License | BSD-style (see the file LICENSE) |
---|---|
Maintainer | sjoerd@w3future.com |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Synopsis
- class CartesianClosed (V k) => ECategory (k :: * -> * -> *) where
- type Elem k = TerminalObject (V k) :*-: V k
- elem :: CartesianClosed (V k) => Elem k
- type Arr k a b = Elem k :% (k $ (a, b))
- compArr :: ECategory k => Obj k a -> Obj k b -> Obj k c -> Arr k b c -> Arr k a b -> Arr k a c
- data Underlying k a b = Underlying (Obj k a) (Arr k a b) (Obj k b)
- newtype EOp k a b = EOp (k b a)
- data (:<>:) :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where
- newtype Self v a b = Self {
- getSelf :: v a b
- toSelf :: CartesianClosed v => v a b -> Arr (Self v) a b
- fromSelf :: forall v a b. CartesianClosed v => Obj v a -> Obj v b -> Arr (Self v) a b -> v a b
- newtype InHask k a b = InHask (k a b)
- class (ECategory (EDom ftag), ECategory (ECod ftag), V (EDom ftag) ~ V (ECod ftag)) => EFunctor ftag where
- type EFunctorOf a b t = (EFunctor t, EDom t ~ a, ECod t ~ b)
- data Id (k :: * -> * -> *) = Id
- data g :.: h where
- data Const (c1 :: * -> * -> *) (c2 :: * -> * -> *) x where
- data Opposite f where
- data f1 :<*>: f2 = f1 :<*>: f2
- data DiagProd (k :: * -> * -> *) = DiagProd
- newtype UnderlyingF f = UnderlyingF f
- data EHom (k :: * -> * -> *) = EHom
- data ENat :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where
- ENat :: (EFunctorOf c d f, EFunctorOf c d g) => f -> g -> (forall z. Obj c z -> Arr d (f :%% z) (g :%% z)) -> ENat c d f g
- data EHomX_ k x = EHomX_ (Obj k x)
- data EHom_X k x = EHom_X (Obj (EOp k) x)
- type VProfunctor k l t = EFunctorOf (EOp k :<>: l) (Self (V k)) t
- type family End (v :: * -> * -> *) t :: *
- class CartesianClosed v => HasEnds v where
- end :: (VProfunctor k k t, V k ~ v) => t -> Obj v (End v t)
- endCounit :: (VProfunctor k k t, V k ~ v) => t -> Obj k a -> v (End v t) (t :%% (a, a))
- endFactorizer :: (VProfunctor k k t, V k ~ v) => t -> (forall a. Obj k a -> v x (t :%% (a, a))) -> v x (End v t)
- newtype HaskEnd t = HaskEnd {
- getHaskEnd :: forall k a. VProfunctor k k t => t -> Obj k a -> t :%% (a, a)
- data FunCat a b t s where
- FArr :: (EFunctorOf a b t, EFunctorOf a b s) => t -> s -> FunCat a b t s
- type (:->>:) t s = EHom (ECod t) :.: (Opposite t :<*>: s)
- (->>) :: (EFunctor t, EFunctor s, ECod t ~ ECod s, V (ECod t) ~ V (ECod s)) => t -> s -> t :->>: s
- data EndFunctor (k :: * -> * -> *) = EndFunctor
- type family WeigtedLimit (k :: * -> * -> *) w d :: *
- type Lim w d = WeigtedLimit (ECod d) w d
- class HasEnds (V k) => HasLimits k where
- limitObj :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k (Lim w d)
- limit :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k e -> V k (End (V k) (w :->>: (EHomX_ k e :.: d))) (k $ (e, Lim w d))
- limitInv :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k e -> V k (k $ (e, Lim w d)) (End (V k) (w :->>: (EHomX_ k e :.: d)))
- type family WeigtedColimit (k :: * -> * -> *) w d :: *
- type Colim w d = WeigtedColimit (ECod d) w d
- class HasEnds (V k) => HasColimits k where
- colimitObj :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k (Colim w d)
- colimit :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k e -> V k (End (V k) (w :->>: (EHom_X k e :.: Opposite d))) (k $ (Colim w d, e))
- colimitInv :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k e -> V k (k $ (Colim w d, e)) (End (V k) (w :->>: (EHom_X k e :.: Opposite d)))
- yoneda :: forall f k x. (HasEnds (V k), EFunctorOf k (Self (V k)) f) => f -> Obj k x -> V k (End (V k) (EHomX_ k x :->>: f)) (f :%% x)
- yonedaInv :: forall f k x. (HasEnds (V k), EFunctorOf k (Self (V k)) f) => f -> Obj k x -> V k (f :%% x) (End (V k) (EHomX_ k x :->>: f))
- data Y (k :: * -> * -> *) = Y
- data One
- data Two
- data Three
- data PosetTest a b where
- type family Poset3 a b where ...
Documentation
class CartesianClosed (V k) => ECategory (k :: * -> * -> *) where Source #
An enriched category
type V k :: * -> * -> * Source #
The tensor product of the category V which k is enriched in
The hom object in V from a to b
hom :: Obj k a -> Obj k b -> Obj (V k) (k $ (a, b)) Source #
id :: Obj k a -> Arr k a a Source #
comp :: Obj k a -> Obj k b -> Obj k c -> V k (BinaryProduct (V k) (k $ (b, c)) (k $ (a, b))) (k $ (a, c)) Source #
Instances
ECategory PosetTest Source # | |
Defined in Data.Category.Enriched hom :: Obj PosetTest a -> Obj PosetTest b -> Obj (V PosetTest) (PosetTest $ (a, b)) Source # id :: Obj PosetTest a -> Arr PosetTest a a Source # comp :: Obj PosetTest a -> Obj PosetTest b -> Obj PosetTest c -> V PosetTest (BinaryProduct (V PosetTest) (PosetTest $ (b, c)) (PosetTest $ (a, b))) (PosetTest $ (a, c)) Source # | |
Category k => ECategory (InHask k) Source # | Any regular category is enriched in (->), aka Hask |
Defined in Data.Category.Enriched hom :: Obj (InHask k) a -> Obj (InHask k) b -> Obj (V (InHask k)) (InHask k $ (a, b)) Source # id :: Obj (InHask k) a -> Arr (InHask k) a a Source # comp :: Obj (InHask k) a -> Obj (InHask k) b -> Obj (InHask k) c -> V (InHask k) (BinaryProduct (V (InHask k)) (InHask k $ (b, c)) (InHask k $ (a, b))) (InHask k $ (a, c)) Source # | |
CartesianClosed v => ECategory (Self v) Source # | Self enrichment |
Defined in Data.Category.Enriched | |
ECategory k => ECategory (EOp k) Source # | The opposite of an enriched category |
Defined in Data.Category.Enriched | |
(HasEnds (V a), V a ~ V b) => ECategory (FunCat a b) Source # | The enriched functor category |
Defined in Data.Category.Enriched hom :: Obj (FunCat a b) a0 -> Obj (FunCat a b) b0 -> Obj (V (FunCat a b)) (FunCat a b $ (a0, b0)) Source # id :: Obj (FunCat a b) a0 -> Arr (FunCat a b) a0 a0 Source # comp :: Obj (FunCat a b) a0 -> Obj (FunCat a b) b0 -> Obj (FunCat a b) c -> V (FunCat a b) (BinaryProduct (V (FunCat a b)) (FunCat a b $ (b0, c)) (FunCat a b $ (a0, b0))) (FunCat a b $ (a0, c)) Source # | |
(ECategory k1, ECategory k2, V k1 ~ V k2) => ECategory (k1 :<>: k2) Source # | The enriched product category of enriched categories |
Defined in Data.Category.Enriched hom :: Obj (k1 :<>: k2) a -> Obj (k1 :<>: k2) b -> Obj (V (k1 :<>: k2)) ((k1 :<>: k2) $ (a, b)) Source # id :: Obj (k1 :<>: k2) a -> Arr (k1 :<>: k2) a a Source # comp :: Obj (k1 :<>: k2) a -> Obj (k1 :<>: k2) b -> Obj (k1 :<>: k2) c -> V (k1 :<>: k2) (BinaryProduct (V (k1 :<>: k2)) ((k1 :<>: k2) $ (b, c)) ((k1 :<>: k2) $ (a, b))) ((k1 :<>: k2) $ (a, c)) Source # |
compArr :: ECategory k => Obj k a -> Obj k b -> Obj k c -> Arr k b c -> Arr k a b -> Arr k a c Source #
data Underlying k a b Source #
Underlying (Obj k a) (Arr k a b) (Obj k b) |
Instances
ECategory k => Category (Underlying k) Source # | The underlying category of an enriched category |
Defined in Data.Category.Enriched src :: Underlying k a b -> Obj (Underlying k) a Source # tgt :: Underlying k a b -> Obj (Underlying k) b Source # (.) :: Underlying k b c -> Underlying k a b -> Underlying k a c Source # |
EOp (k b a) |
data (:<>:) :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where Source #
Instances
(ECategory k1, ECategory k2, V k1 ~ V k2) => ECategory (k1 :<>: k2) Source # | The enriched product category of enriched categories |
Defined in Data.Category.Enriched hom :: Obj (k1 :<>: k2) a -> Obj (k1 :<>: k2) b -> Obj (V (k1 :<>: k2)) ((k1 :<>: k2) $ (a, b)) Source # id :: Obj (k1 :<>: k2) a -> Arr (k1 :<>: k2) a a Source # comp :: Obj (k1 :<>: k2) a -> Obj (k1 :<>: k2) b -> Obj (k1 :<>: k2) c -> V (k1 :<>: k2) (BinaryProduct (V (k1 :<>: k2)) ((k1 :<>: k2) $ (b, c)) ((k1 :<>: k2) $ (a, b))) ((k1 :<>: k2) $ (a, c)) Source # | |
type V (k1 :<>: k2) Source # | |
Defined in Data.Category.Enriched | |
type (k1 :<>: k2) $ ((a1, a2), (b1, b2)) Source # | |
Defined in Data.Category.Enriched |
Instances
HasEnds v => HasLimits (Self v) Source # | |
Defined in Data.Category.Enriched limitObj :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) (Lim w d) Source # limit :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) e -> V (Self v) (End (V (Self v)) (w :->>: (EHomX_ (Self v) e :.: d))) (Self v $ (e, Lim w d)) Source # limitInv :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) e -> V (Self v) (Self v $ (e, Lim w d)) (End (V (Self v)) (w :->>: (EHomX_ (Self v) e :.: d))) Source # | |
CartesianClosed v => ECategory (Self v) Source # | Self enrichment |
Defined in Data.Category.Enriched | |
type V (Self v) Source # | |
Defined in Data.Category.Enriched | |
type WeigtedLimit (Self v) w d Source # | |
Defined in Data.Category.Enriched | |
type (Self v) $ (a, b) Source # | |
Defined in Data.Category.Enriched |
fromSelf :: forall v a b. CartesianClosed v => Obj v a -> Obj v b -> Arr (Self v) a b -> v a b Source #
InHask (k a b) |
Instances
Category k => ECategory (InHask k) Source # | Any regular category is enriched in (->), aka Hask |
Defined in Data.Category.Enriched hom :: Obj (InHask k) a -> Obj (InHask k) b -> Obj (V (InHask k)) (InHask k $ (a, b)) Source # id :: Obj (InHask k) a -> Arr (InHask k) a a Source # comp :: Obj (InHask k) a -> Obj (InHask k) b -> Obj (InHask k) c -> V (InHask k) (BinaryProduct (V (InHask k)) (InHask k $ (b, c)) (InHask k $ (a, b))) (InHask k $ (a, c)) Source # | |
type V (InHask k) Source # | |
Defined in Data.Category.Enriched | |
type (InHask k) $ (a, b) Source # | |
Defined in Data.Category.Enriched |
class (ECategory (EDom ftag), ECategory (ECod ftag), V (EDom ftag) ~ V (ECod ftag)) => EFunctor ftag where Source #
Enriched functors.
type EDom ftag :: * -> * -> * Source #
The domain, or source category, of the functor.
type ECod ftag :: * -> * -> * Source #
The codomain, or target category, of the functor.
:%%
maps objects at the type level
(%%) :: ftag -> Obj (EDom ftag) a -> Obj (ECod ftag) (ftag :%% a) Source #
%%
maps object at the value level
map :: EDom ftag ~ k => ftag -> Obj k a -> Obj k b -> V k (k $ (a, b)) (ECod ftag $ (ftag :%% a, ftag :%% b)) Source #
map
maps arrows.
Instances
(ECategory k, HasEnds (V k)) => EFunctor (Y k) Source # | Yoneda embedding |
(HasEnds (V k), ECategory k) => EFunctor (EndFunctor k) Source # | |
Defined in Data.Category.Enriched type EDom (EndFunctor k) :: Type -> Type -> Type Source # type ECod (EndFunctor k) :: Type -> Type -> Type Source # type (EndFunctor k) :%% a :: Type Source # (%%) :: EndFunctor k -> Obj (EDom (EndFunctor k)) a -> Obj (ECod (EndFunctor k)) (EndFunctor k :%% a) Source # map :: EDom (EndFunctor k) ~ k0 => EndFunctor k -> Obj k0 a -> Obj k0 b -> V k0 (k0 $ (a, b)) (ECod (EndFunctor k) $ (EndFunctor k :%% a, EndFunctor k :%% b)) Source # | |
ECategory k => EFunctor (EHom k) Source # | |
ECategory k => EFunctor (DiagProd k) Source # |
|
EFunctor f => EFunctor (Opposite f) Source # | The dual of a functor |
ECategory k => EFunctor (Id k) Source # | The identity functor on k |
ECategory k => EFunctor (EHom_X k x) Source # | |
ECategory k => EFunctor (EHomX_ k x) Source # | |
(EFunctor f1, EFunctor f2, V (ECod f1) ~ V (ECod f2)) => EFunctor (f1 :<*>: f2) Source # |
|
(ECategory (ECod g), ECategory (EDom h), V (EDom h) ~ V (ECod g), ECod h ~ EDom g) => EFunctor (g :.: h) Source # | The composition of two functors. |
(ECategory c1, ECategory c2, V c1 ~ V c2) => EFunctor (Const c1 c2 x) Source # | The constant functor. |
data Id (k :: * -> * -> *) Source #
Instances
ECategory k => EFunctor (Id k) Source # | The identity functor on k |
type EDom (Id k) Source # | |
Defined in Data.Category.Enriched | |
type ECod (Id k) Source # | |
Defined in Data.Category.Enriched | |
type (Id k) :%% a Source # | |
Defined in Data.Category.Enriched |
Instances
(ECategory (ECod g), ECategory (EDom h), V (EDom h) ~ V (ECod g), ECod h ~ EDom g) => EFunctor (g :.: h) Source # | The composition of two functors. |
type EDom (g :.: h) Source # | |
Defined in Data.Category.Enriched | |
type ECod (g :.: h) Source # | |
Defined in Data.Category.Enriched | |
type (g :.: h) :%% a Source # | |
Defined in Data.Category.Enriched |
data Const (c1 :: * -> * -> *) (c2 :: * -> * -> *) x where Source #
Instances
(ECategory c1, ECategory c2, V c1 ~ V c2) => EFunctor (Const c1 c2 x) Source # | The constant functor. |
type EDom (Const c1 c2 x) Source # | |
Defined in Data.Category.Enriched | |
type ECod (Const c1 c2 x) Source # | |
Defined in Data.Category.Enriched | |
type (Const c1 c2 x) :%% a Source # | |
Defined in Data.Category.Enriched |
data Opposite f where Source #
Instances
EFunctor f => EFunctor (Opposite f) Source # | The dual of a functor |
type EDom (Opposite f) Source # | |
Defined in Data.Category.Enriched | |
type ECod (Opposite f) Source # | |
Defined in Data.Category.Enriched | |
type (Opposite f) :%% a Source # | |
Defined in Data.Category.Enriched |
f1 :<*>: f2 |
Instances
(EFunctor f1, EFunctor f2, V (ECod f1) ~ V (ECod f2)) => EFunctor (f1 :<*>: f2) Source # |
|
type EDom (f1 :<*>: f2) Source # | |
type ECod (f1 :<*>: f2) Source # | |
type (f1 :<*>: f2) :%% (a1, a2) Source # | |
Defined in Data.Category.Enriched |
data DiagProd (k :: * -> * -> *) Source #
Instances
ECategory k => EFunctor (DiagProd k) Source # |
|
type EDom (DiagProd k) Source # | |
Defined in Data.Category.Enriched | |
type ECod (DiagProd k) Source # | |
Defined in Data.Category.Enriched | |
type (DiagProd k) :%% a Source # | |
Defined in Data.Category.Enriched |
newtype UnderlyingF f Source #
Instances
EFunctor f => Functor (UnderlyingF f) Source # | The underlying functor of an enriched functor |
Defined in Data.Category.Enriched type Dom (UnderlyingF f) :: Type -> Type -> Type Source # type Cod (UnderlyingF f) :: Type -> Type -> Type Source # type (UnderlyingF f) :% a :: Type Source # (%) :: UnderlyingF f -> Dom (UnderlyingF f) a b -> Cod (UnderlyingF f) (UnderlyingF f :% a) (UnderlyingF f :% b) Source # | |
type Dom (UnderlyingF f) Source # | |
Defined in Data.Category.Enriched | |
type Cod (UnderlyingF f) Source # | |
Defined in Data.Category.Enriched | |
type (UnderlyingF f) :% a Source # | |
Defined in Data.Category.Enriched |
data EHom (k :: * -> * -> *) Source #
Instances
ECategory k => EFunctor (EHom k) Source # | |
type EDom (EHom k) Source # | |
Defined in Data.Category.Enriched | |
type ECod (EHom k) Source # | |
Defined in Data.Category.Enriched | |
type (EHom k) :%% (a, b) Source # | |
Defined in Data.Category.Enriched |
data ENat :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where Source #
Enriched natural transformations.
ENat :: (EFunctorOf c d f, EFunctorOf c d g) => f -> g -> (forall z. Obj c z -> Arr d (f :%% z) (g :%% z)) -> ENat c d f g |
The enriched functor k(x, -)
Instances
ECategory k => EFunctor (EHomX_ k x) Source # | |
type EDom (EHomX_ k x) Source # | |
Defined in Data.Category.Enriched | |
type ECod (EHomX_ k x) Source # | |
Defined in Data.Category.Enriched | |
type (EHomX_ k x) :%% y Source # | |
Defined in Data.Category.Enriched |
The enriched functor k(-, x)
Instances
ECategory k => EFunctor (EHom_X k x) Source # | |
type EDom (EHom_X k x) Source # | |
Defined in Data.Category.Enriched | |
type ECod (EHom_X k x) Source # | |
Defined in Data.Category.Enriched | |
type (EHom_X k x) :%% y Source # | |
Defined in Data.Category.Enriched |
type VProfunctor k l t = EFunctorOf (EOp k :<>: l) (Self (V k)) t Source #
class CartesianClosed v => HasEnds v where Source #
end :: (VProfunctor k k t, V k ~ v) => t -> Obj v (End v t) Source #
endCounit :: (VProfunctor k k t, V k ~ v) => t -> Obj k a -> v (End v t) (t :%% (a, a)) Source #
endFactorizer :: (VProfunctor k k t, V k ~ v) => t -> (forall a. Obj k a -> v x (t :%% (a, a))) -> v x (End v t) Source #
Instances
HasEnds ((->) :: Type -> Type -> Type) Source # | |
Defined in Data.Category.Enriched end :: (VProfunctor k k t, V k ~ (->)) => t -> Obj (->) (End (->) t) Source # endCounit :: (VProfunctor k k t, V k ~ (->)) => t -> Obj k a -> End (->) t -> (t :%% (a, a)) Source # endFactorizer :: (VProfunctor k k t, V k ~ (->)) => t -> (forall a. Obj k a -> x -> (t :%% (a, a))) -> x -> End (->) t Source # |
HaskEnd | |
|
data FunCat a b t s where Source #
FArr :: (EFunctorOf a b t, EFunctorOf a b s) => t -> s -> FunCat a b t s |
Instances
(HasEnds (V a), V a ~ V b) => ECategory (FunCat a b) Source # | The enriched functor category |
Defined in Data.Category.Enriched hom :: Obj (FunCat a b) a0 -> Obj (FunCat a b) b0 -> Obj (V (FunCat a b)) (FunCat a b $ (a0, b0)) Source # id :: Obj (FunCat a b) a0 -> Arr (FunCat a b) a0 a0 Source # comp :: Obj (FunCat a b) a0 -> Obj (FunCat a b) b0 -> Obj (FunCat a b) c -> V (FunCat a b) (BinaryProduct (V (FunCat a b)) (FunCat a b $ (b0, c)) (FunCat a b $ (a0, b0))) (FunCat a b $ (a0, c)) Source # | |
type V (FunCat a b) Source # | |
Defined in Data.Category.Enriched | |
type (FunCat a b) $ (t, s) Source # | |
(->>) :: (EFunctor t, EFunctor s, ECod t ~ ECod s, V (ECod t) ~ V (ECod s)) => t -> s -> t :->>: s Source #
data EndFunctor (k :: * -> * -> *) Source #
Instances
(HasEnds (V k), ECategory k) => EFunctor (EndFunctor k) Source # | |
Defined in Data.Category.Enriched type EDom (EndFunctor k) :: Type -> Type -> Type Source # type ECod (EndFunctor k) :: Type -> Type -> Type Source # type (EndFunctor k) :%% a :: Type Source # (%%) :: EndFunctor k -> Obj (EDom (EndFunctor k)) a -> Obj (ECod (EndFunctor k)) (EndFunctor k :%% a) Source # map :: EDom (EndFunctor k) ~ k0 => EndFunctor k -> Obj k0 a -> Obj k0 b -> V k0 (k0 $ (a, b)) (ECod (EndFunctor k) $ (EndFunctor k :%% a, EndFunctor k :%% b)) Source # | |
type EDom (EndFunctor k) Source # | |
Defined in Data.Category.Enriched | |
type ECod (EndFunctor k) Source # | |
Defined in Data.Category.Enriched | |
type (EndFunctor k) :%% t Source # | |
Defined in Data.Category.Enriched |
type family WeigtedLimit (k :: * -> * -> *) w d :: * Source #
Instances
type WeigtedLimit (Self v) w d Source # | |
Defined in Data.Category.Enriched |
type Lim w d = WeigtedLimit (ECod d) w d Source #
class HasEnds (V k) => HasLimits k where Source #
limitObj :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k (Lim w d) Source #
limit :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k e -> V k (End (V k) (w :->>: (EHomX_ k e :.: d))) (k $ (e, Lim w d)) Source #
limitInv :: (EFunctorOf j k d, EFunctorOf j (Self (V k)) w) => w -> d -> Obj k e -> V k (k $ (e, Lim w d)) (End (V k) (w :->>: (EHomX_ k e :.: d))) Source #
Instances
HasEnds v => HasLimits (Self v) Source # | |
Defined in Data.Category.Enriched limitObj :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) (Lim w d) Source # limit :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) e -> V (Self v) (End (V (Self v)) (w :->>: (EHomX_ (Self v) e :.: d))) (Self v $ (e, Lim w d)) Source # limitInv :: (EFunctorOf j (Self v) d, EFunctorOf j (Self (V (Self v))) w) => w -> d -> Obj (Self v) e -> V (Self v) (Self v $ (e, Lim w d)) (End (V (Self v)) (w :->>: (EHomX_ (Self v) e :.: d))) Source # |
type family WeigtedColimit (k :: * -> * -> *) w d :: * Source #
type Colim w d = WeigtedColimit (ECod d) w d Source #
class HasEnds (V k) => HasColimits k where Source #
colimitObj :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k (Colim w d) Source #
colimit :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k e -> V k (End (V k) (w :->>: (EHom_X k e :.: Opposite d))) (k $ (Colim w d, e)) Source #
colimitInv :: (EFunctorOf j k d, EFunctorOf (EOp j) (Self (V k)) w) => w -> d -> Obj k e -> V k (k $ (Colim w d, e)) (End (V k) (w :->>: (EHom_X k e :.: Opposite d))) Source #
yoneda :: forall f k x. (HasEnds (V k), EFunctorOf k (Self (V k)) f) => f -> Obj k x -> V k (End (V k) (EHomX_ k x :->>: f)) (f :%% x) Source #
yonedaInv :: forall f k x. (HasEnds (V k), EFunctorOf k (Self (V k)) f) => f -> Obj k x -> V k (f :%% x) (End (V k) (EHomX_ k x :->>: f)) Source #
data Y (k :: * -> * -> *) Source #
Instances
(ECategory k, HasEnds (V k)) => EFunctor (Y k) Source # | Yoneda embedding |
type EDom (Y k) Source # | |
Defined in Data.Category.Enriched | |
type ECod (Y k) Source # | |
type (Y k) :%% x Source # | |
Defined in Data.Category.Enriched |
data PosetTest a b where Source #
Instances
ECategory PosetTest Source # | |
Defined in Data.Category.Enriched hom :: Obj PosetTest a -> Obj PosetTest b -> Obj (V PosetTest) (PosetTest $ (a, b)) Source # id :: Obj PosetTest a -> Arr PosetTest a a Source # comp :: Obj PosetTest a -> Obj PosetTest b -> Obj PosetTest c -> V PosetTest (BinaryProduct (V PosetTest) (PosetTest $ (b, c)) (PosetTest $ (a, b))) (PosetTest $ (a, c)) Source # | |
type V PosetTest Source # | |
Defined in Data.Category.Enriched | |
type PosetTest $ (a, b) Source # | |
Defined in Data.Category.Enriched |