{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
#include "containers.h"
module Data.IntMap.Merge.Strict (
SimpleWhenMissing
, SimpleWhenMatched
, merge
, zipWithMaybeMatched
, zipWithMatched
, mapMaybeMissing
, dropMissing
, preserveMissing
, mapMissing
, filterMissing
, WhenMissing
, WhenMatched
, mergeA
, zipWithMaybeAMatched
, zipWithAMatched
, traverseMaybeMissing
, traverseMissing
, filterAMissing
, mapWhenMissing
, mapWhenMatched
, runWhenMatched
, runWhenMissing
) where
import Data.IntMap.Internal
( SimpleWhenMissing
, SimpleWhenMatched
, merge
, dropMissing
, preserveMissing
, filterMissing
, WhenMissing (..)
, WhenMatched (..)
, mergeA
, filterAMissing
, runWhenMatched
, runWhenMissing
)
import Data.IntMap.Strict.Internal
import Prelude hiding (filter, map, foldl, foldr)
mapWhenMissing :: Functor f => (a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing a -> b
f WhenMissing f x a
q = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = (IntMap a -> IntMap b) -> f (IntMap a) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
map a -> b
f) (f (IntMap a) -> f (IntMap b))
-> (IntMap x -> f (IntMap a)) -> IntMap x -> f (IntMap b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
q
, missingKey :: Key -> x -> f (Maybe b)
missingKey = \Key
k x
x -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe b -> Maybe b
forall a. Maybe a -> Maybe a
forceMaybe (Maybe b -> Maybe b) -> (Maybe a -> Maybe b) -> Maybe a -> Maybe b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (f (Maybe a) -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$ WhenMissing f x a -> Key -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Key -> x -> f (Maybe y)
missingKey WhenMissing f x a
q Key
k x
x}
mapWhenMatched :: Functor f => (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched a -> b
f WhenMatched f x y a
q = WhenMatched :: forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched
{ matchedKey :: Key -> x -> y -> f (Maybe b)
matchedKey = \Key
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe b -> Maybe b
forall a. Maybe a -> Maybe a
forceMaybe (Maybe b -> Maybe b) -> (Maybe a -> Maybe b) -> Maybe a -> Maybe b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (f (Maybe a) -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$ WhenMatched f x y a -> Key -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
q Key
k x
x y
y }
zipWithMaybeMatched :: Applicative f
=> (Key -> x -> y -> Maybe z)
-> WhenMatched f x y z
zipWithMaybeMatched :: (Key -> x -> y -> Maybe z) -> WhenMatched f x y z
zipWithMaybeMatched Key -> x -> y -> Maybe z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$
\Key
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$! Maybe z -> Maybe z
forall a. Maybe a -> Maybe a
forceMaybe (Maybe z -> Maybe z) -> Maybe z -> Maybe z
forall a b. (a -> b) -> a -> b
$! Key -> x -> y -> Maybe z
f Key
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}
zipWithMaybeAMatched :: Applicative f
=> (Key -> x -> y -> f (Maybe z))
-> WhenMatched f x y z
zipWithMaybeAMatched :: (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched Key -> x -> y -> f (Maybe z)
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$
\ Key
k x
x y
y -> Maybe z -> Maybe z
forall a. Maybe a -> Maybe a
forceMaybe (Maybe z -> Maybe z) -> f (Maybe z) -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> y -> f (Maybe z)
f Key
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}
zipWithAMatched :: Applicative f
=> (Key -> x -> y -> f z)
-> WhenMatched f x y z
zipWithAMatched :: (Key -> x -> y -> f z) -> WhenMatched f x y z
zipWithAMatched Key -> x -> y -> f z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$
\ Key
k x
x y
y -> (z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> z -> Maybe z
forall a b. (a -> b) -> a -> b
$!) (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> y -> f z
f Key
k x
x y
y
{-# INLINE zipWithAMatched #-}
zipWithMatched :: Applicative f
=> (Key -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched :: (Key -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched Key -> x -> y -> z
f = (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Key -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$
\Key
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$! z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> z -> Maybe z
forall a b. (a -> b) -> a -> b
$! Key -> x -> y -> z
f Key
k x
x y
y
{-# INLINE zipWithMatched #-}
mapMaybeMissing :: Applicative f => (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing :: (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing Key -> x -> Maybe y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Key -> x -> Maybe y) -> IntMap x -> IntMap y
forall a b. (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Key -> x -> Maybe y
f IntMap x
m
, missingKey :: Key -> x -> f (Maybe y)
missingKey = \Key
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! Maybe y -> Maybe y
forall a. Maybe a -> Maybe a
forceMaybe (Maybe y -> Maybe y) -> Maybe y -> Maybe y
forall a b. (a -> b) -> a -> b
$! Key -> x -> Maybe y
f Key
k x
x }
{-# INLINE mapMaybeMissing #-}
mapMissing :: Applicative f => (Key -> x -> y) -> WhenMissing f x y
mapMissing :: (Key -> x -> y) -> WhenMissing f x y
mapMissing Key -> x -> y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Key -> x -> y) -> IntMap x -> IntMap y
forall a b. (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey Key -> x -> y
f IntMap x
m
, missingKey :: Key -> x -> f (Maybe y)
missingKey = \Key
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> y -> Maybe y
forall a b. (a -> b) -> a -> b
$! Key -> x -> y
f Key
k x
x }
{-# INLINE mapMissing #-}
traverseMaybeMissing :: Applicative f
=> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing :: (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing Key -> x -> f (Maybe y)
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Key -> x -> f (Maybe y)) -> IntMap x -> f (IntMap y)
forall (f :: * -> *) a b.
Applicative f =>
(Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Key -> x -> f (Maybe y)
f
, missingKey :: Key -> x -> f (Maybe y)
missingKey = \Key
k x
x -> Maybe y -> Maybe y
forall a. Maybe a -> Maybe a
forceMaybe (Maybe y -> Maybe y) -> f (Maybe y) -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> f (Maybe y)
f Key
k x
x }
{-# INLINE traverseMaybeMissing #-}
traverseMissing :: Applicative f
=> (Key -> x -> f y) -> WhenMissing f x y
traverseMissing :: (Key -> x -> f y) -> WhenMissing f x y
traverseMissing Key -> x -> f y
f = WhenMissing :: forall (f :: * -> *) x y.
(IntMap x -> f (IntMap y))
-> (Key -> x -> f (Maybe y)) -> WhenMissing f x y
WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Key -> x -> f y) -> IntMap x -> f (IntMap y)
forall (t :: * -> *) a b.
Applicative t =>
(Key -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey Key -> x -> f y
f
, missingKey :: Key -> x -> f (Maybe y)
missingKey = \Key
k x
x -> (y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> y -> Maybe y
forall a b. (a -> b) -> a -> b
$!) (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Key -> x -> f y
f Key
k x
x }
{-# INLINE traverseMissing #-}
forceMaybe :: Maybe a -> Maybe a
forceMaybe :: Maybe a -> Maybe a
forceMaybe Maybe a
Nothing = Maybe a
forall a. Maybe a
Nothing
forceMaybe m :: Maybe a
m@(Just !a
_) = Maybe a
m
{-# INLINE forceMaybe #-}