numeric-prelude-0.4.2: An experimental alternative hierarchy of numeric type classes

Safe HaskellNone
LanguageHaskell98

Algebra.NormedSpace.Sum

Description

Abstraction of normed vector spaces

Synopsis

Documentation

class (C a, C a v) => C a v where Source

The super class is only needed to state the laws v == zero == norm v == zero norm (scale x v) == abs x * norm v norm (u+v) <= norm u + norm v

Methods

norm :: v -> a Source

Instances

C Double Double 
C Float Float 
C Int Int 
C Integer Integer 
(C a v, RealFloat v) => C a (Complex v) 
(C a, C a v) => C a [v] 
(C a, C a v) => C a (T v) 
(C a, C a v0, C a v1) => C a (v0, v1) 
(Ord i, Eq a, Eq v, C a v) => C a (Map i v) 
(C a, C a v0, C a v1, C a v2) => C a (v0, v1, v2) 
(C a, C a) => C (T a) (T a) 
C a v => C (T a) (T v) 

normFoldable :: (C a v, Foldable f) => f v -> a Source

Default definition for norm that is based on Foldable class.

normFoldable1 :: (C a v, Foldable f, Functor f) => f v -> a Source

Default definition for norm that is based on Foldable class and the argument vector has at least one component.