cubicbezier: Efficient manipulating of 2D cubic bezier curves.

[ bsd3, geometry, graphics, library, typography ] [ Propose Tags ] [ Report a vulnerability ]

This library supports efficient manipulating of 2D cubic bezier curves, for use in graphics or typography. Supported features are:

Evaluating bezier curves and derivatives, affine transformations on bezier curves, arclength and inverse arclength, intersections between two curves, intersection between a curve and a line, curvature and radius of curvature, finding tangents parallel to a vector, finding inflection points and cusps.

It also supports polynomial root finding with Bernstein polynomials.

The module Geom2D.CubicBezier exports all the cubic bezier functions. The module Geom2D contains general 2D geometry functions and transformations.

Flags

Manual Flags

NameDescriptionDefault
debug

Enable debug messages

Disabled

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

Versions [RSS] 0.1.0, 0.2.0, 0.3.0, 0.4.0.1, 0.4.0.2, 0.5.0.0, 0.6.0.0, 0.6.0.1, 0.6.0.2, 0.6.0.3, 0.6.0.4, 0.6.0.5, 0.6.0.6, 0.6.0.7
Dependencies base (>=4.8 && <5), containers (>=0.5.3), fast-math (>=1.0.0), integration (>=0.1.1), matrices (>=0.5.0), microlens (>=0.1.2), microlens-mtl (>=0.1.2), microlens-th (>=0.1.2), mtl (>=2.1.1), semigroups (>=0.16), vector (>=0.10), vector-space (>=0.10.4) [details]
License BSD-3-Clause
Copyright Kristof Bastiaensen (2017)
Author Kristof Bastiaensen
Maintainer Kristof Bastiaensen, byorgey@gmail.com
Category Graphics, Geometry, Typography
Bug tracker https://github.com/kuribas/cubicbezier/issues
Source repo head: git clone https://github.com/kuribas/cubicbezier
Uploaded by BrentYorgey at 2023-07-10T17:40:41Z
Distributions LTSHaskell:0.6.0.7, NixOS:0.6.0.7, Stackage:0.6.0.7
Reverse Dependencies 7 direct, 25 indirect [details]
Downloads 17099 total (107 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2023-07-10 [all 1 reports]