Safe Haskell | None |
---|---|
Language | Haskell98 |
Abstraction of normed vector spaces
Documentation
class (C a, C a v) => C a v where Source
The super class is only needed to state the laws
v == zero == norm v == zero
norm (scale x v) == abs x * norm v
norm (u+v) <= norm u + norm v
C Double Double | |
C Float Float | |
C Int Int | |
C Integer Integer | |
(C a v, RealFloat v) => C a (Complex v) | |
(C a, C a v) => C a [v] | |
(C a, C a v) => C a (T v) | |
(C a, C a v0, C a v1) => C a (v0, v1) | |
(Ord i, Eq a, Eq v, C a v) => C a (Map i v) | |
(C a, C a v0, C a v1, C a v2) => C a (v0, v1, v2) | |
(C a, C a) => C (T a) (T a) | |
C a v => C (T a) (T v) |
normFoldable :: (C a v, Foldable f) => f v -> a Source