lens-family-1.2.0: Lens Families

Safe HaskellSafe-Inferred
LanguageHaskell98

Lens.Family2.Stock

Contents

Description

This module contains lenses and traversals for common structures in Haskell. It also contains the combinators for lenses and traversals.

Synopsis

Lens Combinators

choosing :: Functor f => LensLike f a a' c c' -> LensLike f b b' c c' -> LensLike f (Either a b) (Either a' b') c c'

choosing :: Lens a a' c c' -> Lens b b' c c' -> Lens (Either a b) (Either a' b') c c'
choosing :: Traversal a a' c c' -> Traversal b b' c c' -> Traversal (Either a b) (Either a' b') c c'
choosing :: Getter a a' c c' -> Getter b b' c c' -> Getter (Either a b) (Either a' b') c c'
choosing :: Fold a a' c c' -> Fold b b' c c' -> Fold (Either a b) (Either a' b') c c'
choosing :: Setter a a' c c' -> Setter b b' c c' -> Setter (Either a b) (Either a' b') c c'

Given two lens/traversal/getter/fold/setter families with the same substructure, make a new lens/traversal/getter/fold/setter on Either.

alongside :: Functor f => LensLike (AlongsideLeft f b2') a1 a1' b1 b1' -> LensLike (AlongsideRight f a1') a2 a2' b2 b2' -> LensLike f (a1, a2) (a1', a2') (b1, b2) (b1', b2')

alongside :: Lens a1 a1' b1 b1' -> Lens a2 a2' b2 b2' -> Lens (a1, a2) (a1', a2') (b1, b2) (b1', b2')
alongside :: Getter a1 a1' b1 b1' -> Getter a2 a2' b2 b2' -> Getter (a1, a2) (a1', a2') (b1, b2) (b1', b2')

Given two lens/getter families, make a new lens/getter on their product.

beside :: Applicative f => LensLike f a a' c c' -> LensLike f b b' c c' -> LensLike f (a, b) (a', b') c c'

beside :: Traversal a a' c c' -> Traversal b' b' c c' -> Traversal (a,b) (a',b') c c'
beside :: Fold a a' c c' -> Fold b' b' c c' -> Fold (a,b) (a',b') c c'
beside :: Setter a a' c c' -> Setter b' b' c c' -> Setter (a,b) (a',b') c c'

Given two traversals/folds/setters referencing a type c, create a traversal/fold/setter on the pair referencing c.

Stock Lenses

_1 :: Lens (a, b) (a', b) a a' Source

Lens on the first element of a pair.

_2 :: Lens (a, b) (a, b') b b' Source

Lens on the second element of a pair.

chosen :: Lens (Either a a) (Either b b) a b Source

Lens on the Left or Right element of an (Either a a).

ix :: Eq k => k -> Lens' (k -> v) v Source

Lens on a given point of a function.

at :: Ord k => k -> Lens' (Map k v) (Maybe v) Source

Lens on a given point of a Map.

intAt :: Int -> Lens' (IntMap v) (Maybe v) Source

Lens on a given point of a IntMap.

contains :: Ord k => k -> Lens' (Set k) Bool Source

Lens on a given point of a Set.

intContains :: Int -> Lens' IntSet Bool Source

Lens on a given point of a IntSet.

Stock Traversals

both :: Traversal (a, a) (b, b) a b Source

Traversals on both elements of a pair (a,a).

_Left :: Traversal (Either a b) (Either a' b) a a' Source

Traversal on the Left element of an Either.

_Right :: Traversal (Either a b) (Either a b') b b' Source

Traversal on the Right element of an Either.

_Just :: Traversal (Maybe a) (Maybe a') a a' Source

Traversal on the Just element of a Maybe.

_Nothing :: Traversal' (Maybe a) () Source

Traversal on the Nothing element of a Maybe.

ignored :: Traversal a a b b' Source

The empty traveral on any type.

Stock SECs

mapped :: Functor f => Setter (f a) (f a') a a' Source

An SEC referencing the parameter of a functor.

Types

data AlongsideLeft f b a :: (* -> *) -> * -> * -> *

Instances

data AlongsideRight f a b :: (* -> *) -> * -> * -> *

Instances

Re-exports

type Lens a a' b b' = forall f. Functor f => LensLike f a a' b b' Source

type Lens' a b = forall f. Functor f => LensLike' f a b Source

type Traversal a a' b b' = forall f. Applicative f => LensLike f a a' b b' Source

type Traversal' a b = forall f. Applicative f => LensLike' f a b Source

type Setter a a' b b' = forall f. Identical f => LensLike f a a' b b' Source

type LensLike f a a' b b' = (b -> f b') -> a -> f a'

type LensLike' f a b = (b -> f b) -> a -> f a

class Functor f => Applicative f

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*>).

A minimal complete definition must include implementations of these functions satisfying the following laws:

identity
pure id <*> v = v
composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
homomorphism
pure f <*> pure x = pure (f x)
interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, (<*>)

class Applicative f => Identical f

Minimal complete definition

extract