{-# LANGUAGE
MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances,
TemplateHaskell
#-}
{-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-}
module Data.Random.Distribution.Poisson where
import Data.Random.Internal.TH
import Data.Random.RVar
import Data.Random.Distribution
import Data.Random.Distribution.Uniform
import Data.Random.Distribution.Gamma
import Data.Random.Distribution.Binomial
import Control.Monad
integralPoisson :: (Integral a, RealFloat b, Distribution StdUniform b, Distribution (Erlang a) b, Distribution (Binomial b) a) => b -> RVarT m a
integralPoisson = psn 0
where
psn :: (Integral a, RealFloat b, Distribution StdUniform b, Distribution (Erlang a) b, Distribution (Binomial b) a) => a -> b -> RVarT m a
psn j mu
| mu > 10 = do
let m = floor (mu * (7/8))
x <- erlangT m
if x >= mu
then do
b <- binomialT (m - 1) (mu / x)
return (j + b)
else psn (j + m) (mu - x)
| otherwise = prod 1 j
where
emu = exp (-mu)
prod p k = do
u <- stdUniformT
if p * u > emu
then prod (p * u) (k + 1)
else return k
integralPoissonCDF :: (Integral a, Real b) => b -> a -> Double
integralPoissonCDF mu k = exp (negate lambda) * sum
[ exp (fromIntegral i * log lambda - i_fac_ln)
| (i, i_fac_ln) <- zip [0..k] (scanl (+) 0 (map log [1..]))
]
where lambda = realToFrac mu
integralPoissonPDF :: (Integral a, Real b) => b -> a -> Double
integralPoissonPDF mu k = exp (negate lambda) *
exp (fromIntegral k * log lambda - k_fac_ln)
where
k_fac_ln = foldl (+) 0 (map (log . fromIntegral) [1..k])
lambda = realToFrac mu
fractionalPoisson :: (Num a, Distribution (Poisson b) Integer) => b -> RVarT m a
fractionalPoisson mu = liftM fromInteger (poissonT mu)
fractionalPoissonCDF :: (CDF (Poisson b) Integer, RealFrac a) => b -> a -> Double
fractionalPoissonCDF mu k = cdf (Poisson mu) (floor k :: Integer)
fractionalPoissonPDF :: (PDF (Poisson b) Integer, RealFrac a) => b -> a -> Double
fractionalPoissonPDF mu k = pdf (Poisson mu) (floor k :: Integer)
poisson :: (Distribution (Poisson b) a) => b -> RVar a
poisson mu = rvar (Poisson mu)
poissonT :: (Distribution (Poisson b) a) => b -> RVarT m a
poissonT mu = rvarT (Poisson mu)
newtype Poisson b a = Poisson b
$( replicateInstances ''Int integralTypes [d|
instance ( RealFloat b
, Distribution StdUniform b
, Distribution (Erlang Int) b
, Distribution (Binomial b) Int
) => Distribution (Poisson b) Int where
rvarT (Poisson mu) = integralPoisson mu
instance (Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int where
cdf (Poisson mu) = integralPoissonCDF mu
instance (Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int where
pdf (Poisson mu) = integralPoissonPDF mu
|] )
$( replicateInstances ''Float realFloatTypes [d|
instance (Distribution (Poisson b) Integer) => Distribution (Poisson b) Float where
rvarT (Poisson mu) = fractionalPoisson mu
instance (CDF (Poisson b) Integer) => CDF (Poisson b) Float where
cdf (Poisson mu) = fractionalPoissonCDF mu
instance (PDF (Poisson b) Integer) => PDF (Poisson b) Float where
pdf (Poisson mu) = fractionalPoissonPDF mu
|])