{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE UnicodeSyntax #-}
module Reanimate.Morph.Common
( PointCorrespondence
, Trajectory
, ObjectCorrespondence
, Morph(..)
, morph
, splitObjectCorrespondence
, dupObjectCorrespondence
, genesisObjectCorrespondence
, toShapes
, normalizePolygons
, annotatePolygons
, unsafeSVGToPolygon
) where
import Control.Lens
import qualified Data.Vector as V
import Graphics.SvgTree (DrawAttributes, Texture (..),
drawAttributes, fillColor,
fillOpacity, groupOpacity,
strokeColor, strokeOpacity)
import Linear.V2
import Reanimate.Animation
import Reanimate.ColorComponents
import Reanimate.Ease
import Reanimate.Math.Polygon (APolygon, Epsilon, Polygon,
mkPolygon, pAddPoints, pCentroid,
pCutEqual, pSize, polygonPoints)
import Reanimate.PolyShape
import Reanimate.Svg
type GPolygon = (DrawAttributes, Polygon)
type PointCorrespondence = Polygon → Polygon → (Polygon, Polygon)
type Trajectory = (Polygon, Polygon) → (Double → Polygon)
type ObjectCorrespondence = [GPolygon] → [GPolygon] → [(GPolygon, GPolygon)]
data Morph = Morph
{ morphTolerance :: Double
, morphColorComponents :: ColorComponents
, morphPointCorrespondence :: PointCorrespondence
, morphTrajectory :: Trajectory
, morphObjectCorrespondence :: ObjectCorrespondence
}
{-# INLINE morph #-}
morph :: Morph -> SVG -> SVG -> Double -> SVG
morph Morph{..} src dst = \t ->
case t of
_ -> mkGroup
[ render (genPoints t)
& drawAttributes .~ genAttrs t
| (genAttrs, genPoints) <- gens
]
where
render p = mkLinePathClosed
[ (x,y) | V2 x y <- map (fmap realToFrac) $ V.toList $ polygonPoints p ]
srcShapes = toShapes morphTolerance src
dstShapes = toShapes morphTolerance dst
pairs = morphObjectCorrespondence srcShapes dstShapes
gens =
[ (interpolateAttrs morphColorComponents srcAttr dstAttr, morphTrajectory arranged)
| ((srcAttr, srcPoly'), (dstAttr, dstPoly')) <- pairs
, let arranged = morphPointCorrespondence srcPoly' dstPoly'
]
normalizePolygons :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a)
normalizePolygons src dst =
(pAddPoints (max 0 $ dstN-srcN) src
,pAddPoints (max 0 $ srcN-dstN) dst)
where
srcN = pSize src
dstN = pSize dst
interpolateAttrs :: ColorComponents -> DrawAttributes -> DrawAttributes -> Double -> DrawAttributes
interpolateAttrs colorComps src dst t =
src & fillColor .~ (interpColor <$> src^.fillColor <*> dst^.fillColor)
& strokeColor .~ (interpColor <$> src^.strokeColor <*> dst^.strokeColor)
& fillOpacity .~ (interpOpacity <$> src^.fillOpacity <*> dst^.fillOpacity)
& groupOpacity .~ (interpOpacity <$> src^.groupOpacity <*> dst^.groupOpacity)
& strokeOpacity .~ (interpOpacity <$> src^.strokeOpacity <*> dst^.strokeOpacity)
where
interpColor (ColorRef a) (ColorRef b) =
ColorRef $ interpolateRGBA8 colorComps a b t
interpColor a _ = a
interpOpacity a b = realToFrac (fromToS (realToFrac a) (realToFrac b) t)
genesisObjectCorrespondence :: ObjectCorrespondence
genesisObjectCorrespondence left right =
case (left, right) of
([] , []) -> []
([], (y1,y2):ys) ->
((y1,y2), (y1, emptyFrom y2 y2)) : genesisObjectCorrespondence [] ys
((x1,x2):xs, []) ->
((x1,x2), (x1, emptyFrom x2 x2)) : genesisObjectCorrespondence xs []
(x:xs, y:ys) ->
(x,y) : genesisObjectCorrespondence xs ys
where
emptyFrom a b = mkPolygon $ V.map (const $ pCentroid a) (polygonPoints b)
dupObjectCorrespondence :: ObjectCorrespondence
dupObjectCorrespondence left right =
case (left, right) of
(_, []) -> []
([], _) -> []
([x], [y]) ->
[(x,y)]
([(x1,x2)], yShapes) ->
let x2s = replicate (length yShapes) x2
in dupObjectCorrespondence (map (x1,) x2s) yShapes
(xShapes, [(y1,y2)]) ->
let y2s = replicate (length xShapes) y2
in dupObjectCorrespondence xShapes (map (y1,) y2s)
(x:xs, y:ys) ->
(x, y) : dupObjectCorrespondence xs ys
splitObjectCorrespondence :: ObjectCorrespondence
splitObjectCorrespondence left right =
case (left, right) of
(_, []) -> []
([], _) -> []
([x], [y]) ->
[(x,y)]
([(x1,x2)], yShapes) ->
let x2s = splitPolygon (length yShapes) x2
in splitObjectCorrespondence (map (x1,) x2s) yShapes
(xShapes, [(y1,y2)]) ->
let y2s = splitPolygon (length xShapes) y2
in splitObjectCorrespondence xShapes (map (y1,) y2s)
(x:xs, y:ys) ->
(x,y) : splitObjectCorrespondence xs ys
splitPolygon :: Int -> Polygon -> [Polygon]
splitPolygon 1 p = [p]
splitPolygon n p =
let (a,b) = pCutEqual p
in splitPolygon (n`div`2) a ++ splitPolygon ((n+1)`div`2) b
toShapes :: Double -> SVG -> [(DrawAttributes, Polygon)]
toShapes tol src =
[ (attrs, plToPolygon tol shape)
| (_, attrs, glyph) <- svgGlyphs $ lowerTransformations $ pathify src
, shape <- map mergePolyShapeHoles $ plGroupShapes $ svgToPolyShapes glyph
]
unsafeSVGToPolygon :: Double -> SVG -> Polygon
unsafeSVGToPolygon tol src = snd $ head $ toShapes tol src
annotatePolygons :: (Polygon -> SVG) -> SVG -> SVG
annotatePolygons fn svg = mkGroup
[ fn poly & drawAttributes .~ attr
| (attr, poly) <- toShapes 0.001 svg
]