{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_HADDOCK show-extensions not-home #-}
module Clash.Sized.Internal.Unsigned
(
Unsigned (..)
, size#
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, toEnum#
, fromEnum#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, minBound#
, maxBound#
, (+#)
, (-#)
, (*#)
, negate#
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, toInteger#
, and#
, or#
, xor#
, complement#
, shiftL#
, shiftR#
, rotateL#
, rotateR#
, resize#
, unsignedToWord
, unsigned8toWord8
, unsigned16toWord16
, unsigned32toWord32
)
where
import Prelude hiding (even, odd)
import Control.DeepSeq (NFData (..))
import Control.Lens (Index, Ixed (..), IxValue)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.Data (Data)
import Data.Default.Class (Default (..))
import Data.Proxy (Proxy (..))
import Text.Read (Read (..), ReadPrec)
import Text.Printf (PrintfArg (..), printf)
#if MIN_VERSION_base(4,16,0)
import GHC.Exts (wordToWord8#, wordToWord16#, wordToWord32#)
#else
import GHC.Exts (narrow8Word#, narrow16Word#, narrow32Word#)
#endif
import GHC.Generics (Generic)
#if MIN_VERSION_base(4,15,0)
import GHC.Num.BigNat (bigNatToWord, bigNatToWord#)
import GHC.Num.Integer
(integerFromNatural, integerShiftL, integerToNatural)
import GHC.Num.Natural
(Natural (..), naturalShiftL, naturalShiftR, naturalToWord)
#else
import GHC.Integer.GMP.Internals (bigNatToWord)
import GHC.Natural (Natural (..), naturalFromInteger)
#endif
import GHC.Natural (naturalToInteger)
import GHC.TypeLits (KnownNat, Nat, type (+))
#if MIN_VERSION_base(4,15,0)
import GHC.TypeNats (natVal)
#else
import GHC.TypeLits (natVal)
#endif
import GHC.TypeLits.Extra (Max)
import GHC.Word (Word (..), Word8 (..), Word16 (..), Word32 (..))
import Data.Ix (Ix(..))
import Language.Haskell.TH (appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
#if MIN_VERSION_template_haskell(2,16,0)
import Language.Haskell.TH.Compat
#endif
#if MIN_VERSION_template_haskell(2,17,0)
import Language.Haskell.TH (Quote, Type)
#else
import Language.Haskell.TH (TypeQ)
#endif
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitraryBoundedIntegral,
coarbitraryIntegral)
import Clash.Annotations.Primitive (hasBlackBox)
import Clash.Class.BitPack (BitPack (..), packXWith, bitCoerce)
import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import Clash.Class.Parity (Parity (..))
import Clash.Class.Resize (Resize (..))
import Clash.Class.BitPack.BitIndex ((!), msb, replaceBit, split)
import Clash.Class.BitPack.BitReduction (reduceOr)
import Clash.Promoted.Nat (natToNum, natToNatural)
import Clash.Sized.Internal.BitVector (BitVector (BV), Bit, high, low, undefError)
import qualified Clash.Sized.Internal.BitVector as BV
import Clash.Sized.Internal.Mod
import Clash.XException
(ShowX (..), NFDataX (..), errorX, showsPrecXWith, rwhnfX)
#include "MachDeps.h"
type role Unsigned nominal
#if MIN_VERSION_base(4,15,0) && !MIN_VERSION_base(4,17,0)
data Unsigned (n :: Nat) =
U { unsafeToNatural :: !Natural }
#else
newtype Unsigned (n :: Nat) =
U { Unsigned n -> Natural
unsafeToNatural :: Natural }
#endif
deriving (Typeable (Unsigned n)
DataType
Constr
Typeable (Unsigned n)
-> (forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n))
-> (forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n))
-> (Unsigned n -> Constr)
-> (Unsigned n -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Unsigned n)))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Unsigned n)))
-> ((forall b. Data b => b -> b) -> Unsigned n -> Unsigned n)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r)
-> (forall u. (forall d. Data d => d -> u) -> Unsigned n -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> Unsigned n -> u)
-> (forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n))
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n))
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n))
-> Data (Unsigned n)
Unsigned n -> DataType
Unsigned n -> Constr
(forall b. Data b => b -> b) -> Unsigned n -> Unsigned n
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n)
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n)
forall a.
Typeable a
-> (forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Unsigned n -> u
forall u. (forall d. Data d => d -> u) -> Unsigned n -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
forall (n :: Nat). KnownNat n => Typeable (Unsigned n)
forall (n :: Nat). KnownNat n => Unsigned n -> DataType
forall (n :: Nat). KnownNat n => Unsigned n -> Constr
forall (n :: Nat).
KnownNat n =>
(forall b. Data b => b -> b) -> Unsigned n -> Unsigned n
forall (n :: Nat) u.
KnownNat n =>
Int -> (forall d. Data d => d -> u) -> Unsigned n -> u
forall (n :: Nat) u.
KnownNat n =>
(forall d. Data d => d -> u) -> Unsigned n -> [u]
forall (n :: Nat) r r'.
KnownNat n =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
forall (n :: Nat) r r'.
KnownNat n =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, Monad m) =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n)
forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n)
forall (n :: Nat) (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Unsigned n))
forall (n :: Nat) (t :: Type -> Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Unsigned n))
forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n)
forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n)
forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Unsigned n))
forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Unsigned n))
$cU :: Constr
$tUnsigned :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
$cgmapMo :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
gmapMp :: (forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
$cgmapMp :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
gmapM :: (forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
$cgmapM :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, Monad m) =>
(forall d. Data d => d -> m d) -> Unsigned n -> m (Unsigned n)
gmapQi :: Int -> (forall d. Data d => d -> u) -> Unsigned n -> u
$cgmapQi :: forall (n :: Nat) u.
KnownNat n =>
Int -> (forall d. Data d => d -> u) -> Unsigned n -> u
gmapQ :: (forall d. Data d => d -> u) -> Unsigned n -> [u]
$cgmapQ :: forall (n :: Nat) u.
KnownNat n =>
(forall d. Data d => d -> u) -> Unsigned n -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
$cgmapQr :: forall (n :: Nat) r r'.
KnownNat n =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
$cgmapQl :: forall (n :: Nat) r r'.
KnownNat n =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Unsigned n -> r
gmapT :: (forall b. Data b => b -> b) -> Unsigned n -> Unsigned n
$cgmapT :: forall (n :: Nat).
KnownNat n =>
(forall b. Data b => b -> b) -> Unsigned n -> Unsigned n
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Unsigned n))
$cdataCast2 :: forall (n :: Nat) (t :: Type -> Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Unsigned n))
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (Unsigned n))
$cdataCast1 :: forall (n :: Nat) (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Unsigned n))
dataTypeOf :: Unsigned n -> DataType
$cdataTypeOf :: forall (n :: Nat). KnownNat n => Unsigned n -> DataType
toConstr :: Unsigned n -> Constr
$ctoConstr :: forall (n :: Nat). KnownNat n => Unsigned n -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n)
$cgunfold :: forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Unsigned n)
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n)
$cgfoldl :: forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Unsigned n -> c (Unsigned n)
$cp1Data :: forall (n :: Nat). KnownNat n => Typeable (Unsigned n)
Data, (forall x. Unsigned n -> Rep (Unsigned n) x)
-> (forall x. Rep (Unsigned n) x -> Unsigned n)
-> Generic (Unsigned n)
forall x. Rep (Unsigned n) x -> Unsigned n
forall x. Unsigned n -> Rep (Unsigned n) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (n :: Nat) x. Rep (Unsigned n) x -> Unsigned n
forall (n :: Nat) x. Unsigned n -> Rep (Unsigned n) x
$cto :: forall (n :: Nat) x. Rep (Unsigned n) x -> Unsigned n
$cfrom :: forall (n :: Nat) x. Unsigned n -> Rep (Unsigned n) x
Generic)
{-# ANN U hasBlackBox #-}
{-# CLASH_OPAQUE size# #-}
{-# ANN size# hasBlackBox #-}
size# :: KnownNat n => Unsigned n -> Int
#if MIN_VERSION_base(4,15,0)
size# u = fromIntegral (natVal u)
#else
size# :: Unsigned n -> Int
size# Unsigned n
u = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Unsigned n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Unsigned n
u)
#endif
instance NFData (Unsigned n) where
rnf :: Unsigned n -> ()
rnf (U Natural
i) = Natural -> ()
forall a. NFData a => a -> ()
rnf Natural
i () -> () -> ()
`seq` ()
{-# NOINLINE rnf #-}
instance Show (Unsigned n) where
show :: Unsigned n -> String
show (U Natural
i) = Natural -> String
forall a. Show a => a -> String
show Natural
i
{-# NOINLINE show #-}
instance ShowX (Unsigned n) where
showsPrecX :: Int -> Unsigned n -> ShowS
showsPrecX = (Int -> Unsigned n -> ShowS) -> Int -> Unsigned n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> Unsigned n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
instance NFDataX (Unsigned n) where
deepErrorX :: String -> Unsigned n
deepErrorX = String -> Unsigned n
forall a. HasCallStack => String -> a
errorX
rnfX :: Unsigned n -> ()
rnfX = Unsigned n -> ()
forall a. a -> ()
rwhnfX
instance KnownNat n => Read (Unsigned n) where
readPrec :: ReadPrec (Unsigned n)
readPrec = Natural -> Unsigned n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Natural -> Unsigned n)
-> ReadPrec Natural -> ReadPrec (Unsigned n)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (ReadPrec Natural
forall a. Read a => ReadPrec a
readPrec :: ReadPrec Natural)
instance KnownNat n => BitPack (Unsigned n) where
type BitSize (Unsigned n) = n
pack :: Unsigned n -> BitVector (BitSize (Unsigned n))
pack = (Unsigned n -> BitVector n) -> Unsigned n -> BitVector n
forall (n :: Nat) a.
KnownNat n =>
(a -> BitVector n) -> a -> BitVector n
packXWith Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack#
unpack :: BitVector (BitSize (Unsigned n)) -> Unsigned n
unpack = BitVector (BitSize (Unsigned n)) -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack#
{-# CLASH_OPAQUE pack# #-}
{-# ANN pack# hasBlackBox #-}
pack# :: Unsigned n -> BitVector n
pack# :: Unsigned n -> BitVector n
pack# (U Natural
i) = Natural -> Natural -> BitVector n
forall (n :: Nat). Natural -> Natural -> BitVector n
BV Natural
0 Natural
i
{-# CLASH_OPAQUE unpack# #-}
{-# ANN unpack# hasBlackBox #-}
unpack# :: KnownNat n => BitVector n -> Unsigned n
unpack# :: BitVector n -> Unsigned n
unpack# (BV Natural
0 Natural
i) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U Natural
i
unpack# BitVector n
bv = String -> [BitVector n] -> Unsigned n
forall (n :: Nat) a. KnownNat n => String -> [BitVector n] -> a
undefError String
"Unsigned.unpack" [BitVector n
bv]
instance Eq (Unsigned n) where
== :: Unsigned n -> Unsigned n -> Bool
(==) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
eq#
/= :: Unsigned n -> Unsigned n -> Bool
(/=) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
neq#
{-# CLASH_OPAQUE eq# #-}
{-# ANN eq# hasBlackBox #-}
eq# :: Unsigned n -> Unsigned n -> Bool
eq# :: Unsigned n -> Unsigned n -> Bool
eq# (U Natural
v1) (U Natural
v2) = Natural
v1 Natural -> Natural -> Bool
forall a. Eq a => a -> a -> Bool
== Natural
v2
{-# CLASH_OPAQUE neq# #-}
{-# ANN neq# hasBlackBox #-}
neq# :: Unsigned n -> Unsigned n -> Bool
neq# :: Unsigned n -> Unsigned n -> Bool
neq# (U Natural
v1) (U Natural
v2) = Natural
v1 Natural -> Natural -> Bool
forall a. Eq a => a -> a -> Bool
/= Natural
v2
instance Ord (Unsigned n) where
< :: Unsigned n -> Unsigned n -> Bool
(<) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
lt#
>= :: Unsigned n -> Unsigned n -> Bool
(>=) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
ge#
> :: Unsigned n -> Unsigned n -> Bool
(>) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
gt#
<= :: Unsigned n -> Unsigned n -> Bool
(<=) = Unsigned n -> Unsigned n -> Bool
forall (n :: Nat). Unsigned n -> Unsigned n -> Bool
le#
lt#,ge#,gt#,le# :: Unsigned n -> Unsigned n -> Bool
{-# CLASH_OPAQUE lt# #-}
{-# ANN lt# hasBlackBox #-}
lt# :: Unsigned n -> Unsigned n -> Bool
lt# (U Natural
n) (U Natural
m) = Natural
n Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
< Natural
m
{-# CLASH_OPAQUE ge# #-}
{-# ANN ge# hasBlackBox #-}
ge# :: Unsigned n -> Unsigned n -> Bool
ge# (U Natural
n) (U Natural
m) = Natural
n Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
>= Natural
m
{-# CLASH_OPAQUE gt# #-}
{-# ANN gt# hasBlackBox #-}
gt# :: Unsigned n -> Unsigned n -> Bool
gt# (U Natural
n) (U Natural
m) = Natural
n Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
> Natural
m
{-# CLASH_OPAQUE le# #-}
{-# ANN le# hasBlackBox #-}
le# :: Unsigned n -> Unsigned n -> Bool
le# (U Natural
n) (U Natural
m) = Natural
n Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
<= Natural
m
instance KnownNat n => Enum (Unsigned n) where
succ :: Unsigned n -> Unsigned n
succ Unsigned n
n
| Unsigned n
n Unsigned n -> Unsigned n -> Bool
forall a. Eq a => a -> a -> Bool
== Unsigned n
forall a. Bounded a => a
maxBound =
String -> Unsigned n
forall a. HasCallStack => String -> a
error (String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'succ' was called on (" String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Unsigned n -> String
forall a. Show a => a -> String
show @(Unsigned n) Unsigned n
forall a. Bounded a => a
maxBound String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
" :: "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"Unsigned " String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Natural -> String
forall a. Show a => a -> String
show (KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n) String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
") and caused an "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"overflow. Use 'satSucc' and specify a SaturationMode if you "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"need other behavior."
| Bool
otherwise = Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
+# Integer -> Unsigned n
forall (n :: Nat). KnownNat n => Integer -> Unsigned n
fromInteger# Integer
1
pred :: Unsigned n -> Unsigned n
pred Unsigned n
n
| Unsigned n
n Unsigned n -> Unsigned n -> Bool
forall a. Eq a => a -> a -> Bool
== Unsigned n
forall a. Bounded a => a
minBound =
String -> Unsigned n
forall a. HasCallStack => String -> a
error (String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'pred' was called on (0 :: Unsigned " String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Natural -> String
forall a. Show a => a -> String
show (KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n)
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
") and caused an overflow. Use 'satPred' and specify a "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"SaturationMode if you need other behavior."
| Bool
otherwise = Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
-# Integer -> Unsigned n
forall (n :: Nat). KnownNat n => Integer -> Unsigned n
fromInteger# Integer
1
toEnum :: Int -> Unsigned n
toEnum = Int -> Unsigned n
forall (n :: Nat). KnownNat n => Int -> Unsigned n
toEnum#
fromEnum :: Unsigned n -> Int
fromEnum = Unsigned n -> Int
forall (n :: Nat). KnownNat n => Unsigned n -> Int
fromEnum#
enumFrom :: Unsigned n -> [Unsigned n]
enumFrom = Unsigned n -> [Unsigned n]
forall (n :: Nat). KnownNat n => Unsigned n -> [Unsigned n]
enumFrom#
enumFromThen :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThen = Unsigned n -> Unsigned n -> [Unsigned n]
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThen#
enumFromTo :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo = Unsigned n -> Unsigned n -> [Unsigned n]
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo#
enumFromThenTo :: Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo = Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo#
toEnum# :: forall n. KnownNat n => Int -> Unsigned n
toEnum# :: Int -> Unsigned n
toEnum# = Integer -> Unsigned n
forall (n :: Nat). KnownNat n => Integer -> Unsigned n
fromInteger# (Integer -> Unsigned n) -> (Int -> Integer) -> Int -> Unsigned n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger
{-# CLASH_OPAQUE toEnum# #-}
{-# ANN toEnum# hasBlackBox #-}
fromEnum# :: forall n. KnownNat n => Unsigned n -> Int
= Integer -> Int
forall a. Enum a => a -> Int
fromEnum (Integer -> Int) -> (Unsigned n -> Integer) -> Unsigned n -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Unsigned n -> Integer
forall (n :: Nat). Unsigned n -> Integer
toInteger#
{-# CLASH_OPAQUE fromEnum# #-}
{-# ANN fromEnum# hasBlackBox #-}
enumFrom# :: forall n. KnownNat n => Unsigned n -> [Unsigned n]
enumFrom# :: Unsigned n -> [Unsigned n]
enumFrom# = \Unsigned n
x -> (Natural -> Unsigned n) -> [Natural] -> [Unsigned n]
forall a b. (a -> b) -> [a] -> [b]
map (Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Unsigned n)
-> (Natural -> Natural) -> Natural -> Unsigned n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)) [Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
x .. Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural (Unsigned n
forall a. Bounded a => a
maxBound :: Unsigned n)]
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE enumFrom# #-}
enumFromThen# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThen# :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThen# = \Unsigned n
x Unsigned n
y -> [Natural] -> [Unsigned n]
toUnsigneds [Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
x, Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
y .. Unsigned n -> Unsigned n -> Natural
bound Unsigned n
x Unsigned n
y]
where
toUnsigneds :: [Natural] -> [Unsigned n]
toUnsigneds = (Natural -> Unsigned n) -> [Natural] -> [Unsigned n]
forall a b. (a -> b) -> [a] -> [b]
map (Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Unsigned n)
-> (Natural -> Natural) -> Natural -> Unsigned n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m))
bound :: Unsigned n -> Unsigned n -> Natural
bound Unsigned n
x Unsigned n
y = Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural (if Unsigned n
x Unsigned n -> Unsigned n -> Bool
forall a. Ord a => a -> a -> Bool
<= Unsigned n
y then Unsigned n
forall a. Bounded a => a
maxBound else Unsigned n
forall a. Bounded a => a
minBound :: Unsigned n)
#if MIN_VERSION_base(4,15,0)
m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE enumFromThen# #-}
enumFromTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo# :: Unsigned n -> Unsigned n -> [Unsigned n]
enumFromTo# = \Unsigned n
x Unsigned n
y -> (Natural -> Unsigned n) -> [Natural] -> [Unsigned n]
forall a b. (a -> b) -> [a] -> [b]
map (Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Unsigned n)
-> (Natural -> Natural) -> Natural -> Unsigned n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)) [Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
x .. Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
y]
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE enumFromTo# #-}
enumFromThenTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo# :: Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n]
enumFromThenTo# = \Unsigned n
x1 Unsigned n
x2 Unsigned n
y -> (Natural -> Unsigned n) -> [Natural] -> [Unsigned n]
forall a b. (a -> b) -> [a] -> [b]
map (Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Unsigned n)
-> (Natural -> Natural) -> Natural -> Unsigned n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)) [Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
x1, Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
x2 .. Unsigned n -> Natural
forall (n :: Nat). Unsigned n -> Natural
unsafeToNatural Unsigned n
y]
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE enumFromThenTo# #-}
instance KnownNat n => Bounded (Unsigned n) where
minBound :: Unsigned n
minBound = Unsigned n
forall (n :: Nat). Unsigned n
minBound#
maxBound :: Unsigned n
maxBound = Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n
maxBound#
minBound# :: Unsigned n
minBound# :: Unsigned n
minBound# = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U Natural
0
{-# CLASH_OPAQUE minBound# #-}
{-# ANN minBound# hasBlackBox #-}
maxBound# :: forall n. KnownNat n => Unsigned n
maxBound# :: Unsigned n
maxBound# = let m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` (forall a. (Num a, KnownNat n) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @n) in Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
m Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
- Natural
1)
{-# CLASH_OPAQUE maxBound# #-}
{-# ANN maxBound# hasBlackBox #-}
instance KnownNat n => Num (Unsigned n) where
+ :: Unsigned n -> Unsigned n -> Unsigned n
(+) = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(+#)
(-) = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(-#)
* :: Unsigned n -> Unsigned n -> Unsigned n
(*) = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(*#)
negate :: Unsigned n -> Unsigned n
negate = Unsigned n -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Unsigned n
negate#
abs :: Unsigned n -> Unsigned n
abs = Unsigned n -> Unsigned n
forall a. a -> a
id
signum :: Unsigned n -> Unsigned n
signum Unsigned n
bv = Unsigned 1 -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# (BitVector 1 -> Unsigned 1
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack# (Bit -> BitVector 1
BV.pack# (Unsigned n -> Bit
forall a. BitPack a => a -> Bit
reduceOr Unsigned n
bv)))
fromInteger :: Integer -> Unsigned n
fromInteger = Integer -> Unsigned n
forall (n :: Nat). KnownNat n => Integer -> Unsigned n
fromInteger#
(+#),(-#),(*#) :: forall n . KnownNat n => Unsigned n -> Unsigned n -> Unsigned n
{-# CLASH_OPAQUE (+#) #-}
{-# ANN (+#) hasBlackBox #-}
+# :: Unsigned n -> Unsigned n -> Unsigned n
(+#) = \(U Natural
i) (U Natural
j) -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural -> Natural -> Natural
addMod Natural
m Natural
i Natural
j)
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE (-#) #-}
{-# ANN (-#) hasBlackBox #-}
-# :: Unsigned n -> Unsigned n -> Unsigned n
(-#) = \(U Natural
i) (U Natural
j) -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural -> Natural -> Natural
subMod Natural
m Natural
i Natural
j)
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE (*#) #-}
{-# ANN (*#) hasBlackBox #-}
*# :: Unsigned n -> Unsigned n -> Unsigned n
(*#) = \(U Natural
i) (U Natural
j) -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural -> Natural -> Natural
mulMod2 Natural
m Natural
i Natural
j)
#if MIN_VERSION_base(4,15,0)
where m = (1 `naturalShiftL` naturalToWord (natVal (Proxy @n))) - 1
#else
where m :: Natural
m = (Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))) Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
- Natural
1
#endif
{-# CLASH_OPAQUE negate# #-}
{-# ANN negate# hasBlackBox #-}
negate# :: forall n . KnownNat n => Unsigned n -> Unsigned n
negate# :: Unsigned n -> Unsigned n
negate# = \(U Natural
i) -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural -> Natural
negateMod Natural
m Natural
i)
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @n))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
{-# CLASH_OPAQUE fromInteger# #-}
{-# ANN fromInteger# hasBlackBox #-}
fromInteger# :: forall n . KnownNat n => Integer -> Unsigned n
#if MIN_VERSION_base(4,15,0)
fromInteger# = \x -> U (integerToNatural (x `mod` m))
where
m = 1 `integerShiftL` naturalToWord (natVal (Proxy @n))
#else
fromInteger# :: Integer -> Unsigned n
fromInteger# = \Integer
x -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Integer -> Natural
naturalFromInteger (Integer
x Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
m))
where
m :: Integer
m = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
#endif
instance (KnownNat m, KnownNat n) => ExtendingNum (Unsigned m) (Unsigned n) where
type AResult (Unsigned m) (Unsigned n) = Unsigned (Max m n + 1)
add :: Unsigned m -> Unsigned n -> AResult (Unsigned m) (Unsigned n)
add = Unsigned m -> Unsigned n -> AResult (Unsigned m) (Unsigned n)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus#
sub :: Unsigned m -> Unsigned n -> AResult (Unsigned m) (Unsigned n)
sub = Unsigned m -> Unsigned n -> AResult (Unsigned m) (Unsigned n)
forall (m :: Nat) (n :: Nat).
(KnownNat m, KnownNat n) =>
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
minus#
type MResult (Unsigned m) (Unsigned n) = Unsigned (m + n)
mul :: Unsigned m -> Unsigned n -> MResult (Unsigned m) (Unsigned n)
mul = Unsigned m -> Unsigned n -> MResult (Unsigned m) (Unsigned n)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (m + n)
times#
{-# CLASH_OPAQUE plus# #-}
{-# ANN plus# hasBlackBox #-}
plus# :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# (U Natural
a) (U Natural
b) = Natural -> Unsigned (Max m n + 1)
forall (n :: Nat). Natural -> Unsigned n
U (Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
+ Natural
b)
{-# CLASH_OPAQUE minus# #-}
{-# ANN minus# hasBlackBox #-}
minus# :: forall m n . (KnownNat m, KnownNat n) => Unsigned m -> Unsigned n
-> Unsigned (Max m n + 1)
minus# :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
minus# = \(U Natural
a) (U Natural
b) -> Natural -> Unsigned (Max m n + 1)
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural -> Natural -> Natural
subMod Natural
mask Natural
a Natural
b)
where
#if MIN_VERSION_base(4,15,0)
sz = naturalToWord (natVal (Proxy @(Max m n + 1)))
mask = 1 `naturalShiftL` sz
#else
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy (Max m n + 1) -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy (Max m n + 1)
forall k (t :: k). Proxy t
Proxy @(Max m n + 1)))
mask :: Natural
mask = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
#endif
{-# CLASH_OPAQUE times# #-}
{-# ANN times# hasBlackBox #-}
times# :: Unsigned m -> Unsigned n -> Unsigned (m + n)
times# :: Unsigned m -> Unsigned n -> Unsigned (m + n)
times# (U Natural
a) (U Natural
b) = Natural -> Unsigned (m + n)
forall (n :: Nat). Natural -> Unsigned n
U (Natural
a Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
* Natural
b)
instance KnownNat n => Real (Unsigned n) where
toRational :: Unsigned n -> Rational
toRational = Integer -> Rational
forall a. Real a => a -> Rational
toRational (Integer -> Rational)
-> (Unsigned n -> Integer) -> Unsigned n -> Rational
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Unsigned n -> Integer
forall (n :: Nat). Unsigned n -> Integer
toInteger#
instance KnownNat n => Integral (Unsigned n) where
quot :: Unsigned n -> Unsigned n -> Unsigned n
quot = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
quot#
rem :: Unsigned n -> Unsigned n -> Unsigned n
rem = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
rem#
div :: Unsigned n -> Unsigned n -> Unsigned n
div = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
quot#
mod :: Unsigned n -> Unsigned n -> Unsigned n
mod = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
rem#
quotRem :: Unsigned n -> Unsigned n -> (Unsigned n, Unsigned n)
quotRem Unsigned n
n Unsigned n
d = (Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
`quot#` Unsigned n
d,Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
`rem#` Unsigned n
d)
divMod :: Unsigned n -> Unsigned n -> (Unsigned n, Unsigned n)
divMod Unsigned n
n Unsigned n
d = (Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
`quot#` Unsigned n
d,Unsigned n
n Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
`rem#` Unsigned n
d)
toInteger :: Unsigned n -> Integer
toInteger = Unsigned n -> Integer
forall (n :: Nat). Unsigned n -> Integer
toInteger#
quot#,rem# :: Unsigned n -> Unsigned n -> Unsigned n
{-# CLASH_OPAQUE quot# #-}
{-# ANN quot# hasBlackBox #-}
quot# :: Unsigned n -> Unsigned n -> Unsigned n
quot# (U Natural
i) (U Natural
j) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
i Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`quot` Natural
j)
{-# CLASH_OPAQUE rem# #-}
{-# ANN rem# hasBlackBox #-}
rem# :: Unsigned n -> Unsigned n -> Unsigned n
rem# (U Natural
i) (U Natural
j) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
i Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`rem` Natural
j)
{-# CLASH_OPAQUE toInteger# #-}
{-# ANN toInteger# hasBlackBox #-}
toInteger# :: Unsigned n -> Integer
toInteger# :: Unsigned n -> Integer
toInteger# (U Natural
i) = Natural -> Integer
naturalToInteger Natural
i
instance KnownNat n => PrintfArg (Unsigned n) where
formatArg :: Unsigned n -> FieldFormatter
formatArg = Integer -> FieldFormatter
forall a. PrintfArg a => a -> FieldFormatter
formatArg (Integer -> FieldFormatter)
-> (Unsigned n -> Integer) -> Unsigned n -> FieldFormatter
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger
instance KnownNat n => Parity (Unsigned n) where
even :: Unsigned n -> Bool
even = BitVector n -> Bool
forall a. Parity a => a -> Bool
even (BitVector n -> Bool)
-> (Unsigned n -> BitVector n) -> Unsigned n -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Unsigned n -> BitVector n
forall a. BitPack a => a -> BitVector (BitSize a)
pack
odd :: Unsigned n -> Bool
odd = BitVector n -> Bool
forall a. Parity a => a -> Bool
odd (BitVector n -> Bool)
-> (Unsigned n -> BitVector n) -> Unsigned n -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Unsigned n -> BitVector n
forall a. BitPack a => a -> BitVector (BitSize a)
pack
instance KnownNat n => Bits (Unsigned n) where
.&. :: Unsigned n -> Unsigned n -> Unsigned n
(.&.) = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
and#
.|. :: Unsigned n -> Unsigned n -> Unsigned n
(.|.) = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
or#
xor :: Unsigned n -> Unsigned n -> Unsigned n
xor = Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
xor#
complement :: Unsigned n -> Unsigned n
complement = Unsigned n -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Unsigned n
complement#
zeroBits :: Unsigned n
zeroBits = Unsigned n
0
bit :: Int -> Unsigned n
bit Int
i = Int -> Bit -> Unsigned n -> Unsigned n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
high Unsigned n
0
setBit :: Unsigned n -> Int -> Unsigned n
setBit Unsigned n
v Int
i = Int -> Bit -> Unsigned n -> Unsigned n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
high Unsigned n
v
clearBit :: Unsigned n -> Int -> Unsigned n
clearBit Unsigned n
v Int
i = Int -> Bit -> Unsigned n -> Unsigned n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
low Unsigned n
v
complementBit :: Unsigned n -> Int -> Unsigned n
complementBit Unsigned n
v Int
i = Int -> Bit -> Unsigned n -> Unsigned n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i (Bit -> Bit
BV.complement## (Unsigned n
v Unsigned n -> Int -> Bit
forall a i. (BitPack a, Enum i) => a -> i -> Bit
! Int
i)) Unsigned n
v
testBit :: Unsigned n -> Int -> Bool
testBit Unsigned n
v Int
i = Unsigned n
v Unsigned n -> Int -> Bit
forall a i. (BitPack a, Enum i) => a -> i -> Bit
! Int
i Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
high
bitSizeMaybe :: Unsigned n -> Maybe Int
bitSizeMaybe Unsigned n
v = Int -> Maybe Int
forall a. a -> Maybe a
Just (Unsigned n -> Int
forall (n :: Nat). KnownNat n => Unsigned n -> Int
size# Unsigned n
v)
bitSize :: Unsigned n -> Int
bitSize = Unsigned n -> Int
forall (n :: Nat). KnownNat n => Unsigned n -> Int
size#
isSigned :: Unsigned n -> Bool
isSigned Unsigned n
_ = Bool
False
shiftL :: Unsigned n -> Int -> Unsigned n
shiftL Unsigned n
v Int
i = Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
shiftL# Unsigned n
v Int
i
shiftR :: Unsigned n -> Int -> Unsigned n
shiftR Unsigned n
v Int
i = Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
shiftR# Unsigned n
v Int
i
rotateL :: Unsigned n -> Int -> Unsigned n
rotateL Unsigned n
v Int
i = Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
rotateL# Unsigned n
v Int
i
rotateR :: Unsigned n -> Int -> Unsigned n
rotateR Unsigned n
v Int
i = Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
rotateR# Unsigned n
v Int
i
popCount :: Unsigned n -> Int
popCount Unsigned n
u = BitVector n -> Int
forall a. Bits a => a -> Int
popCount (Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack# Unsigned n
u)
{-# CLASH_OPAQUE and# #-}
{-# ANN and# hasBlackBox #-}
and# :: Unsigned n -> Unsigned n -> Unsigned n
and# :: Unsigned n -> Unsigned n -> Unsigned n
and# (U Natural
v1) (U Natural
v2) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
v1 Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
.&. Natural
v2)
{-# CLASH_OPAQUE or# #-}
{-# ANN or# hasBlackBox #-}
or# :: Unsigned n -> Unsigned n -> Unsigned n
or# :: Unsigned n -> Unsigned n -> Unsigned n
or# (U Natural
v1) (U Natural
v2) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
v1 Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
.|. Natural
v2)
{-# CLASH_OPAQUE xor# #-}
{-# ANN xor# hasBlackBox #-}
xor# :: Unsigned n -> Unsigned n -> Unsigned n
xor# :: Unsigned n -> Unsigned n -> Unsigned n
xor# (U Natural
v1) (U Natural
v2) = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural
v1 Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
`xor` Natural
v2)
{-# CLASH_OPAQUE complement# #-}
{-# ANN complement# hasBlackBox #-}
complement# :: forall n . KnownNat n => Unsigned n -> Unsigned n
complement# :: Unsigned n -> Unsigned n
complement# = \(U Natural
i) -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Natural
complementN Natural
i)
where complementN :: Natural -> Natural
complementN = Integer -> Natural -> Natural
complementMod (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
shiftL#, shiftR#, rotateL#, rotateR# :: forall n .KnownNat n => Unsigned n -> Int -> Unsigned n
{-# CLASH_OPAQUE shiftL# #-}
{-# ANN shiftL# hasBlackBox #-}
shiftL# :: Unsigned n -> Int -> Unsigned n
shiftL# = \(U Natural
v) Int
i ->
#if MIN_VERSION_base(4,15,0)
let i' = fromIntegral i in
if | i < 0 -> error $ "'shiftL' undefined for negative number: " ++ show i
| i' >= sz -> U 0
| otherwise -> U ((naturalShiftL v i') `mod` m)
where
sz = naturalToWord (natVal (Proxy @n))
m = 1 `naturalShiftL` sz
#else
if | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> String -> Unsigned n
forall a. HasCallStack => String -> a
error (String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'shiftL' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
sz -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U Natural
0
| Bool
otherwise -> Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U ((Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftL Natural
v Int
i) Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)
where
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
#endif
{-# CLASH_OPAQUE shiftR# #-}
{-# ANN shiftR# hasBlackBox #-}
shiftR# :: Unsigned n -> Int -> Unsigned n
shiftR# (U Natural
v) Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = String -> Unsigned n
forall a. HasCallStack => String -> a
error
(String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'shiftR' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
i
| Bool
otherwise = Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U (Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftR Natural
v Int
i)
{-# CLASH_OPAQUE rotateL# #-}
{-# ANN rotateL# hasBlackBox #-}
rotateL# :: Unsigned n -> Int -> Unsigned n
rotateL# =
\(U Natural
n) Int
b ->
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then
#if MIN_VERSION_base(4,15,0)
let l = naturalShiftL n b'
r = naturalShiftR n b''
b' = fromIntegral b `mod` sz
#else
let l :: Natural
l = Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftL Natural
n Int
b'
r :: Natural
r = Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftR Natural
n Int
b''
b' :: Int
b' = Int
b Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
sz
#endif
b'' :: Int
b'' = Int
sz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
b'
in Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U ((Natural
l Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
.|. Natural
r) Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)
else
String -> Unsigned n
forall a. HasCallStack => String -> a
error (String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'rotateL' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
where
#if MIN_VERSION_base(4,15,0)
sz = naturalToWord (natVal (Proxy @n))
m = 1 `naturalShiftL` sz
#else
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) :: Int
m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
#endif
{-# CLASH_OPAQUE rotateR# #-}
{-# ANN rotateR# hasBlackBox #-}
rotateR# :: Unsigned n -> Int -> Unsigned n
rotateR# =
\(U Natural
n) Int
b ->
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then
#if MIN_VERSION_base(4,15,0)
let l = naturalShiftR n b'
r = naturalShiftL n b''
b' = fromIntegral b `mod` sz
#else
let l :: Natural
l = Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftR Natural
n Int
b'
r :: Natural
r = Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftL Natural
n Int
b''
b' :: Int
b' = Int
b Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
sz
#endif
b'' :: Int
b'' = Int
sz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
b'
in Natural -> Unsigned n
forall (n :: Nat). Natural -> Unsigned n
U ((Natural
l Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
.|. Natural
r) Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m)
else
String -> Unsigned n
forall a. HasCallStack => String -> a
error (String -> Unsigned n) -> String -> Unsigned n
forall a b. (a -> b) -> a -> b
$ String
"'rotateR' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
where
#if MIN_VERSION_base(4,15,0)
sz = naturalToWord (natVal (Proxy @n))
m = 1 `naturalShiftL` sz
#else
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) :: Int
m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
#endif
instance KnownNat n => FiniteBits (Unsigned n) where
finiteBitSize :: Unsigned n -> Int
finiteBitSize = Unsigned n -> Int
forall (n :: Nat). KnownNat n => Unsigned n -> Int
size#
countLeadingZeros :: Unsigned n -> Int
countLeadingZeros Unsigned n
u = BitVector n -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack# Unsigned n
u)
countTrailingZeros :: Unsigned n -> Int
countTrailingZeros Unsigned n
u = BitVector n -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack# Unsigned n
u)
instance Resize Unsigned where
resize :: Unsigned a -> Unsigned b
resize = Unsigned a -> Unsigned b
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize#
zeroExtend :: Unsigned a -> Unsigned (b + a)
zeroExtend = Unsigned a -> Unsigned (b + a)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f (b + a)
extend
truncateB :: Unsigned (a + b) -> Unsigned a
truncateB = Unsigned (a + b) -> Unsigned a
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize#
{-# CLASH_OPAQUE resize# #-}
{-# ANN resize# hasBlackBox #-}
resize# :: forall n m . KnownNat m => Unsigned n -> Unsigned m
resize# :: Unsigned n -> Unsigned m
resize# = \(U Natural
i) -> if Natural
i Natural -> Natural -> Bool
forall a. Ord a => a -> a -> Bool
>= Natural
m then Natural -> Unsigned m
forall (n :: Nat). Natural -> Unsigned n
U (Natural
i Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`mod` Natural
m) else Natural -> Unsigned m
forall (n :: Nat). Natural -> Unsigned n
U Natural
i
#if MIN_VERSION_base(4,15,0)
where m = 1 `naturalShiftL` naturalToWord (natVal (Proxy @m))
#else
where m :: Natural
m = Natural
1 Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy m -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy m
forall k (t :: k). Proxy t
Proxy @m))
#endif
instance Default (Unsigned n) where
def :: Unsigned n
def = Unsigned n
forall (n :: Nat). Unsigned n
minBound#
instance KnownNat n => Lift (Unsigned n) where
lift :: Unsigned n -> Q Exp
lift u :: Unsigned n
u@(U Natural
i) = Q Exp -> TypeQ -> Q Exp
sigE [| fromInteger# i |] (Integer -> TypeQ
decUnsigned (Unsigned n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Unsigned n
u))
{-# NOINLINE lift #-}
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: Unsigned n -> Q (TExp (Unsigned n))
liftTyped = Unsigned n -> Q (TExp (Unsigned n))
forall a. Lift a => a -> Q (TExp a)
liftTypedFromUntyped
#endif
#if MIN_VERSION_template_haskell(2,17,0)
decUnsigned :: Quote m => Natural -> m Type
decUnsigned n = appT (conT ''Unsigned) (litT $ numTyLit (integerFromNatural n))
#else
decUnsigned :: Integer -> TypeQ
decUnsigned :: Integer -> TypeQ
decUnsigned Integer
n = TypeQ -> TypeQ -> TypeQ
appT (Name -> TypeQ
conT ''Unsigned) (TyLitQ -> TypeQ
litT (TyLitQ -> TypeQ) -> TyLitQ -> TypeQ
forall a b. (a -> b) -> a -> b
$ Integer -> TyLitQ
numTyLit Integer
n)
#endif
instance KnownNat n => SaturatingNum (Unsigned n) where
satAdd :: SaturationMode -> Unsigned n -> Unsigned n -> Unsigned n
satAdd SaturationMode
SatWrap Unsigned n
a Unsigned n
b = Unsigned n
a Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
+# Unsigned n
b
satAdd SaturationMode
SatZero Unsigned n
a Unsigned n
b =
let r :: Unsigned (Max n n + 1)
r = Unsigned n -> Unsigned n -> Unsigned (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# Unsigned n
a Unsigned n
b
in case Unsigned (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Unsigned (n + 1)
Unsigned (Max n n + 1)
r of
Bit
0 -> Unsigned (n + 1) -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# Unsigned (n + 1)
Unsigned (Max n n + 1)
r
Bit
_ -> Unsigned n
forall (n :: Nat). Unsigned n
minBound#
satAdd SaturationMode
SatError Unsigned n
a Unsigned n
b =
let r :: Unsigned (Max n n + 1)
r = Unsigned n -> Unsigned n -> Unsigned (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# Unsigned n
a Unsigned n
b
in case Unsigned (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Unsigned (n + 1)
Unsigned (Max n n + 1)
r of
Bit
0 -> Unsigned (n + 1) -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# Unsigned (n + 1)
Unsigned (Max n n + 1)
r
Bit
_ -> String -> Unsigned n
forall a. HasCallStack => String -> a
errorX String
"Unsigned.satAdd: overflow"
satAdd SaturationMode
_ Unsigned n
a Unsigned n
b =
let r :: Unsigned (Max n n + 1)
r = Unsigned n -> Unsigned n -> Unsigned (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
plus# Unsigned n
a Unsigned n
b
in case Unsigned (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Unsigned (n + 1)
Unsigned (Max n n + 1)
r of
Bit
0 -> Unsigned (n + 1) -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# Unsigned (n + 1)
Unsigned (Max n n + 1)
r
Bit
_ -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n
maxBound#
satSub :: SaturationMode -> Unsigned n -> Unsigned n -> Unsigned n
satSub SaturationMode
SatWrap Unsigned n
a Unsigned n
b = Unsigned n
a Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
-# Unsigned n
b
satSub SaturationMode
SatError Unsigned n
a Unsigned n
b =
let r :: Unsigned (Max n n + 1)
r = Unsigned n -> Unsigned n -> Unsigned (Max n n + 1)
forall (m :: Nat) (n :: Nat).
(KnownNat m, KnownNat n) =>
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
minus# Unsigned n
a Unsigned n
b
in case Unsigned (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Unsigned (n + 1)
Unsigned (Max n n + 1)
r of
Bit
0 -> Unsigned (n + 1) -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# Unsigned (n + 1)
Unsigned (Max n n + 1)
r
Bit
_ -> String -> Unsigned n
forall a. HasCallStack => String -> a
errorX String
"Unsigned.satSub: overflow"
satSub SaturationMode
_ Unsigned n
a Unsigned n
b =
let r :: Unsigned (Max n n + 1)
r = Unsigned n -> Unsigned n -> Unsigned (Max n n + 1)
forall (m :: Nat) (n :: Nat).
(KnownNat m, KnownNat n) =>
Unsigned m -> Unsigned n -> Unsigned (Max m n + 1)
minus# Unsigned n
a Unsigned n
b
in case Unsigned (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Unsigned (n + 1)
Unsigned (Max n n + 1)
r of
Bit
0 -> Unsigned (n + 1) -> Unsigned n
forall (n :: Nat) (m :: Nat).
KnownNat m =>
Unsigned n -> Unsigned m
resize# Unsigned (n + 1)
Unsigned (Max n n + 1)
r
Bit
_ -> Unsigned n
forall (n :: Nat). Unsigned n
minBound#
satMul :: SaturationMode -> Unsigned n -> Unsigned n -> Unsigned n
satMul SaturationMode
SatWrap Unsigned n
a Unsigned n
b = Unsigned n
a Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
*# Unsigned n
b
satMul SaturationMode
SatZero Unsigned n
a Unsigned n
b =
let r :: Unsigned (n + n)
r = Unsigned n -> Unsigned n -> Unsigned (n + n)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (m + n)
times# Unsigned n
a Unsigned n
b
(BitVector n
rL,BitVector n
rR) = Unsigned (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Unsigned (n + n)
r
in case BitVector n
rL of
BitVector n
0 -> BitVector n -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack# BitVector n
rR
BitVector n
_ -> Unsigned n
forall (n :: Nat). Unsigned n
minBound#
satMul SaturationMode
SatError Unsigned n
a Unsigned n
b =
let r :: Unsigned (n + n)
r = Unsigned n -> Unsigned n -> Unsigned (n + n)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (m + n)
times# Unsigned n
a Unsigned n
b
(BitVector n
rL,BitVector n
rR) = Unsigned (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Unsigned (n + n)
r
in case BitVector n
rL of
BitVector n
0 -> BitVector n -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack# BitVector n
rR
BitVector n
_ -> String -> Unsigned n
forall a. HasCallStack => String -> a
errorX String
"Unsigned.satMul: overflow"
satMul SaturationMode
_ Unsigned n
a Unsigned n
b =
let r :: Unsigned (n + n)
r = Unsigned n -> Unsigned n -> Unsigned (n + n)
forall (m :: Nat) (n :: Nat).
Unsigned m -> Unsigned n -> Unsigned (m + n)
times# Unsigned n
a Unsigned n
b
(BitVector n
rL,BitVector n
rR) = Unsigned (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Unsigned (n + n)
r
in case BitVector n
rL of
BitVector n
0 -> BitVector n -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack# BitVector n
rR
BitVector n
_ -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n
maxBound#
satSucc :: SaturationMode -> Unsigned n -> Unsigned n
satSucc SaturationMode
SatError Unsigned n
a
| Unsigned n
a Unsigned n -> Unsigned n -> Bool
forall a. Eq a => a -> a -> Bool
== Unsigned n
forall a. Bounded a => a
maxBound = String -> Unsigned n
forall a. HasCallStack => String -> a
errorX String
"Unsigned.satSucc: overflow"
satSucc SaturationMode
satMode Unsigned n
a = SaturationMode -> Unsigned n -> Unsigned n -> Unsigned n
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
satMode Unsigned n
a Unsigned n
1
{-# INLINE satSucc #-}
satPred :: SaturationMode -> Unsigned n -> Unsigned n
satPred SaturationMode
SatError Unsigned n
a
| Unsigned n
a Unsigned n -> Unsigned n -> Bool
forall a. Eq a => a -> a -> Bool
== Unsigned n
forall a. Bounded a => a
minBound = String -> Unsigned n
forall a. HasCallStack => String -> a
errorX String
"Unsigned.satPred: overflow"
satPred SaturationMode
satMode Unsigned n
a = SaturationMode -> Unsigned n -> Unsigned n -> Unsigned n
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
satMode Unsigned n
a Unsigned n
1
{-# INLINE satPred #-}
instance KnownNat n => Arbitrary (Unsigned n) where
arbitrary :: Gen (Unsigned n)
arbitrary = Gen (Unsigned n)
forall a. (Bounded a, Integral a) => Gen a
arbitraryBoundedIntegral
shrink :: Unsigned n -> [Unsigned n]
shrink = Unsigned n -> [Unsigned n]
forall (n :: Nat) (p :: Nat -> Type).
(KnownNat n, Integral (p n)) =>
p n -> [p n]
BV.shrinkSizedUnsigned
instance KnownNat n => CoArbitrary (Unsigned n) where
coarbitrary :: Unsigned n -> Gen b -> Gen b
coarbitrary = Unsigned n -> Gen b -> Gen b
forall a b. Integral a => a -> Gen b -> Gen b
coarbitraryIntegral
type instance Index (Unsigned n) = Int
type instance IxValue (Unsigned n) = Bit
instance KnownNat n => Ixed (Unsigned n) where
ix :: Index (Unsigned n)
-> Traversal' (Unsigned n) (IxValue (Unsigned n))
ix Index (Unsigned n)
i IxValue (Unsigned n) -> f (IxValue (Unsigned n))
f Unsigned n
s = BitVector n -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
unpack# (BitVector n -> Unsigned n)
-> (Bit -> BitVector n) -> Bit -> Unsigned n
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> BitVector n -> Int -> Bit -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Bit -> BitVector n
BV.replaceBit# (Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack# Unsigned n
s) Int
Index (Unsigned n)
i
(Bit -> Unsigned n) -> f Bit -> f (Unsigned n)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> IxValue (Unsigned n) -> f (IxValue (Unsigned n))
f (BitVector n -> Int -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Int -> Bit
BV.index# (Unsigned n -> BitVector n
forall (n :: Nat). Unsigned n -> BitVector n
pack# Unsigned n
s) Int
Index (Unsigned n)
i)
instance (KnownNat n) => Ix (Unsigned n) where
range :: (Unsigned n, Unsigned n) -> [Unsigned n]
range (Unsigned n
a, Unsigned n
b) = [Unsigned n
a..Unsigned n
b]
index :: (Unsigned n, Unsigned n) -> Unsigned n -> Int
index ab :: (Unsigned n, Unsigned n)
ab@(Unsigned n
a, Unsigned n
b) Unsigned n
x
| (Unsigned n, Unsigned n) -> Unsigned n -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange (Unsigned n, Unsigned n)
ab Unsigned n
x = Unsigned n -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Unsigned n -> Int) -> Unsigned n -> Int
forall a b. (a -> b) -> a -> b
$ Unsigned n
x Unsigned n -> Unsigned n -> Unsigned n
forall a. Num a => a -> a -> a
- Unsigned n
a
| Bool
otherwise = String -> Int
forall a. HasCallStack => String -> a
error (String -> Int) -> String -> Int
forall a b. (a -> b) -> a -> b
$ String -> Unsigned n -> Unsigned n -> Unsigned n -> String
forall r. PrintfType r => String -> r
printf String
"Index (%d) out of range ((%d, %d))" Unsigned n
x Unsigned n
a Unsigned n
b
inRange :: (Unsigned n, Unsigned n) -> Unsigned n -> Bool
inRange (Unsigned n
a, Unsigned n
b) Unsigned n
x = Unsigned n
a Unsigned n -> Unsigned n -> Bool
forall a. Ord a => a -> a -> Bool
<= Unsigned n
x Bool -> Bool -> Bool
&& Unsigned n
x Unsigned n -> Unsigned n -> Bool
forall a. Ord a => a -> a -> Bool
<= Unsigned n
b
unsignedToWord :: Unsigned WORD_SIZE_IN_BITS -> Word
#if MIN_VERSION_base(4,15,0)
unsignedToWord (U (NS u#)) = W# u#
unsignedToWord (U (NB u#)) = bigNatToWord u#
#else
unsignedToWord :: Unsigned 64 -> Word
unsignedToWord (U (NatS# GmpLimb#
u#)) = GmpLimb# -> Word
W# GmpLimb#
u#
unsignedToWord (U (NatJ# BigNat
u#)) = GmpLimb# -> Word
W# (BigNat -> GmpLimb#
bigNatToWord BigNat
u#)
#endif
{-# CLASH_OPAQUE unsignedToWord #-}
{-# ANN unsignedToWord hasBlackBox #-}
unsigned8toWord8 :: Unsigned 8 -> Word8
#if MIN_VERSION_base(4,16,0)
unsigned8toWord8 (U (NS u#)) = W8# (wordToWord8# u#)
unsigned8toWord8 (U (NB u#)) = W8# (wordToWord8# (bigNatToWord# u#))
#elif MIN_VERSION_base(4,15,0)
unsigned8toWord8 (U (NS u#)) = W8# (narrow8Word# u#)
unsigned8toWord8 (U (NB u#)) = W8# (narrow8Word# (bigNatToWord# u#))
#else
unsigned8toWord8 :: Unsigned 8 -> Word8
unsigned8toWord8 (U (NatS# GmpLimb#
u#)) = GmpLimb# -> Word8
W8# (GmpLimb# -> GmpLimb#
narrow8Word# GmpLimb#
u#)
unsigned8toWord8 (U (NatJ# BigNat
u#)) = GmpLimb# -> Word8
W8# (GmpLimb# -> GmpLimb#
narrow8Word# (BigNat -> GmpLimb#
bigNatToWord BigNat
u#))
#endif
{-# CLASH_OPAQUE unsigned8toWord8 #-}
{-# ANN unsigned8toWord8 hasBlackBox #-}
unsigned16toWord16 :: Unsigned 16 -> Word16
#if MIN_VERSION_base(4,16,0)
unsigned16toWord16 (U (NS u#)) = W16# (wordToWord16# u#)
unsigned16toWord16 (U (NB u#)) = W16# (wordToWord16# (bigNatToWord# u#))
#elif MIN_VERSION_base(4,15,0)
unsigned16toWord16 (U (NS u#)) = W16# (narrow16Word# u#)
unsigned16toWord16 (U (NB u#)) = W16# (narrow16Word# (bigNatToWord# u#))
#else
unsigned16toWord16 :: Unsigned 16 -> Word16
unsigned16toWord16 (U (NatS# GmpLimb#
u#)) = GmpLimb# -> Word16
W16# (GmpLimb# -> GmpLimb#
narrow16Word# GmpLimb#
u#)
unsigned16toWord16 (U (NatJ# BigNat
u#)) = GmpLimb# -> Word16
W16# (GmpLimb# -> GmpLimb#
narrow16Word# (BigNat -> GmpLimb#
bigNatToWord BigNat
u#))
#endif
{-# CLASH_OPAQUE unsigned16toWord16 #-}
{-# ANN unsigned16toWord16 hasBlackBox #-}
unsigned32toWord32 :: Unsigned 32 -> Word32
#if MIN_VERSION_base(4,16,0)
unsigned32toWord32 (U (NS u#)) = W32# (wordToWord32# u#)
unsigned32toWord32 (U (NB u#)) = W32# (wordToWord32# (bigNatToWord# u#))
#elif MIN_VERSION_base(4,15,0)
unsigned32toWord32 (U (NS u#)) = W32# (narrow32Word# u#)
unsigned32toWord32 (U (NB u#)) = W32# (narrow32Word# (bigNatToWord# u#))
#else
unsigned32toWord32 :: Unsigned 32 -> Word32
unsigned32toWord32 (U (NatS# GmpLimb#
u#)) = GmpLimb# -> Word32
W32# (GmpLimb# -> GmpLimb#
narrow32Word# GmpLimb#
u#)
unsigned32toWord32 (U (NatJ# BigNat
u#)) = GmpLimb# -> Word32
W32# (GmpLimb# -> GmpLimb#
narrow32Word# (BigNat -> GmpLimb#
bigNatToWord BigNat
u#))
#endif
{-# CLASH_OPAQUE unsigned32toWord32 #-}
{-# ANN unsigned32toWord32 hasBlackBox #-}
{-# RULES
"bitCoerce/Unsigned WORD_SIZE_IN_BITS -> Word" bitCoerce = unsignedToWord
"bitCoerce/Unsigned 8 -> Word8" bitCoerce = unsigned8toWord8
"bitCoerce/Unsigned 16 -> Word16" bitCoerce = unsigned16toWord16
"bitCoerce/Unsigned 32 -> Word32" bitCoerce = unsigned32toWord32
#-}