).

Lift instances can be derived automatically by use of the -XDeriveLift GHC language extension:

{-# LANGUAGE DeriveLift #-}
module Foo where

import Language.Haskell.TH.Syntax

data Bar a = Bar1 a (Bar a) | Bar2 String
  deriving Lift

Levity-polymorphic since template-haskell-2.16.0.0.

Minimal complete definition

liftTyped

Methods

lift :: t -> Q Exp #

Turn a value into a Template Haskell expression, suitable for use in a splice.

liftTyped :: t -> Q (TExp t) #

Turn a value into a Template Haskell typed expression, suitable for use in a typed splice.

Since: template-haskell-2.16.0.0

Instances

Instances details
Lift Bool 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Bool -> Q Exp #

liftTyped :: Bool -> Q (TExp Bool) #

Lift Char 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Char -> Q Exp #

liftTyped :: Char -> Q (TExp Char) #

Lift Double 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Double -> Q Exp #

liftTyped :: Double -> Q (TExp Double) #

Lift Float 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Float -> Q Exp #

liftTyped :: Float -> Q (TExp Float) #

Lift Int 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int -> Q Exp #

liftTyped :: Int -> Q (TExp Int) #

Lift Int8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int8 -> Q Exp #

liftTyped :: Int8 -> Q (TExp Int8) #

Lift Int16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int16 -> Q Exp #

liftTyped :: Int16 -> Q (TExp Int16) #

Lift Int32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int32 -> Q Exp #

liftTyped :: Int32 -> Q (TExp Int32) #

Lift Int64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int64 -> Q Exp #

liftTyped :: Int64 -> Q (TExp Int64) #

Lift Integer 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Integer -> Q Exp #

liftTyped :: Integer -> Q (TExp Integer) #

Lift Natural 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Natural -> Q Exp #

liftTyped :: Natural -> Q (TExp Natural) #

Lift Word 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word -> Q Exp #

liftTyped :: Word -> Q (TExp Word) #

Lift Word8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word8 -> Q Exp #

liftTyped :: Word8 -> Q (TExp Word8) #

Lift Word16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word16 -> Q Exp #

liftTyped :: Word16 -> Q (TExp Word16) #

Lift Word32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word32 -> Q Exp #

liftTyped :: Word32 -> Q (TExp Word32) #

Lift Word64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word64 -> Q Exp #

liftTyped :: Word64 -> Q (TExp Word64) #

Lift () 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: () -> Q Exp #

liftTyped :: () -> Q (TExp ()) #

Lift Void

Since: template-haskell-2.15.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Void -> Q Exp #

liftTyped :: Void -> Q (TExp Void) #

Lift ByteArray 
Instance details

Defined in Data.Array.Byte

Lift Half 
Instance details

Defined in Numeric.Half.Internal

Methods

lift :: Half -> Q Exp #

liftTyped :: Half -> Q (TExp Half) #

Lift Specificity 
Instance details

Defined in Language.Haskell.TH.Datatype.TyVarBndr

Lift ConstrRepr Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation

Lift DataReprAnn Source # 
Instance details

Defined in Clash.Annotations.BitRepresentation

Lift Bit Source # 
Instance details

Defined in Clash.Sized.Internal.BitVector

Methods

lift :: Bit -> Q Exp #

liftTyped :: Bit -> Q (TExp Bit) #

Lift Femtoseconds Source # 
Instance details

Defined in Clash.Signal.Internal

Lift PortName Source # 
Instance details

Defined in Clash.Annotations.TopEntity

Lift TopEntity Source # 
Instance details

Defined in Clash.Annotations.TopEntity

Lift Int#

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Int# -> Q Exp #

liftTyped :: Int# -> Q (TExp Int#) #

Lift Char#

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Char# -> Q Exp #

liftTyped :: Char# -> Q (TExp Char#) #

Lift Word#

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Word# -> Q Exp #

liftTyped :: Word# -> Q (TExp Word#) #

Lift Addr#

Produces an Addr# literal from the NUL-terminated C-string starting at the given memory address.

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Addr# -> Q Exp #

liftTyped :: Addr# -> Q (TExp Addr#) #

Lift Float#

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Float# -> Q Exp #

liftTyped :: Float# -> Q (TExp Float#) #

Lift Double#

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Double# -> Q Exp #

liftTyped :: Double# -> Q (TExp Double#) #

Lift a => Lift ([a] :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: [a] -> Q Exp #

liftTyped :: [a] -> Q (TExp [a]) #

Lift a => Lift (Maybe a :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Maybe a -> Q Exp #

liftTyped :: Maybe a -> Q (TExp (Maybe a)) #

Integral a => Lift (Ratio a :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Ratio a -> Q Exp #

liftTyped :: Ratio a -> Q (TExp (Ratio a)) #

Lift a => Lift (NonEmpty a :: Type)

Since: template-haskell-2.15.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: NonEmpty a -> Q Exp #

liftTyped :: NonEmpty a -> Q (TExp (NonEmpty a)) #

Lift a => Lift (HashSet a :: Type)

Since: unordered-containers-0.2.17.0

Instance details

Defined in Data.HashSet.Internal

Methods

lift :: HashSet a -> Q Exp #

liftTyped :: HashSet a -> Q (TExp (HashSet a)) #

Lift (PrimArray a :: Type) 
Instance details

Defined in Data.Primitive.PrimArray

Methods

lift :: PrimArray a -> Q Exp #

liftTyped :: PrimArray a -> Q (TExp (PrimArray a)) #

Lift a => Lift (SmallArray a :: Type) 
Instance details

Defined in Data.Primitive.SmallArray

Methods

lift :: SmallArray a -> Q Exp #

liftTyped :: SmallArray a -> Q (TExp (SmallArray a)) #

Lift a => Lift (Array a :: Type) 
Instance details

Defined in Data.Primitive.Array

Methods

lift :: Array a -> Q Exp #

liftTyped :: Array a -> Q (TExp (Array a)) #

KnownSymbol s => Lift (SSymbol s :: Type) Source # 
Instance details

Defined in Clash.Promoted.Symbol

Methods

lift :: SSymbol s -> Q Exp #

liftTyped :: SSymbol s -> Q (TExp (SSymbol s)) #

KnownNat n => Lift (BitVector n :: Type) Source # 
Instance details

Defined in Clash.Sized.Internal.BitVector

Methods

lift :: BitVector n -> Q Exp #

liftTyped :: BitVector n -> Q (TExp (BitVector n)) #

KnownNat n => Lift (Index n :: Type) Source # 
Instance details

Defined in Clash.Sized.Internal.Index

Methods

lift :: Index n -> Q Exp #

liftTyped :: Index n -> Q (TExp (Index n)) #

Lift (SNat n :: Type) Source # 
Instance details

Defined in Clash.Promoted.Nat

Methods

lift :: SNat n -> Q Exp #

liftTyped :: SNat n -> Q (TExp (SNat n)) #

KnownNat n => Lift (Unsigned n :: Type) Source # 
Instance details

Defined in Clash.Sized.Internal.Unsigned

Methods

lift :: Unsigned n -> Q Exp #

liftTyped :: Unsigned n -> Q (TExp (Unsigned n)) #

KnownNat n => Lift (Signed n :: Type) Source # 
Instance details

Defined in Clash.Sized.Internal.Signed

Methods

lift :: Signed n -> Q Exp #

liftTyped :: Signed n -> Q (TExp (Signed n)) #

Lift a => Lift (Attr a :: Type) Source # 
Instance details

Defined in Clash.Annotations.SynthesisAttributes

Methods

lift :: Attr a -> Q Exp #

liftTyped :: Attr a -> Q (TExp (Attr a)) #

(Lift a, Lift b) => Lift (Either a b :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Either a b -> Q Exp #

liftTyped :: Either a b -> Q (TExp (Either a b)) #

(Lift a, Lift b) => Lift ((a, b) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b) -> Q Exp #

liftTyped :: (a, b) -> Q (TExp (a, b)) #

(Lift k, Lift v) => Lift (HashMap k v :: Type)

Since: unordered-containers-0.2.17.0

Instance details

Defined in Data.HashMap.Internal

Methods

lift :: HashMap k v -> Q Exp #

liftTyped :: HashMap k v -> Q (TExp (HashMap k v)) #

(Lift k, Lift v) => Lift (Leaf k v :: Type)

Since: unordered-containers-0.2.17.0

Instance details

Defined in Data.HashMap.Internal

Methods

lift :: Leaf k v -> Q Exp #

liftTyped :: Leaf k v -> Q (TExp (Leaf k v)) #

Lift a => Lift (Vec n a :: Type) Source # 
Instance details

Defined in Clash.Sized.Vector

Methods

lift :: Vec n a -> Q Exp #

liftTyped :: Vec n a -> Q (TExp (Vec n a)) #

Lift a => Lift (Signal dom a :: Type) Source # 
Instance details

Defined in Clash.Signal.Internal

Methods

lift :: Signal dom a -> Q Exp #

liftTyped :: Signal dom a -> Q (TExp (Signal dom a)) #

Lift a => Lift (RTree d a :: Type) Source # 
Instance details

Defined in Clash.Sized.RTree

Methods

lift :: RTree d a -> Q Exp #

liftTyped :: RTree d a -> Q (TExp (RTree d a)) #

(Lift a, Lift b, Lift c) => Lift ((a, b, c) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b, c) -> Q Exp #

liftTyped :: (a, b, c) -> Q (TExp (a, b, c)) #

Lift a => Lift (DSignal dom delay a :: Type) Source # 
Instance details

Defined in Clash.Signal.Delayed.Internal

Methods

lift :: DSignal dom delay a -> Q Exp #

liftTyped :: DSignal dom delay a -> Q (TExp (DSignal dom delay a)) #

(Lift (rep (int + frac)), KnownNat frac, KnownNat int, Typeable rep) => Lift (Fixed rep int frac :: Type) Source # 
Instance details

Defined in Clash.Sized.Fixed

Methods

lift :: Fixed rep int frac -> Q Exp #

liftTyped :: Fixed rep int frac -> Q (TExp (Fixed rep int frac)) #

(Lift a, Lift b, Lift c, Lift d) => Lift ((a, b, c, d) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b, c, d) -> Q Exp #

liftTyped :: (a, b, c, d) -> Q (TExp (a, b, c, d)) #

(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((a, b, c, d, e) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b, c, d, e) -> Q Exp #

liftTyped :: (a, b, c, d, e) -> Q (TExp (a, b, c, d, e)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((a, b, c, d, e, f) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b, c, d, e, f) -> Q Exp #

liftTyped :: (a, b, c, d, e, f) -> Q (TExp (a, b, c, d, e, f)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((a, b, c, d, e, f, g) :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (a, b, c, d, e, f, g) -> Q Exp #

liftTyped :: (a, b, c, d, e, f, g) -> Q (TExp (a, b, c, d, e, f, g)) #

Lift (# #)

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# #) -> Q Exp #

liftTyped :: (# #) -> Q (TExp (# #)) #

Lift a => Lift ((# a #) :: TYPE ('TupleRep '['LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a #) -> Q Exp #

liftTyped :: (# a #) -> Q (TExp (# a #)) #

(Lift a, Lift b) => Lift ((# a, b #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b #) -> Q Exp #

liftTyped :: (# a, b #) -> Q (TExp (# a, b #)) #

(Lift a, Lift b) => Lift ((# a | b #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b #) -> Q Exp #

liftTyped :: (# a | b #) -> Q (TExp (# a | b #)) #

(Lift a, Lift b, Lift c) => Lift ((# a, b, c #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b, c #) -> Q Exp #

liftTyped :: (# a, b, c #) -> Q (TExp (# a, b, c #)) #

(Lift a, Lift b, Lift c) => Lift ((# a | b | c #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b | c #) -> Q Exp #

liftTyped :: (# a | b | c #) -> Q (TExp (# a | b | c #)) #

(Lift a, Lift b, Lift c, Lift d) => Lift ((# a, b, c, d #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b, c, d #) -> Q Exp #

liftTyped :: (# a, b, c, d #) -> Q (TExp (# a, b, c, d #)) #

(Lift a, Lift b, Lift c, Lift d) => Lift ((# a | b | c | d #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b | c | d #) -> Q Exp #

liftTyped :: (# a | b | c | d #) -> Q (TExp (# a | b | c | d #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((# a, b, c, d, e #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b, c, d, e #) -> Q Exp #

liftTyped :: (# a, b, c, d, e #) -> Q (TExp (# a, b, c, d, e #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((# a | b | c | d | e #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b | c | d | e #) -> Q Exp #

liftTyped :: (# a | b | c | d | e #) -> Q (TExp (# a | b | c | d | e #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((# a, b, c, d, e, f #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b, c, d, e, f #) -> Q Exp #

liftTyped :: (# a, b, c, d, e, f #) -> Q (TExp (# a, b, c, d, e, f #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((# a | b | c | d | e | f #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b | c | d | e | f #) -> Q Exp #

liftTyped :: (# a | b | c | d | e | f #) -> Q (TExp (# a | b | c | d | e | f #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((# a, b, c, d, e, f, g #) :: TYPE ('TupleRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a, b, c, d, e, f, g #) -> Q Exp #

liftTyped :: (# a, b, c, d, e, f, g #) -> Q (TExp (# a, b, c, d, e, f, g #)) #

(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((# a | b | c | d | e | f | g #) :: TYPE ('SumRep '['LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep, 'LiftedRep]))

Since: template-haskell-2.16.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: (# a | b | c | d | e | f | g #) -> Q Exp #

liftTyped :: (# a | b | c | d | e | f | g #) -> Q (TExp (# a | b | c | d | e | f | g #)) #

Type classes

Clash

class NFDataX a => AutoReg a Source #

autoReg is a "smart" version of register. It does two things:

  1. It splits product types over their fields. For example, given a 3-tuple, the corresponding HDL will end up with three instances of a register (or more if the three fields can be split up similarly).
  2. Given a data type where a constructor indicates (parts) of the data will (not) be updated a given cycle, it will split the data in two parts. The first part will contain the "always interesting" parts (the constructor bits). The second holds the "potentially uninteresting" data (the rest). Both parts will be stored in separate registers. The register holding the "potentially uninteresting" part will only be enabled if the constructor bits indicate they're interesting.

The most important example of this is Maybe. Consider Maybe (Signed 16); when viewed as bits, a Nothing would look like:

>>> pack @(Maybe (Signed 16)) Nothing
0b0_...._...._...._....

and Just

>>> pack @(Maybe (Signed 16)) (Just 3)
0b1_0000_0000_0000_0011

In the first case, Nothing, we don't particularly care about updating the register holding the Signed 16 field, as they'll be unknown anyway. We can therefore deassert its enable line.

Making Clash lay it out like this increases the chances of synthesis tools clock gating the registers, saving energy.

This version of autoReg will split the given data type up recursively. For example, given a :: Maybe (Maybe Int, Maybe Int), a total of five registers will be rendered. Both the "interesting" and "uninteresting" enable lines of the inner Maybe types will be controlled by the outer one, in addition to the inner parts controlling their "uninteresting" parts as described in (2).

The default implementation is just register. If you don't need or want the special features of AutoReg, you can use that by writing an empty instance.

data MyDataType = ...
instance AutoReg MyDataType

If you have a product type you can use deriveAutoReg to derive an instance.

Instances

Instances details
AutoReg Bool Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Bool -> Signal dom Bool -> Signal dom Bool Source #

AutoReg Char Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Char -> Signal dom Char -> Signal dom Char Source #

AutoReg Double Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Double -> Signal dom Double -> Signal dom Double Source #

AutoReg Float Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Float -> Signal dom Float -> Signal dom Float Source #

AutoReg Int Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Int -> Signal dom Int -> Signal dom Int Source #

AutoReg Int8 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Int8 -> Signal dom Int8 -> Signal dom Int8 Source #

AutoReg Int16 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Int16 -> Signal dom Int16 -> Signal dom Int16 Source #

AutoReg Int32 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Int32 -> Signal dom Int32 -> Signal dom Int32 Source #

AutoReg Int64 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Int64 -> Signal dom Int64 -> Signal dom Int64 Source #

AutoReg Integer Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Integer -> Signal dom Integer -> Signal dom Integer Source #

AutoReg Word Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Word -> Signal dom Word -> Signal dom Word Source #

AutoReg Word8 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Word8 -> Signal dom Word8 -> Signal dom Word8 Source #

AutoReg Word16 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Word16 -> Signal dom Word16 -> Signal dom Word16 Source #

AutoReg Word32 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Word32 -> Signal dom Word32 -> Signal dom Word32 Source #

AutoReg Word64 Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Word64 -> Signal dom Word64 -> Signal dom Word64 Source #

AutoReg () Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> () -> Signal dom () -> Signal dom () Source #

AutoReg CUShort Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> CUShort -> Signal dom CUShort -> Signal dom CUShort Source #

AutoReg Half Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Half -> Signal dom Half -> Signal dom Half Source #

AutoReg Bit Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Bit -> Signal dom Bit -> Signal dom Bit Source #

AutoReg a => AutoReg (Maybe a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Maybe a -> Signal dom (Maybe a) -> Signal dom (Maybe a) Source #

AutoReg a => AutoReg (Ratio a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Instances

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Ratio a -> Signal dom (Ratio a) -> Signal dom (Ratio a) Source #

AutoReg a => AutoReg (Complex a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Instances

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Complex a -> Signal dom (Complex a) -> Signal dom (Complex a) Source #

AutoReg a => AutoReg (Down a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Instances

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Down a -> Signal dom (Down a) -> Signal dom (Down a) Source #

KnownNat n => AutoReg (BitVector n) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> BitVector n -> Signal dom (BitVector n) -> Signal dom (BitVector n) Source #

AutoReg (Index n) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Index n -> Signal dom (Index n) -> Signal dom (Index n) Source #

AutoReg (Unsigned n) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Unsigned n -> Signal dom (Unsigned n) -> Signal dom (Unsigned n) Source #

AutoReg (Signed n) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Signed n -> Signal dom (Signed n) -> Signal dom (Signed n) Source #

(AutoReg a, AutoReg b) => AutoReg (a, b) Source # 
Instance details

Defined in Clash.Class.AutoReg.Instances

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> (a, b) -> Signal dom (a, b) -> Signal dom (a, b) Source #

(KnownNat n, AutoReg a) => AutoReg (Vec n a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Vec n a -> Signal dom (Vec n a) -> Signal dom (Vec n a) Source #

(KnownNat d, AutoReg a) => AutoReg (RTree d a) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> RTree d a -> Signal dom (RTree d a) -> Signal dom (RTree d a) Source #

(AutoReg a, AutoReg b, AutoReg c) => AutoReg (a, b, c) Source #

NB: The documentation only shows instances up to 3-tuples. By default, instances up to and including 12-tuples will exist. If the flag large-tuples is set instances up to the GHC imposed limit will exist. The GHC imposed limit is either 62 or 64 depending on the GHC version.

Instance details

Defined in Clash.Class.AutoReg.Instances

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> (a, b, c) -> Signal dom (a, b, c) -> Signal dom (a, b, c) Source #

NFDataX (rep (int + frac)) => AutoReg (Fixed rep int frac) Source # 
Instance details

Defined in Clash.Class.AutoReg.Internal

Methods

autoReg :: forall (dom :: Domain). (HasCallStack, KnownDomain dom) => Clock dom -> Reset dom -> Enable dom -> Fixed rep int frac -> Signal dom (Fixed rep int frac) -> Signal dom (Fixed rep int frac) Source #

autoReg :: (HasCallStack, HiddenClockResetEnable dom, AutoReg a) => a -> Signal dom a -> Signal dom a Source #

Implicit version of autoReg

deriveAutoReg :: Name -> DecsQ Source #

Automatically derives an AutoReg instance for a product type

Usage:

data Pair a b = MkPair { getA :: a, getB :: b } deriving (Generic, NFDataX)
data Tup3 a b c = MkTup3 { getAB :: Pair a b, getC :: c } deriving (Generic, NFDataX)
deriveAutoReg ''Pair
deriveAutoReg ''Tup3

NB: Because of the way template haskell works the order here matters, if you try to deriveAutoReg ''Tup3 before Pair it will complain about missing an instance AutoReg (Pair a b).

Other

module Data.Bits

type Type = Type #

The kind of types with lifted values. For example Int :: Type.

data Constraint #

The kind of constraints, like Show a

Exceptions

Named types

Hidden arguments

Magic

Haskell Prelude

Clash.Prelude re-exports most of the Haskell Prelude with the exception of those functions that the Clash API defines to work on Vec from Clash.Sized.Vector instead of on lists as the Haskell Prelude does. In addition, for the odd and even functions a type class called Parity is available at Clash.Class.Parity.