{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 707
{-# LANGUAGE DataKinds #-}
#endif
#if __GLASGOW_HASKELL__ >= 800
{-# LANGUAGE DeriveLift #-}
#endif
#ifndef MIN_VERSION_hashable
#define MIN_VERSION_hashable(x,y,z) 1
#endif
#ifndef MIN_VERSION_vector
#define MIN_VERSION_vector(x,y,z) 1
#endif
#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif
module Linear.V3
( V3(..)
, cross, triple
, R1(..)
, R2(..)
, _yx
, R3(..)
, _xz, _yz, _zx, _zy
, _xzy, _yxz, _yzx, _zxy, _zyx
, ex, ey, ez
) where
import Control.Applicative
import Control.DeepSeq (NFData(rnf))
import Control.Monad (liftM)
import Control.Monad.Fix
import Control.Monad.Zip
import Control.Lens hiding ((<.>))
import Data.Binary as Binary
import Data.Bytes.Serial
import Data.Data
import Data.Distributive
import Data.Foldable
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep
import Data.Hashable
#if (MIN_VERSION_hashable(1,2,5))
import Data.Hashable.Lifted
#endif
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup
#endif
import Data.Semigroup.Foldable
import Data.Serialize as Cereal
#if __GLASGOW_HASKELL__ >= 707
import qualified Data.Vector as V
#endif
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed.Base as U
import Foreign.Ptr (castPtr)
import Foreign.Storable (Storable(..))
import GHC.Arr (Ix(..))
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if __GLASGOW_HASKELL__ >= 706
import GHC.Generics (Generic1)
#endif
#if __GLASGOW_HASKELL__ >= 800
import Language.Haskell.TH.Syntax (Lift)
#endif
import Linear.Epsilon
import Linear.Metric
#if __GLASGOW_HASKELL__ >= 707
import Linear.V
#endif
import Linear.V2
import Linear.Vector
{-# ANN module "HLint: ignore Reduce duplication" #-}
data V3 a = V3 !a !a !a deriving (Eq,Ord,Show,Read,Data,Typeable
#if __GLASGOW_HASKELL__ >= 702
,Generic
#endif
#if __GLASGOW_HASKELL__ >= 706
,Generic1
#endif
#if __GLASGOW_HASKELL__ >= 800
,Lift
#endif
)
#if __GLASGOW_HASKELL__ >= 707
instance Finite V3 where
type Size V3 = 3
toV (V3 a b c) = V (V.fromListN 3 [a,b,c])
fromV (V v) = V3 (v V.! 0) (v V.! 1) (v V.! 2)
#endif
instance Functor V3 where
fmap f (V3 a b c) = V3 (f a) (f b) (f c)
{-# INLINE fmap #-}
a <$ _ = V3 a a a
{-# INLINE (<$) #-}
instance Foldable V3 where
foldMap f (V3 a b c) = f a `mappend` f b `mappend` f c
{-# INLINE foldMap #-}
#if __GLASGOW_HASKELL__ >= 710
null _ = False
length _ = 3
#endif
instance Traversable V3 where
traverse f (V3 a b c) = V3 <$> f a <*> f b <*> f c
{-# INLINE traverse #-}
instance Foldable1 V3 where
foldMap1 f (V3 a b c) = f a <> f b <> f c
{-# INLINE foldMap1 #-}
instance Traversable1 V3 where
traverse1 f (V3 a b c) = V3 <$> f a <.> f b <.> f c
{-# INLINE traverse1 #-}
instance Apply V3 where
V3 a b c <.> V3 d e f = V3 (a d) (b e) (c f)
{-# INLINE (<.>) #-}
instance Applicative V3 where
pure a = V3 a a a
{-# INLINE pure #-}
V3 a b c <*> V3 d e f = V3 (a d) (b e) (c f)
{-# INLINE (<*>) #-}
instance Additive V3 where
zero = pure 0
{-# INLINE zero #-}
liftU2 = liftA2
{-# INLINE liftU2 #-}
liftI2 = liftA2
{-# INLINE liftI2 #-}
instance Bind V3 where
V3 a b c >>- f = V3 a' b' c' where
V3 a' _ _ = f a
V3 _ b' _ = f b
V3 _ _ c' = f c
{-# INLINE (>>-) #-}
instance Monad V3 where
return a = V3 a a a
{-# INLINE return #-}
V3 a b c >>= f = V3 a' b' c' where
V3 a' _ _ = f a
V3 _ b' _ = f b
V3 _ _ c' = f c
{-# INLINE (>>=) #-}
instance Num a => Num (V3 a) where
(+) = liftA2 (+)
{-# INLINE (+) #-}
(-) = liftA2 (-)
{-# INLINE (-) #-}
(*) = liftA2 (*)
{-# INLINE (*) #-}
negate = fmap negate
{-# INLINE negate #-}
abs = fmap abs
{-# INLINE abs #-}
signum = fmap signum
{-# INLINE signum #-}
fromInteger = pure . fromInteger
{-# INLINE fromInteger #-}
instance Fractional a => Fractional (V3 a) where
recip = fmap recip
{-# INLINE recip #-}
(/) = liftA2 (/)
{-# INLINE (/) #-}
fromRational = pure . fromRational
{-# INLINE fromRational #-}
instance Floating a => Floating (V3 a) where
pi = pure pi
{-# INLINE pi #-}
exp = fmap exp
{-# INLINE exp #-}
sqrt = fmap sqrt
{-# INLINE sqrt #-}
log = fmap log
{-# INLINE log #-}
(**) = liftA2 (**)
{-# INLINE (**) #-}
logBase = liftA2 logBase
{-# INLINE logBase #-}
sin = fmap sin
{-# INLINE sin #-}
tan = fmap tan
{-# INLINE tan #-}
cos = fmap cos
{-# INLINE cos #-}
asin = fmap asin
{-# INLINE asin #-}
atan = fmap atan
{-# INLINE atan #-}
acos = fmap acos
{-# INLINE acos #-}
sinh = fmap sinh
{-# INLINE sinh #-}
tanh = fmap tanh
{-# INLINE tanh #-}
cosh = fmap cosh
{-# INLINE cosh #-}
asinh = fmap asinh
{-# INLINE asinh #-}
atanh = fmap atanh
{-# INLINE atanh #-}
acosh = fmap acosh
{-# INLINE acosh #-}
instance Hashable a => Hashable (V3 a) where
hashWithSalt s (V3 a b c) = s `hashWithSalt` a `hashWithSalt` b `hashWithSalt` c
{-# INLINE hashWithSalt #-}
#if (MIN_VERSION_hashable(1,2,5))
instance Hashable1 V3 where
liftHashWithSalt h s (V3 a b c) = s `h` a `h` b `h` c
{-# INLINE liftHashWithSalt #-}
#endif
instance Metric V3 where
dot (V3 a b c) (V3 d e f) = a * d + b * e + c * f
{-# INLINABLE dot #-}
instance Distributive V3 where
distribute f = V3 (fmap (\(V3 x _ _) -> x) f) (fmap (\(V3 _ y _) -> y) f) (fmap (\(V3 _ _ z) -> z) f)
{-# INLINE distribute #-}
class R2 t => R3 t where
_z :: Lens' (t a) a
_xyz :: Lens' (t a) (V3 a)
_xz, _yz, _zx, _zy :: R3 t => Lens' (t a) (V2 a)
_xz f = _xyz $ \(V3 a b c) -> f (V2 a c) <&> \(V2 a' c') -> V3 a' b c'
{-# INLINE _xz #-}
_yz f = _xyz $ \(V3 a b c) -> f (V2 b c) <&> \(V2 b' c') -> V3 a b' c'
{-# INLINE _yz #-}
_zx f = _xyz $ \(V3 a b c) -> f (V2 c a) <&> \(V2 c' a') -> V3 a' b c'
{-# INLINE _zx #-}
_zy f = _xyz $ \(V3 a b c) -> f (V2 c b) <&> \(V2 c' b') -> V3 a b' c'
{-# INLINE _zy #-}
_xzy, _yxz, _yzx, _zxy, _zyx :: R3 t => Lens' (t a) (V3 a)
_xzy f = _xyz $ \(V3 a b c) -> f (V3 a c b) <&> \(V3 a' c' b') -> V3 a' b' c'
{-# INLINE _xzy #-}
_yxz f = _xyz $ \(V3 a b c) -> f (V3 b a c) <&> \(V3 b' a' c') -> V3 a' b' c'
{-# INLINE _yxz #-}
_yzx f = _xyz $ \(V3 a b c) -> f (V3 b c a) <&> \(V3 b' c' a') -> V3 a' b' c'
{-# INLINE _yzx #-}
_zxy f = _xyz $ \(V3 a b c) -> f (V3 c a b) <&> \(V3 c' a' b') -> V3 a' b' c'
{-# INLINE _zxy #-}
_zyx f = _xyz $ \(V3 a b c) -> f (V3 c b a) <&> \(V3 c' b' a') -> V3 a' b' c'
{-# INLINE _zyx #-}
ez :: R3 t => E t
ez = E _z
instance R1 V3 where
_x f (V3 a b c) = (\a' -> V3 a' b c) <$> f a
{-# INLINE _x #-}
instance R2 V3 where
_y f (V3 a b c) = (\b' -> V3 a b' c) <$> f b
{-# INLINE _y #-}
_xy f (V3 a b c) = (\(V2 a' b') -> V3 a' b' c) <$> f (V2 a b)
{-# INLINE _xy #-}
instance R3 V3 where
_z f (V3 a b c) = V3 a b <$> f c
{-# INLINE _z #-}
_xyz = id
{-# INLINE _xyz #-}
instance Storable a => Storable (V3 a) where
sizeOf _ = 3 * sizeOf (undefined::a)
{-# INLINE sizeOf #-}
alignment _ = alignment (undefined::a)
{-# INLINE alignment #-}
poke ptr (V3 x y z) = do poke ptr' x
pokeElemOff ptr' 1 y
pokeElemOff ptr' 2 z
where ptr' = castPtr ptr
{-# INLINE poke #-}
peek ptr = V3 <$> peek ptr' <*> peekElemOff ptr' 1 <*> peekElemOff ptr' 2
where ptr' = castPtr ptr
{-# INLINE peek #-}
cross :: Num a => V3 a -> V3 a -> V3 a
cross (V3 a b c) (V3 d e f) = V3 (b*f-c*e) (c*d-a*f) (a*e-b*d)
{-# INLINABLE cross #-}
triple :: Num a => V3 a -> V3 a -> V3 a -> a
triple a b c = dot a (cross b c)
{-# INLINE triple #-}
instance Epsilon a => Epsilon (V3 a) where
nearZero = nearZero . quadrance
{-# INLINE nearZero #-}
instance Ix a => Ix (V3 a) where
{-# SPECIALISE instance Ix (V3 Int) #-}
range (V3 l1 l2 l3,V3 u1 u2 u3) =
[V3 i1 i2 i3 | i1 <- range (l1,u1)
, i2 <- range (l2,u2)
, i3 <- range (l3,u3)
]
{-# INLINE range #-}
unsafeIndex (V3 l1 l2 l3,V3 u1 u2 u3) (V3 i1 i2 i3) =
unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) *
unsafeIndex (l1,u1) i1)
{-# INLINE unsafeIndex #-}
inRange (V3 l1 l2 l3,V3 u1 u2 u3) (V3 i1 i2 i3) =
inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
inRange (l3,u3) i3
{-# INLINE inRange #-}
instance Representable V3 where
type Rep V3 = E V3
tabulate f = V3 (f ex) (f ey) (f ez)
{-# INLINE tabulate #-}
index xs (E l) = view l xs
{-# INLINE index #-}
instance FunctorWithIndex (E V3) V3 where
imap f (V3 a b c) = V3 (f ex a) (f ey b) (f ez c)
{-# INLINE imap #-}
instance FoldableWithIndex (E V3) V3 where
ifoldMap f (V3 a b c) = f ex a `mappend` f ey b `mappend` f ez c
{-# INLINE ifoldMap #-}
instance TraversableWithIndex (E V3) V3 where
itraverse f (V3 a b c) = V3 <$> f ex a <*> f ey b <*> f ez c
{-# INLINE itraverse #-}
type instance Index (V3 a) = E V3
type instance IxValue (V3 a) = a
instance Ixed (V3 a) where
ix = el
{-# INLINE ix #-}
instance Each (V3 a) (V3 b) a b where
each = traverse
{-# INLINE each #-}
data instance U.Vector (V3 a) = V_V3 {-# UNPACK #-} !Int !(U.Vector a)
data instance U.MVector s (V3 a) = MV_V3 {-# UNPACK #-} !Int !(U.MVector s a)
instance U.Unbox a => U.Unbox (V3 a)
instance U.Unbox a => M.MVector U.MVector (V3 a) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
basicLength (MV_V3 n _) = n
basicUnsafeSlice m n (MV_V3 _ v) = MV_V3 n (M.basicUnsafeSlice (3*m) (3*n) v)
basicOverlaps (MV_V3 _ v) (MV_V3 _ u) = M.basicOverlaps v u
basicUnsafeNew n = liftM (MV_V3 n) (M.basicUnsafeNew (3*n))
basicUnsafeRead (MV_V3 _ v) i =
do let o = 3*i
x <- M.basicUnsafeRead v o
y <- M.basicUnsafeRead v (o+1)
z <- M.basicUnsafeRead v (o+2)
return (V3 x y z)
basicUnsafeWrite (MV_V3 _ v) i (V3 x y z) =
do let o = 3*i
M.basicUnsafeWrite v o x
M.basicUnsafeWrite v (o+1) y
M.basicUnsafeWrite v (o+2) z
#if MIN_VERSION_vector(0,11,0)
basicInitialize (MV_V3 _ v) = M.basicInitialize v
{-# INLINE basicInitialize #-}
#endif
instance U.Unbox a => G.Vector U.Vector (V3 a) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeFreeze (MV_V3 n v) = liftM ( V_V3 n) (G.basicUnsafeFreeze v)
basicUnsafeThaw ( V_V3 n v) = liftM (MV_V3 n) (G.basicUnsafeThaw v)
basicLength ( V_V3 n _) = n
basicUnsafeSlice m n (V_V3 _ v) = V_V3 n (G.basicUnsafeSlice (3*m) (3*n) v)
basicUnsafeIndexM (V_V3 _ v) i =
do let o = 3*i
x <- G.basicUnsafeIndexM v o
y <- G.basicUnsafeIndexM v (o+1)
z <- G.basicUnsafeIndexM v (o+2)
return (V3 x y z)
instance MonadZip V3 where
mzipWith = liftA2
instance MonadFix V3 where
mfix f = V3 (let V3 a _ _ = f a in a)
(let V3 _ a _ = f a in a)
(let V3 _ _ a = f a in a)
instance Bounded a => Bounded (V3 a) where
minBound = pure minBound
{-# INLINE minBound #-}
maxBound = pure maxBound
{-# INLINE maxBound #-}
instance NFData a => NFData (V3 a) where
rnf (V3 a b c) = rnf a `seq` rnf b `seq` rnf c
instance Serial1 V3 where
serializeWith = traverse_
deserializeWith k = V3 <$> k <*> k <*> k
instance Serial a => Serial (V3 a) where
serialize = serializeWith serialize
deserialize = deserializeWith deserialize
instance Binary a => Binary (V3 a) where
put = serializeWith Binary.put
get = deserializeWith Binary.get
instance Serialize a => Serialize (V3 a) where
put = serializeWith Cereal.put
get = deserializeWith Cereal.get
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
instance Eq1 V3 where
liftEq k (V3 a b c) (V3 d e f) = k a d && k b e && k c f
instance Ord1 V3 where
liftCompare k (V3 a b c) (V3 d e f) = k a d `mappend` k b e `mappend` k c f
instance Read1 V3 where
liftReadsPrec k _ d = readParen (d > 10) $ \r ->
[ (V3 a b c, r4)
| ("V3",r1) <- lex r
, (a,r2) <- k 11 r1
, (b,r3) <- k 11 r2
, (c,r4) <- k 11 r3
]
instance Show1 V3 where
liftShowsPrec f _ d (V3 a b c) = showParen (d > 10) $
showString "V3 " . f 11 a . showChar ' ' . f 11 b . showChar ' ' . f 11 c
#else
instance Eq1 V3 where eq1 = (==)
instance Ord1 V3 where compare1 = compare
instance Show1 V3 where showsPrec1 = showsPrec
instance Read1 V3 where readsPrec1 = readsPrec
#endif
instance Field1 (V3 a) (V3 a) a a where
_1 f (V3 x y z) = f x <&> \x' -> V3 x' y z
instance Field2 (V3 a) (V3 a) a a where
_2 f (V3 x y z) = f y <&> \y' -> V3 x y' z
instance Field3 (V3 a) (V3 a) a a where
_3 f (V3 x y z) = f z <&> \z' -> V3 x y z'