{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.LineSegment( LineSegment
, pattern LineSegment
, pattern LineSegment'
, pattern ClosedLineSegment
, _SubLine
, module Data.Geometry.Interval
, toLineSegment
, onSegment
, orderedEndPoints
, segmentLength
, sqDistanceToSeg, sqDistanceToSegArg
, flipSegment
) where
import Control.Arrow ((&&&))
import Control.Lens
import Data.Bifunctor
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Box.Internal
import Data.Geometry.Interval hiding (width, midPoint)
import Data.Geometry.Line.Internal
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.Geometry.SubLine
import Data.Geometry.Transformation
import Data.Geometry.Vector
import Data.Ord (comparing)
import Data.Semigroup
import Data.UnBounded
import Data.Vinyl
import Data.Vinyl.CoRec
import GHC.TypeLits
newtype LineSegment d p r = GLineSegment { _unLineSeg :: Interval p (Point d r)}
makeLenses ''LineSegment
pattern LineSegment :: EndPoint (Point d r :+ p)
-> EndPoint (Point d r :+ p)
-> LineSegment d p r
pattern LineSegment s t = GLineSegment (Interval s t)
{-# COMPLETE LineSegment #-}
pattern LineSegment' :: Point d r :+ p
-> Point d r :+ p
-> LineSegment d p r
pattern LineSegment' s t <- ((^.start) &&& (^.end) -> (s,t))
{-# COMPLETE LineSegment' #-}
pattern ClosedLineSegment :: Point d r :+ p
-> Point d r :+ p
-> LineSegment d p r
pattern ClosedLineSegment s t = GLineSegment (ClosedInterval s t)
{-# COMPLETE ClosedLineSegment #-}
type instance Dimension (LineSegment d p r) = d
type instance NumType (LineSegment d p r) = r
instance HasStart (LineSegment d p r) where
type StartCore (LineSegment d p r) = Point d r
type StartExtra (LineSegment d p r) = p
start = unLineSeg.start
instance HasEnd (LineSegment d p r) where
type EndCore (LineSegment d p r) = Point d r
type EndExtra (LineSegment d p r) = p
end = unLineSeg.end
_SubLine :: (Fractional r, Eq r, Arity d) => Iso' (LineSegment d p r) (SubLine d p r)
_SubLine = iso segment2SubLine subLineToSegment
{-# INLINE _SubLine #-}
segment2SubLine :: (Fractional r, Eq r, Arity d)
=> LineSegment d p r -> SubLine d p r
segment2SubLine ss = SubLine l (Interval s e)
where
l = supportingLine ss
f = flip toOffset l
(Interval p q) = ss^.unLineSeg
s = p&unEndPoint.core %~ f
e = q&unEndPoint.core %~ f
subLineToSegment :: (Num r, Arity d) => SubLine d p r -> LineSegment d p r
subLineToSegment sl = let (Interval s' e') = (fixEndPoints sl)^.subRange
s = s'&unEndPoint %~ (^.extra)
e = e'&unEndPoint %~ (^.extra)
in LineSegment s e
instance (Num r, Arity d) => HasSupportingLine (LineSegment d p r) where
supportingLine s = lineThrough (s^.start.core) (s^.end.core)
instance (Show r, Show p, Arity d) => Show (LineSegment d p r) where
show ~(LineSegment p q) = concat ["LineSegment (", show p, ") (", show q, ")"]
deriving instance (Eq r, Eq p, Arity d) => Eq (LineSegment d p r)
deriving instance Arity d => Functor (LineSegment d p)
instance PointFunctor (LineSegment d p) where
pmap f ~(LineSegment s e) = LineSegment (s&unEndPoint %~ first f)
(e&unEndPoint %~ first f)
instance Arity d => IsBoxable (LineSegment d p r) where
boundingBox l = boundingBox (l^.start.core) <> boundingBox (l^.end.core)
instance (Fractional r, Arity d, Arity (d + 1)) => IsTransformable (LineSegment d p r) where
transformBy = transformPointFunctor
instance Arity d => Bifunctor (LineSegment d) where
bimap f g (GLineSegment i) = GLineSegment $ bimap f (fmap g) i
toLineSegment :: (Monoid p, Num r, Arity d) => Line d r -> LineSegment d p r
toLineSegment (Line p v) = ClosedLineSegment (p :+ mempty)
(p .+^ v :+ mempty)
type instance IntersectionOf (LineSegment 2 p r) (LineSegment 2 p r) = [ NoIntersection
, Point 2 r
, LineSegment 2 p r
]
type instance IntersectionOf (LineSegment 2 p r) (Line 2 r) = [ NoIntersection
, Point 2 r
, LineSegment 2 p r
]
instance (Ord r, Fractional r) =>
(LineSegment 2 p r) `IsIntersectableWith` (LineSegment 2 p r) where
nonEmptyIntersection = defaultNonEmptyIntersection
a `intersect` b = match ((a^._SubLine) `intersect` (b^._SubLine)) $
(H coRec)
:& (H coRec)
:& (H $ coRec . subLineToSegment)
:& RNil
instance (Ord r, Fractional r) =>
(LineSegment 2 p r) `IsIntersectableWith` (Line 2 r) where
nonEmptyIntersection = defaultNonEmptyIntersection
~s@(LineSegment p q) `intersect` l = let f = bimap (fmap Val) (const ())
s' = LineSegment (p&unEndPoint %~ f)
(q&unEndPoint %~ f)
in match ((s'^._SubLine) `intersect` (fromLine l)) $
(H coRec)
:& (H $ coRec . fmap (_unUnBounded))
:& (H $ const (coRec s))
:& RNil
onSegment :: (Ord r, Fractional r, Arity d)
=> Point d r -> LineSegment d p r -> Bool
p `onSegment` l = let s = l^.start.core
t = l^.end.core
inRange' x = 0 <= x && x <= 1
in
if s == t
then p == s
else maybe False inRange' $ scalarMultiple (p .-. s) (t .-. s)
orderedEndPoints :: Ord r => LineSegment 2 p r -> (Point 2 r :+ p, Point 2 r :+ p)
orderedEndPoints s = if pc <= qc then (p, q) else (q,p)
where
p@(pc :+ _) = s^.start
q@(qc :+ _) = s^.end
segmentLength :: (Arity d, Floating r) => LineSegment d p r -> r
segmentLength ~(LineSegment' p q) = distanceA (p^.core) (q^.core)
sqDistanceToSeg :: (Arity d, Fractional r, Ord r) => Point d r -> LineSegment d p r -> r
sqDistanceToSeg p = fst . sqDistanceToSegArg p
sqDistanceToSegArg :: (Arity d, Fractional r, Ord r)
=> Point d r -> LineSegment d p r -> (r, Point d r)
sqDistanceToSegArg p s = let m = sqDistanceToArg p (supportingLine s)
xs = m : map (\(q :+ _) -> (qdA p q, q)) [s^.start, s^.end]
in F.minimumBy (comparing fst)
. filter (flip onSegment s . snd) $ xs
flipSegment :: LineSegment d p r -> LineSegment d p r
flipSegment s = let p = s^.start
q = s^.end
in (s&start .~ q)&end .~ p