License | BSD-style (see the file LICENSE) |
---|---|
Maintainer | sjoerd@w3future.com |
Stability | experimental |
Portability | non-portable |
Safe Haskell | Safe |
Language | Haskell2010 |
Synopsis
- data Cat :: * -> * -> * where
- data CatW :: (* -> * -> *) -> *
- class (Category (Dom ftag), Category (Cod ftag)) => Functor ftag where
- type FunctorOf a b t = (Functor t, Dom t ~ a, Cod t ~ b)
- data Id (k :: * -> * -> *) = Id
- data g :.: h where
- data Const (c1 :: * -> * -> *) (c2 :: * -> * -> *) x where
- type ConstF f = Const (Dom f) (Cod f)
- data Opposite f where
- data OpOp (k :: * -> * -> *) = OpOp
- data OpOpInv (k :: * -> * -> *) = OpOpInv
- data Proj1 (c1 :: * -> * -> *) (c2 :: * -> * -> *) = Proj1
- data Proj2 (c1 :: * -> * -> *) (c2 :: * -> * -> *) = Proj2
- data f1 :***: f2 where
- data DiagProd (k :: * -> * -> *) = DiagProd
- type Tuple1 c1 c2 a = (Const c2 c1 a :***: Id c2) :.: DiagProd c2
- pattern Tuple1 :: (Category c1, Category c2) => Obj c1 a -> Tuple1 c1 c2 a
- type Tuple2 c1 c2 a = Swap c2 c1 :.: Tuple1 c2 c1 a
- pattern Tuple2 :: (Category c1, Category c2) => Obj c2 a -> Tuple2 c1 c2 a
- type Swap (c1 :: * -> * -> *) (c2 :: * -> * -> *) = (Proj2 c1 c2 :***: Proj1 c1 c2) :.: DiagProd (c1 :**: c2)
- pattern Swap :: (Category c1, Category c2) => Swap c1 c2
- data Hom (k :: * -> * -> *) = Hom
- type (:*-:) x k = Hom k :.: Tuple1 (Op k) k x
- pattern HomX_ :: Category k => Obj k x -> x :*-: k
- type (:-*:) k x = Hom k :.: Tuple2 (Op k) k x
- pattern Hom_X :: Category k => Obj k x -> k :-*: x
- type HomF f g = Hom (Cod f) :.: (Opposite f :***: g)
- pattern HomF :: (Functor f, Functor g, Cod f ~ Cod g) => f -> g -> HomF f g
- type Star f = HomF (Id (Cod f)) f
- pattern Star :: Functor f => f -> Star f
- type Costar f = HomF f (Id (Cod f))
- pattern Costar :: Functor f => f -> Costar f
Cat
data Cat :: * -> * -> * where Source #
Functors are arrows in the category Cat.
CatA :: (Functor ftag, Category (Dom ftag), Category (Cod ftag)) => ftag -> Cat (CatW (Dom ftag)) (CatW (Cod ftag)) |
Instances
data CatW :: (* -> * -> *) -> * Source #
We need a wrapper here because objects need to be of kind *, and categories are of kind * -> * -> *.
Instances
type BinaryCoproduct Cat (CatW c1) (CatW c2) Source # | |
Defined in Data.Category.Limit | |
type BinaryProduct Cat (CatW c1) (CatW c2) Source # | |
Defined in Data.Category.Limit | |
type Exponential Cat (CatW c) (CatW d) Source # | |
Defined in Data.Category.CartesianClosed |
Functors
class (Category (Dom ftag), Category (Cod ftag)) => Functor ftag where Source #
Functors map objects and arrows.
type Dom ftag :: * -> * -> * Source #
The domain, or source category, of the functor.
type Cod ftag :: * -> * -> * Source #
The codomain, or target category, of the functor.
type ftag :% a :: * infixr 9 Source #
:%
maps objects.
Instances
Functor Add Source # | Ordinal addition is a bifuntor, it concattenates the maps as it were. |
Functor Forget Source # | Turn |
Functor Add Source # | Ordinal addition is a bifuntor, it concattenates the maps as it were. |
Functor Forget Source # | Turn |
Functor M1 Source # | |
Category k => Functor (Hom k) Source # | The Hom functor, Hom(--,--), a bifunctor contravariant in its first argument and covariant in its second argument. |
Category k => Functor (DiagProd k) Source # |
|
Category k => Functor (OpOpInv k) Source # | The |
Category k => Functor (OpOp k) Source # | The |
(Category (Dom f), Category (Cod f)) => Functor (Opposite f) Source # | The dual of a functor |
Category k => Functor (Id k) Source # | The identity functor on k |
Category k => Functor (CodiagCoprod k) Source # |
|
Defined in Data.Category.Coproduct type Dom (CodiagCoprod k) :: Type -> Type -> Type Source # type Cod (CodiagCoprod k) :: Type -> Type -> Type Source # type (CodiagCoprod k) :% a :: Type Source # (%) :: CodiagCoprod k -> Dom (CodiagCoprod k) a b -> Cod (CodiagCoprod k) (CodiagCoprod k :% a) (CodiagCoprod k :% b) Source # | |
Category k => Functor (Magic k) Source # | Since there is nothing to map in |
HasBinaryCoproducts k => Functor (CoproductFunctor k) Source # | Binary coproduct as a bifunctor. |
Defined in Data.Category.Limit type Dom (CoproductFunctor k) :: Type -> Type -> Type Source # type Cod (CoproductFunctor k) :: Type -> Type -> Type Source # type (CoproductFunctor k) :% a :: Type Source # (%) :: CoproductFunctor k -> Dom (CoproductFunctor k) a b -> Cod (CoproductFunctor k) (CoproductFunctor k :% a) (CoproductFunctor k :% b) Source # | |
HasBinaryProducts k => Functor (ProductFunctor k) Source # | Binary product as a bifunctor. |
Defined in Data.Category.Limit type Dom (ProductFunctor k) :: Type -> Type -> Type Source # type Cod (ProductFunctor k) :: Type -> Type -> Type Source # type (ProductFunctor k) :% a :: Type Source # (%) :: ProductFunctor k -> Dom (ProductFunctor k) a b -> Cod (ProductFunctor k) (ProductFunctor k :% a) (ProductFunctor k :% b) Source # | |
(Functor m, Dom m ~ k, Cod m ~ k) => Functor (KleisliAdjG m) Source # | |
Defined in Data.Category.Kleisli type Dom (KleisliAdjG m) :: Type -> Type -> Type Source # type Cod (KleisliAdjG m) :: Type -> Type -> Type Source # type (KleisliAdjG m) :% a :: Type Source # (%) :: KleisliAdjG m -> Dom (KleisliAdjG m) a b -> Cod (KleisliAdjG m) (KleisliAdjG m :% a) (KleisliAdjG m :% b) Source # | |
(Functor m, Dom m ~ k, Cod m ~ k) => Functor (KleisliAdjF m) Source # | |
Defined in Data.Category.Kleisli type Dom (KleisliAdjF m) :: Type -> Type -> Type Source # type Cod (KleisliAdjF m) :: Type -> Type -> Type Source # type (KleisliAdjF m) :% a :: Type Source # (%) :: KleisliAdjF m -> Dom (KleisliAdjF m) a b -> Cod (KleisliAdjF m) (KleisliAdjF m :% a) (KleisliAdjF m :% b) Source # | |
(Functor m, Dom m ~ k, Cod m ~ k) => Functor (ForgetAlg m) Source # |
|
(Functor m, Dom m ~ k, Cod m ~ k) => Functor (FreeAlg m) Source # |
|
CartesianClosed k => Functor (ExpFunctor k) Source # | The exponential as a bifunctor. |
Defined in Data.Category.CartesianClosed type Dom (ExpFunctor k) :: Type -> Type -> Type Source # type Cod (ExpFunctor k) :: Type -> Type -> Type Source # type (ExpFunctor k) :% a :: Type Source # (%) :: ExpFunctor k -> Dom (ExpFunctor k) a b -> Cod (ExpFunctor k) (ExpFunctor k :% a) (ExpFunctor k :% b) Source # | |
Category (f (Fix f)) => Functor (Unwrap (Fix f)) Source # | The |
Category (f (Fix f)) => Functor (Wrap (Fix f)) Source # | |
EFunctor f => Functor (UnderlyingF f) Source # | The underlying functor of an enriched functor |
Defined in Data.Category.Enriched type Dom (UnderlyingF f) :: Type -> Type -> Type Source # type Cod (UnderlyingF f) :: Type -> Type -> Type Source # type (UnderlyingF f) :% a :: Type Source # (%) :: UnderlyingF f -> Dom (UnderlyingF f) a b -> Cod (UnderlyingF f) (UnderlyingF f :% a) (UnderlyingF f :% b) Source # | |
(Functor f1, Functor f2) => Functor (f1 :***: f2) Source # |
|
(Category c1, Category c2) => Functor (Proj2 c1 c2) Source # |
|
(Category c1, Category c2) => Functor (Proj1 c1 c2) Source # |
|
(Category (Cod g), Category (Dom h)) => Functor (g :.: h) Source # | The composition of two functors. |
(Category c1, Category c2) => Functor (Tuple c1 c2) Source # | |
(Category c1, Category c2) => Functor (Apply c1 c2) Source # |
|
(Functor f, Functor h) => Functor (Wrap f h) Source # |
|
(Functor f, Functor g, Dom f ~ Dom g, Cod f ~ Cod g) => Functor (NatAsFunctor f g) Source # | A natural transformation |
Defined in Data.Category.Coproduct type Dom (NatAsFunctor f g) :: Type -> Type -> Type Source # type Cod (NatAsFunctor f g) :: Type -> Type -> Type Source # type (NatAsFunctor f g) :% a :: Type Source # (%) :: NatAsFunctor f g -> Dom (NatAsFunctor f g) a b -> Cod (NatAsFunctor f g) (NatAsFunctor f g :% a) (NatAsFunctor f g :% b) Source # | |
(Functor f1, Functor f2) => Functor (f1 :+++: f2) Source # |
|
(Category c1, Category c2) => Functor (Inj2 c1 c2) Source # |
|
(Category c1, Category c2) => Functor (Inj1 c1 c2) Source # |
|
(Category (Dom p), Category (Cod p)) => Functor (p :+: q) Source # | The coproduct of two functors, passing the same object to both functors and taking the coproduct of the results. |
(Category (Dom p), Category (Cod p)) => Functor (p :*: q) Source # | The product of two functors, passing the same object to both functors and taking the product of the results. |
HasColimits j k => Functor (ColimitFunctor j k) Source # | If every diagram of type |
Defined in Data.Category.Limit type Dom (ColimitFunctor j k) :: Type -> Type -> Type Source # type Cod (ColimitFunctor j k) :: Type -> Type -> Type Source # type (ColimitFunctor j k) :% a :: Type Source # (%) :: ColimitFunctor j k -> Dom (ColimitFunctor j k) a b -> Cod (ColimitFunctor j k) (ColimitFunctor j k :% a) (ColimitFunctor j k :% b) Source # | |
HasLimits j k => Functor (LimitFunctor j k) Source # | If every diagram of type |
Defined in Data.Category.Limit type Dom (LimitFunctor j k) :: Type -> Type -> Type Source # type Cod (LimitFunctor j k) :: Type -> Type -> Type Source # type (LimitFunctor j k) :% a :: Type Source # (%) :: LimitFunctor j k -> Dom (LimitFunctor j k) a b -> Cod (LimitFunctor j k) (LimitFunctor j k :% a) (LimitFunctor j k :% b) Source # | |
(Category j, Category k) => Functor (Diag j k) Source # | The diagonal functor from (index-) category J to k. |
TensorProduct f => Functor (Replicate f a) Source # | Replicate a monoid a number of times. |
(Category k, Functor f, Dom f ~ Op k, Cod f ~ ((->) :: Type -> Type -> Type)) => Functor (Yoneda k f) Source # |
|
(Category c1, Category c2) => Functor (Const c1 c2 x) Source # | The constant functor. |
(Category c, Category d, Category e) => Functor (FunctorCompose c d e) Source # | Composition of functors is a functor. |
Defined in Data.Category.NaturalTransformation type Dom (FunctorCompose c d e) :: Type -> Type -> Type Source # type Cod (FunctorCompose c d e) :: Type -> Type -> Type Source # type (FunctorCompose c d e) :% a :: Type Source # (%) :: FunctorCompose c d e -> Dom (FunctorCompose c d e) a b -> Cod (FunctorCompose c d e) (FunctorCompose c d e :% a) (FunctorCompose c d e :% b) Source # | |
(Category c1, Category c2) => Functor (Cotuple2 c1 c2 a2) Source # |
|
(Category c1, Category c2) => Functor (Cotuple1 c1 c2 a1) Source # |
|
Category k => Functor (Arrow k a b) Source # | Any functor from the Boolean category points to an arrow in its target category. |
Functor instances
data Id (k :: * -> * -> *) Source #
Instances
Category k => Functor (Id k) Source # | The identity functor on k |
HasInitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | The category for defining the natural numbers and primitive recursion can be described as
|
Defined in Data.Category.Dialg initialObject :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) Source # initialize :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) a -> Dialg (Tuple1 (->) (->) ()) (DiagProd (->)) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) a Source # | |
type Dom (Id k) Source # | |
Defined in Data.Category.Functor | |
type Cod (Id k) Source # | |
Defined in Data.Category.Functor | |
type (Id k) :% a Source # | |
Defined in Data.Category.Functor | |
type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | |
Defined in Data.Category.Dialg type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) = NatNum |
Instances
(Category (Cod g), Category (Dom h)) => Functor (g :.: h) Source # | The composition of two functors. |
HasInitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | The category for defining the natural numbers and primitive recursion can be described as
|
Defined in Data.Category.Dialg initialObject :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) Source # initialize :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) a -> Dialg (Tuple1 (->) (->) ()) (DiagProd (->)) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) a Source # | |
(TensorProduct t, Cod t ~ f (Fix f)) => TensorProduct (WrapTensor (Fix f) t) Source # |
|
Defined in Data.Category.Fix type Unit (WrapTensor (Fix f) t) :: Type Source # unitObject :: WrapTensor (Fix f) t -> Obj (Cod (WrapTensor (Fix f) t)) (Unit (WrapTensor (Fix f) t)) Source # leftUnitor :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k (WrapTensor (Fix f) t :% (Unit (WrapTensor (Fix f) t), a)) a Source # leftUnitorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k a (WrapTensor (Fix f) t :% (Unit (WrapTensor (Fix f) t), a)) Source # rightUnitor :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k (WrapTensor (Fix f) t :% (a, Unit (WrapTensor (Fix f) t))) a Source # rightUnitorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k a (WrapTensor (Fix f) t :% (a, Unit (WrapTensor (Fix f) t))) Source # associator :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> Obj k b -> Obj k c -> k (WrapTensor (Fix f) t :% (WrapTensor (Fix f) t :% (a, b), c)) (WrapTensor (Fix f) t :% (a, WrapTensor (Fix f) t :% (b, c))) Source # associatorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> Obj k b -> Obj k c -> k (WrapTensor (Fix f) t :% (a, WrapTensor (Fix f) t :% (b, c))) (WrapTensor (Fix f) t :% (WrapTensor (Fix f) t :% (a, b), c)) Source # | |
type Dom (g :.: h) Source # | |
Defined in Data.Category.Functor | |
type Cod (g :.: h) Source # | |
Defined in Data.Category.Functor | |
type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | |
Defined in Data.Category.Dialg type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) = NatNum | |
type Unit (WrapTensor (Fix f) t) Source # | |
Defined in Data.Category.Fix | |
type (g :.: h) :% a Source # | |
Defined in Data.Category.Functor |
data Const (c1 :: * -> * -> *) (c2 :: * -> * -> *) x where Source #
Instances
HasInitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | The category for defining the natural numbers and primitive recursion can be described as
|
Defined in Data.Category.Dialg initialObject :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) Source # initialize :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) a -> Dialg (Tuple1 (->) (->) ()) (DiagProd (->)) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) a Source # | |
(Category c1, Category c2) => Functor (Const c1 c2 x) Source # | The constant functor. |
type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | |
Defined in Data.Category.Dialg type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) = NatNum | |
type Dom (Const c1 c2 x) Source # | |
Defined in Data.Category.Functor | |
type Cod (Const c1 c2 x) Source # | |
Defined in Data.Category.Functor | |
type (Const c1 c2 x) :% a Source # | |
Defined in Data.Category.Functor |
type ConstF f = Const (Dom f) (Cod f) Source #
The constant functor with the same domain and codomain as f.
Related to the product category
data Proj1 (c1 :: * -> * -> *) (c2 :: * -> * -> *) Source #
Instances
(Category c1, Category c2) => Functor (Proj1 c1 c2) Source # |
|
type Dom (Proj1 c1 c2) Source # | |
Defined in Data.Category.Functor | |
type Cod (Proj1 c1 c2) Source # | |
Defined in Data.Category.Functor | |
type (Proj1 c1 c2) :% (a1, a2) Source # | |
Defined in Data.Category.Functor |
data Proj2 (c1 :: * -> * -> *) (c2 :: * -> * -> *) Source #
Instances
(Category c1, Category c2) => Functor (Proj2 c1 c2) Source # |
|
type Dom (Proj2 c1 c2) Source # | |
Defined in Data.Category.Functor | |
type Cod (Proj2 c1 c2) Source # | |
Defined in Data.Category.Functor | |
type (Proj2 c1 c2) :% (a1, a2) Source # | |
Defined in Data.Category.Functor |
data f1 :***: f2 where Source #
Instances
(Functor f1, Functor f2) => Functor (f1 :***: f2) Source # |
|
HasInitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | The category for defining the natural numbers and primitive recursion can be described as
|
Defined in Data.Category.Dialg initialObject :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) Source # initialize :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) a -> Dialg (Tuple1 (->) (->) ()) (DiagProd (->)) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) a Source # | |
(TensorProduct t, Cod t ~ f (Fix f)) => TensorProduct (WrapTensor (Fix f) t) Source # |
|
Defined in Data.Category.Fix type Unit (WrapTensor (Fix f) t) :: Type Source # unitObject :: WrapTensor (Fix f) t -> Obj (Cod (WrapTensor (Fix f) t)) (Unit (WrapTensor (Fix f) t)) Source # leftUnitor :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k (WrapTensor (Fix f) t :% (Unit (WrapTensor (Fix f) t), a)) a Source # leftUnitorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k a (WrapTensor (Fix f) t :% (Unit (WrapTensor (Fix f) t), a)) Source # rightUnitor :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k (WrapTensor (Fix f) t :% (a, Unit (WrapTensor (Fix f) t))) a Source # rightUnitorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> k a (WrapTensor (Fix f) t :% (a, Unit (WrapTensor (Fix f) t))) Source # associator :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> Obj k b -> Obj k c -> k (WrapTensor (Fix f) t :% (WrapTensor (Fix f) t :% (a, b), c)) (WrapTensor (Fix f) t :% (a, WrapTensor (Fix f) t :% (b, c))) Source # associatorInv :: Cod (WrapTensor (Fix f) t) ~ k => WrapTensor (Fix f) t -> Obj k a -> Obj k b -> Obj k c -> k (WrapTensor (Fix f) t :% (a, WrapTensor (Fix f) t :% (b, c))) (WrapTensor (Fix f) t :% (WrapTensor (Fix f) t :% (a, b), c)) Source # | |
type Dom (f1 :***: f2) Source # | |
type Cod (f1 :***: f2) Source # | |
type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | |
Defined in Data.Category.Dialg type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) = NatNum | |
type Unit (WrapTensor (Fix f) t) Source # | |
Defined in Data.Category.Fix | |
type (f1 :***: f2) :% (a1, a2) Source # | |
Defined in Data.Category.Functor |
data DiagProd (k :: * -> * -> *) Source #
Instances
Category k => Functor (DiagProd k) Source # |
|
HasInitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | The category for defining the natural numbers and primitive recursion can be described as
|
Defined in Data.Category.Dialg initialObject :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) Source # initialize :: Obj (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) a -> Dialg (Tuple1 (->) (->) ()) (DiagProd (->)) (InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->)))) a Source # | |
type Dom (DiagProd k) Source # | |
Defined in Data.Category.Functor | |
type Cod (DiagProd k) Source # | |
Defined in Data.Category.Functor | |
type (DiagProd k) :% a Source # | |
Defined in Data.Category.Functor | |
type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) Source # | |
Defined in Data.Category.Dialg type InitialObject (Dialg (Tuple1 ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ()) (DiagProd ((->) :: Type -> Type -> Type))) = NatNum |
pattern Tuple1 :: (Category c1, Category c2) => Obj c1 a -> Tuple1 c1 c2 a Source #
Tuple1
tuples with a fixed object on the left.
pattern Tuple2 :: (Category c1, Category c2) => Obj c2 a -> Tuple2 c1 c2 a Source #
Tuple2
tuples with a fixed object on the right.
type Swap (c1 :: * -> * -> *) (c2 :: * -> * -> *) = (Proj2 c1 c2 :***: Proj1 c1 c2) :.: DiagProd (c1 :**: c2) Source #
pattern Swap :: (Category c1, Category c2) => Swap c1 c2 Source #
swap
swaps the 2 categories of the product of categories.
Hom functors
data Hom (k :: * -> * -> *) Source #
Instances
Category k => Functor (Hom k) Source # | The Hom functor, Hom(--,--), a bifunctor contravariant in its first argument and covariant in its second argument. |
type Dom (Hom k) Source # | |
Defined in Data.Category.Functor | |
type Cod (Hom k) Source # | |
Defined in Data.Category.Functor | |
type (Hom k) :% (a1, a2) Source # | |
Defined in Data.Category.Functor |