Copyright | (c) Eitan Chatav 2019 |
---|---|
Maintainer | eitan@morphism.tech |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
Squeal is a deep embedding of PostgreSQL in Haskell. Let's see an example!
First, we need some language extensions because Squeal uses modern GHC features.
>>>
:set -XDataKinds -XDeriveGeneric -XOverloadedLabels -XFlexibleContexts
>>>
:set -XOverloadedStrings -XTypeApplications -XTypeOperators -XGADTs
We'll need some imports.
>>>
import Control.Monad.IO.Class (liftIO)
>>>
import Data.Int (Int32)
>>>
import Data.Text (Text)
>>>
import Squeal.PostgreSQL
We'll use generics to easily convert between Haskell and PostgreSQL values.
>>>
import qualified Generics.SOP as SOP
>>>
import qualified GHC.Generics as GHC
The first step is to define the schema of our database. This is where
we use DataKinds
and TypeOperators
.
>>>
:{
type UsersColumns = '[ "id" ::: 'Def :=> 'NotNull 'PGint4 , "name" ::: 'NoDef :=> 'NotNull 'PGtext ] type UsersConstraints = '[ "pk_users" ::: 'PrimaryKey '["id"] ] type EmailsColumns = '[ "id" ::: 'Def :=> 'NotNull 'PGint4 , "user_id" ::: 'NoDef :=> 'NotNull 'PGint4 , "email" ::: 'NoDef :=> 'Null 'PGtext ] type EmailsConstraints = '[ "pk_emails" ::: 'PrimaryKey '["id"] , "fk_user_id" ::: 'ForeignKey '["user_id"] "users" '["id"] ] type Schema = '[ "users" ::: 'Table (UsersConstraints :=> UsersColumns) , "emails" ::: 'Table (EmailsConstraints :=> EmailsColumns) ] type Schemas = Public Schema :}
Notice the use of type operators.
:::
is used to pair an alias Symbol
with a SchemasType
, a SchemumType
,
a TableConstraint
or a ColumnType
. It is intended to connote Haskell's ::
operator.
:=>
is used to pair TableConstraints
with a ColumnsType
,
yielding a TableType
, or to pair a ColumnConstraint
with a NullityType
,
yielding a ColumnType
. It is intended to connote Haskell's =>
operator
Next, we'll write Definition
s to set up and tear down the schema. In
Squeal, a Definition
like createTable
, alterTable
or dropTable
has two type parameters, corresponding to the schema
before being run and the schema after. We can compose definitions using >>>
.
Here and in the rest of our commands we make use of overloaded
labels to refer to named tables and columns in our schema.
>>>
:{
let setup :: Definition (Public '[]) Schemas setup = createTable #users ( serial `as` #id :* (text & notNullable) `as` #name ) ( primaryKey #id `as` #pk_users ) >>> createTable #emails ( serial `as` #id :* (int & notNullable) `as` #user_id :* (text & nullable) `as` #email ) ( primaryKey #id `as` #pk_emails :* foreignKey #user_id #users #id OnDeleteCascade OnUpdateCascade `as` #fk_user_id ) :}
We can easily see the generated SQL is unsurprising looking.
>>>
printSQL setup
CREATE TABLE "users" ("id" serial, "name" text NOT NULL, CONSTRAINT "pk_users" PRIMARY KEY ("id")); CREATE TABLE "emails" ("id" serial, "user_id" int NOT NULL, "email" text NULL, CONSTRAINT "pk_emails" PRIMARY KEY ("id"), CONSTRAINT "fk_user_id" FOREIGN KEY ("user_id") REFERENCES "users" ("id") ON DELETE CASCADE ON UPDATE CASCADE);
Notice that setup
starts with an empty public schema (Public '[])
and produces Schemas
.
In our createTable
commands we included TableConstraint
s to define
primary and foreign keys, making them somewhat complex. Our teardown
Definition
is simpler.
>>>
:{
let teardown :: Definition Schemas (Public '[]) teardown = dropTable #emails >>> dropTable #users :}
>>>
printSQL teardown
DROP TABLE "emails"; DROP TABLE "users";
We'll need a Haskell type for User
s. We give the type Generic
and
HasDatatypeInfo
instances so that we can encode and decode User
s.
>>>
data User = User { userName :: Text, userEmail :: Maybe Text } deriving (Show, GHC.Generic)
>>>
instance SOP.Generic User
>>>
instance SOP.HasDatatypeInfo User
Next, we'll write Manipulation_
s to insert User
s into our two tables.
A Manipulation_
like insertInto
, update
or deleteFrom
has three type parameters, the schemas it refers to, input parameters
and an output row. When
we insert into the users table, we will need a parameter for the name
field but not for the id
field. Since it's serial, we can use a default
value. However, since the emails table refers to the users table, we will
need to retrieve the user id that the insert generates and insert it into
the emails table. We can do this in a single Manipulation_
by using a
with
statement.
>>>
:{
let insertUser :: Manipulation_ Schemas User () insertUser = with (u `as` #u) e where u = insertInto #users (Values_ (Default `as` #id :* Set (param @1) `as` #name)) OnConflictDoRaise (Returning_ (#id :* param @2 `as` #email)) e = insertInto_ #emails $ Select (Default `as` #id :* Set (#u ! #id) `as` #user_id :* Set (#u ! #email) `as` #email) (from (common #u)) :}
>>>
printSQL insertUser
WITH "u" AS (INSERT INTO "users" ("id", "name") VALUES (DEFAULT, ($1 :: text)) RETURNING "id" AS "id", ($2 :: text) AS "email") INSERT INTO "emails" ("user_id", "email") SELECT "u"."id", "u"."email" FROM "u" AS "u"
Next we write a Query_
to retrieve users from the database. We're not
interested in the ids here, just the usernames and email addresses. We
need to use an innerJoin
to get the right result. A Query_
is like a
Manipulation_
with the same kind of type parameters.
>>>
:{
let getUsers :: Query_ Schemas () User getUsers = select_ (#u ! #name `as` #userName :* #e ! #email `as` #userEmail) ( from (table (#users `as` #u) & innerJoin (table (#emails `as` #e)) (#u ! #id .== #e ! #user_id)) ) :}
>>>
printSQL getUsers
SELECT "u"."name" AS "userName", "e"."email" AS "userEmail" FROM "users" AS "u" INNER JOIN "emails" AS "e" ON ("u"."id" = "e"."user_id")
Let's create some users to add to the database.
>>>
:{
let users :: [User] users = [ User "Alice" (Just "alice@gmail.com") , User "Bob" Nothing , User "Carole" (Just "carole@hotmail.com") ] :}
Now we can put together all the pieces into a program. The program
connects to the database, sets up the schema, inserts the user data
(using prepared statements as an optimization), queries the user
data and prints it out and finally closes the connection. We can thread
the changing schema information through by using the indexed PQ
monad
transformer and when the schema doesn't change we can use Monad
and
MonadPQ
functionality.
>>>
:{
let session :: PQ Schemas Schemas IO () session = do _ <- traversePrepared_ insertUser users usersResult <- runQuery getUsers usersRows <- getRows usersResult liftIO $ print (usersRows :: [User]) in withConnection "host=localhost port=5432 dbname=exampledb" $ define setup & pqThen session & pqThen (define teardown) :} [User {userName = "Alice", userEmail = Just "alice@gmail.com"},User {userName = "Bob", userEmail = Nothing},User {userName = "Carole", userEmail = Just "carole@hotmail.com"}]
Synopsis
- module Squeal.PostgreSQL.Transaction
- module Squeal.PostgreSQL.Schema
- module Squeal.PostgreSQL.Query
- module Squeal.PostgreSQL.PQ
- module Squeal.PostgreSQL.Pool
- module Squeal.PostgreSQL.PG
- module Squeal.PostgreSQL.Migration
- module Squeal.PostgreSQL.Manipulation
- module Squeal.PostgreSQL.List
- module Squeal.PostgreSQL.Expression.Window
- module Squeal.PostgreSQL.Expression.Type
- module Squeal.PostgreSQL.Expression.Time
- module Squeal.PostgreSQL.Expression.TextSearch
- module Squeal.PostgreSQL.Expression.Text
- module Squeal.PostgreSQL.Expression.Subquery
- module Squeal.PostgreSQL.Expression.Sort
- module Squeal.PostgreSQL.Expression.SetOf
- module Squeal.PostgreSQL.Expression.Parameter
- module Squeal.PostgreSQL.Expression.Null
- module Squeal.PostgreSQL.Expression.Math
- module Squeal.PostgreSQL.Expression.Logic
- module Squeal.PostgreSQL.Expression.Literal
- module Squeal.PostgreSQL.Expression.Json
- module Squeal.PostgreSQL.Expression.Comparison
- module Squeal.PostgreSQL.Expression.Collection
- module Squeal.PostgreSQL.Expression.Aggregate
- module Squeal.PostgreSQL.Expression
- module Squeal.PostgreSQL.Definition
- module Squeal.PostgreSQL.Binary
- module Squeal.PostgreSQL.Alias
- class RenderSQL sql where
- renderSQL :: sql -> ByteString
- printSQL :: (RenderSQL sql, MonadIO io) => sql -> io ()
Documentation
module Squeal.PostgreSQL.Schema
module Squeal.PostgreSQL.Query
module Squeal.PostgreSQL.PQ
module Squeal.PostgreSQL.Pool
module Squeal.PostgreSQL.PG
module Squeal.PostgreSQL.Migration
module Squeal.PostgreSQL.List
module Squeal.PostgreSQL.Expression
module Squeal.PostgreSQL.Definition
module Squeal.PostgreSQL.Binary
module Squeal.PostgreSQL.Alias
class RenderSQL sql where Source #
A class for rendering SQL
renderSQL :: sql -> ByteString Source #