----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.Misc.Floating -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Several examples involving IEEE-754 floating point numbers, i.e., single -- precision 'Float' ('SFloat') and double precision 'Double' ('SDouble') types. -- -- Note that arithmetic with floating point is full of surprises; due to precision -- issues associativity of arithmetic operations typically do not hold. Also, -- the presence of @NaN@ is always something to look out for. ----------------------------------------------------------------------------- {-# LANGUAGE ScopedTypeVariables #-} module Data.SBV.Examples.Misc.Floating where import Data.SBV ----------------------------------------------------------------------------- -- * FP addition is not associative ----------------------------------------------------------------------------- -- | Prove that floating point addition is not associative. For illustration purposes, -- we will require one of the inputs to be a @NaN@. We have: -- -- >>> prove $ assocPlus (0/0) -- Falsifiable. Counter-example: -- s0 = 0.0 :: Float -- s1 = 0.0 :: Float -- -- Indeed: -- -- >>> let i = 0/0 :: Float -- >>> i + (0.0 + 0.0) -- NaN -- >>> ((i + 0.0) + 0.0) -- NaN -- -- But keep in mind that @NaN@ does not equal itself in the floating point world! We have: -- -- >>> let nan = 0/0 :: Float in nan == nan -- False assocPlus :: SFloat -> SFloat -> SFloat -> SBool assocPlus x y z = x + (y + z) .== (x + y) + z -- | Prove that addition is not associative, even if we ignore @NaN@/@Infinity@ values. -- To do this, we use the predicate 'fpIsPoint', which is true of a floating point -- number ('SFloat' or 'SDouble') if it is neither @NaN@ nor @Infinity@. (That is, it's a -- representable point in the real-number line.) -- -- We have: -- -- >>> assocPlusRegular -- Falsifiable. Counter-example: -- x = 1.9259302e-34 :: Float -- y = -1.9259117e-34 :: Float -- z = -1.814176e-39 :: Float -- -- Indeed, we have: -- -- >>> ((1.9259302e-34) + ((-1.9259117e-34) + (-1.814176e-39))) :: Float -- 3.4438e-41 -- >>> (((1.9259302e-34) + ((-1.9259117e-34))) + (-1.814176e-39)) :: Float -- 3.4014e-41 -- -- Note the difference between two additions! assocPlusRegular :: IO ThmResult assocPlusRegular = prove $ do [x, y, z] <- sFloats ["x", "y", "z"] let lhs = x+(y+z) rhs = (x+y)+z -- make sure we do not overflow at the intermediate points constrain $ fpIsPoint lhs constrain $ fpIsPoint rhs return $ lhs .== rhs ----------------------------------------------------------------------------- -- * FP addition by non-zero can result in no change ----------------------------------------------------------------------------- -- | Demonstrate that @a+b = a@ does not necessarily mean @b@ is @0@ in the floating point world, -- even when we disallow the obvious solution when @a@ and @b@ are @Infinity.@ -- We have: -- -- >>> nonZeroAddition -- Falsifiable. Counter-example: -- a = 2.424457e-38 :: Float -- b = -1.0e-45 :: Float -- -- Indeed, we have: -- -- >>> (2.424457e-38 + (-1.0e-45)) == (2.424457e-38 :: Float) -- True -- -- But: -- -- >>> -1.0e-45 == (0 :: Float) -- False -- nonZeroAddition :: IO ThmResult nonZeroAddition = prove $ do [a, b] <- sFloats ["a", "b"] constrain $ fpIsPoint a constrain $ fpIsPoint b constrain $ a + b .== a return $ b .== 0 ----------------------------------------------------------------------------- -- * FP multiplicative inverses may not exist ----------------------------------------------------------------------------- -- | This example illustrates that @a * (1/a)@ does not necessarily equal @1@. Again, -- we protect against division by @0@ and @NaN@/@Infinity@. -- -- We have: -- -- >>> multInverse -- Falsifiable. Counter-example: -- a = 1.119056263978578e-308 :: Double -- -- Indeed, we have: -- -- >>> let a = 1.119056263978578e-308 :: Double -- >>> a * (1/a) -- 0.9999999999999999 multInverse :: IO ThmResult multInverse = prove $ do a <- sDouble "a" constrain $ fpIsPoint a constrain $ fpIsPoint (1/a) return $ a * (1/a) .== 1 ----------------------------------------------------------------------------- -- * Effect of rounding modes ----------------------------------------------------------------------------- -- | One interesting aspect of floating-point is that the chosen rounding-mode -- can effect the results of a computation if the exact result cannot be precisely -- represented. SBV exports the functions 'fpAdd', 'fpSub', 'fpMul', 'fpDiv', 'fpFMA' -- and 'fpSqrt' which allows users to specify the IEEE supported 'RoundingMode' for -- the operation. (Also see the class 'RoundingFloat'.) This example illustrates how SBV -- can be used to find rounding-modes where, for instance, addition can produce different -- results. We have: -- -- >>> roundingAdd -- Satisfiable. Model: -- rm = RoundTowardPositive :: RoundingMode -- x = -256.0 :: Float -- y = 4.6475088e-10 :: Float -- -- (Note that depending on your version of Z3, you might get a different result.) -- Unfortunately we can't directly validate this result at the Haskell level, as Haskell only supports -- 'RoundNearestTiesToEven'. We have: -- -- >>> (-256.0 + 4.6475088e-10) :: Float -- -256.0 -- -- While we cannot directly see the result when the mode is 'RoundTowardPositive' in Haskell, we can use -- SBV to provide us with that result thusly: -- -- >>> sat $ \z -> z .== fpAdd sRoundTowardPositive (-256.0) (4.6475088e-10 :: SFloat) -- Satisfiable. Model: -- s0 = -255.99998 :: Float -- -- We can see why these two resuls are indeed different: The 'RoundTowardsPositive' -- (which rounds towards positive-infinity) produces a larger result. Indeed, if we treat these numbers -- as 'Double' values, we get: -- -- >>> (-256.0 + 4.6475088e-10) :: Double -- -255.99999999953525 -- -- we see that the "more precise" result is larger than what the 'Float' value is, justifying the -- larger value with 'RoundTowardPositive'. A more detailed study is beyond our current scope, so we'll -- merely -- note that floating point representation and semantics is indeed a thorny -- subject, and point to <https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/02Numerics/Double/paper.pdf> as -- an excellent guide. roundingAdd :: IO SatResult roundingAdd = sat $ do m :: SRoundingMode <- free "rm" constrain $ m ./= literal RoundNearestTiesToEven x <- sFloat "x" y <- sFloat "y" let lhs = fpAdd m x y let rhs = x + y constrain $ fpIsPoint lhs constrain $ fpIsPoint rhs return $ lhs ./= rhs