module Algorithms.Geometry.PolygonTriangulation.TriangulateMonotone where
import Control.Lens
import Data.Bifunctor
import qualified Data.CircularSeq as C
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.LineSegment
import Data.Geometry.Point
import Data.Geometry.Polygon
import qualified Data.List as L
import Data.Ord (comparing, Down(..))
import Data.Semigroup
import Data.Util
import Algorithms.Geometry.PolygonTriangulation.Types
import Data.PlaneGraph (PlaneGraph)
import Data.Geometry.PlanarSubdivision.Basic(PolygonFaceData, PlanarSubdivision)
type MonotonePolygon p r = SimplePolygon p r
data LR = L | R deriving (Show,Eq)
triangulate :: (Ord r, Fractional r)
=> proxy s -> MonotonePolygon p r
-> PlanarSubdivision s p PolygonEdgeType PolygonFaceData r
triangulate px pg' = constructSubdivision px e es (computeDiagonals pg)
where
pg = toCounterClockWiseOrder pg'
(e:es) = listEdges pg
triangulate' :: (Ord r, Fractional r)
=> proxy s -> MonotonePolygon p r
-> PlaneGraph s p PolygonEdgeType PolygonFaceData r
triangulate' px pg' = constructGraph px e es (computeDiagonals pg)
where
pg = toCounterClockWiseOrder pg'
(e:es) = listEdges pg
computeDiagonals :: (Ord r, Num r)
=> MonotonePolygon p r -> [LineSegment 2 p r]
computeDiagonals pg = diags'' <> diags'
where
SP (_:stack') diags' = L.foldl' (\(SP stack acc) v' -> (<> acc) <$> process v' stack)
(SP [v,u] []) vs'
diags'' = map (seg w) $ init stack'
Just (vs',w) = unsnoc vs
(u:v:vs) = uncurry (mergeBy $ comparing (\(Point2 x y :+ _) -> (Down y, x)))
$ splitPolygon pg
type P p r = Point 2 r :+ (LR :+ p)
type Stack a = [a]
chainOf :: P p r -> LR
chainOf = (^.extra.core)
toVtx :: P p r -> Point 2 r :+ p
toVtx = (&extra %~ (^.extra))
seg :: P p r -> P p r -> LineSegment 2 p r
seg u v = ClosedLineSegment (toVtx u) (toVtx v)
process :: (Ord r, Num r)
=> P p r -> Stack (P p r)
-> SP (Stack (P p r)) [LineSegment 2 p r]
process _ [] = error "TriangulateMonotone.process: absurd. empty stack"
process v stack@(u:ws)
| chainOf v /= chainOf u = SP [v,u] (map (seg v) . init $ stack)
| otherwise = SP (v:w:rest) (map (seg v) popped)
where
(popped,rest) = bimap (map fst) (map fst) . L.span (isInside v) $ zip ws stack
w = last $ u:popped
isInside :: (Ord r, Num r) => P p r -> (P p r, P p r) -> Bool
isInside v (u, m) = case ccw' v m u of
CoLinear -> False
CCW -> chainOf v == R
CW -> chainOf v == L
mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy cmp = go
where
go [] ys = ys
go xs [] = xs
go (x:xs) (y:ys) = case x `cmp` y of
GT -> y : go (x:xs) ys
_ -> x : go xs (y:ys)
splitPolygon :: Ord r => MonotonePolygon p r
-> ([Point 2 r :+ (LR :+ p)], [Point 2 r :+ (LR :+ p)])
splitPolygon pg = bimap (f L) (f R)
. second reverse
. L.break (\v -> v^.core == vMinY)
. F.toList . C.rightElements $ vs'
where
f x = map (&extra %~ (x :+))
Just vs' = C.findRotateTo (\v -> v^.core == vMaxY)
$ pg^.outerBoundary
vMaxY = getY F.maximumBy
vMinY = getY F.minimumBy
swap' (Point2 x y) = Point2 y x
getY ff = let p = ff (comparing (^.core.to swap')) $ pg^.outerBoundary
in p^.core
testPoly5 :: SimplePolygon () Rational
testPoly5 = toCounterClockWiseOrder . fromPoints $ map ext $ [ Point2 176 736
, Point2 240 688
, Point2 240 608
, Point2 128 576
, Point2 64 640
, Point2 80 720
, Point2 128 752
]