{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE RebindableSyntax #-} {-# LANGUAGE TypeOperators #-} module ZkFold.Symbolic.Algorithms.ECDSA.ECDSA where import Data.Type.Equality import GHC.Base (($)) import GHC.TypeLits (KnownNat, Log2) import qualified GHC.TypeNats import ZkFold.Base.Algebra.Basic.Class import ZkFold.Base.Algebra.Basic.Number (value) import ZkFold.Base.Algebra.EllipticCurve.Class import qualified ZkFold.Symbolic.Class as S import ZkFold.Symbolic.Data.Bool import ZkFold.Symbolic.Data.ByteString (ByteString) import ZkFold.Symbolic.Data.Combinators (Iso (..), NumberOfRegisters, RegisterSize (Auto)) import ZkFold.Symbolic.Data.Conditional import ZkFold.Symbolic.Data.Eq import ZkFold.Symbolic.Data.FieldElement (FieldElement) import ZkFold.Symbolic.Data.UInt (UInt, eea) ecdsaVerify :: forall curve n c . ( S.Symbolic c , KnownNat n , EllipticCurve curve , BaseField curve ~ UInt 256 'Auto c , Scale (FieldElement c) (Point curve) , Log2 (Order (S.BaseField c) GHC.TypeNats.- 1) ~ 255 , SemiEuclidean (UInt 256 'Auto c) , KnownNat (NumberOfRegisters (S.BaseField c) 256 'Auto) , BooleanOf curve ~ Bool c ) => Point curve -> ByteString 256 c -> (UInt 256 'Auto c, UInt 256 'Auto c) -> Bool c ecdsaVerify :: forall curve (n :: Nat) (c :: (Type -> Type) -> Type). (Symbolic c, KnownNat n, EllipticCurve curve, BaseField curve ~ UInt 256 'Auto c, Scale (FieldElement c) (Point curve), Log2 (Order (BaseField c) - 1) ~ 255, SemiEuclidean (UInt 256 'Auto c), KnownNat (NumberOfRegisters (BaseField c) 256 'Auto), BooleanOf curve ~ Bool c) => Point curve -> ByteString 256 c -> (UInt 256 'Auto c, UInt 256 'Auto c) -> Bool c ecdsaVerify Point curve publicKey ByteString 256 c message (UInt 256 'Auto c r, UInt 256 'Auto c s) = case Point curve c of Point BaseField curve x BaseField curve _ BooleanOf curve isInf -> if Bool c BooleanOf curve isInf then Bool c forall b. BoolType b => b false else UInt 256 'Auto c r UInt 256 'Auto c -> UInt 256 'Auto c -> Bool c forall b a. Eq b a => a -> a -> b == (UInt 256 'Auto c BaseField curve x UInt 256 'Auto c -> UInt 256 'Auto c -> UInt 256 'Auto c forall a. SemiEuclidean a => a -> a -> a `mod` UInt 256 'Auto c n) where n :: UInt 256 'Auto c n = Nat -> UInt 256 'Auto c forall a b. FromConstant a b => a -> b fromConstant (Nat -> UInt 256 'Auto c) -> Nat -> UInt 256 'Auto c forall a b. (a -> b) -> a -> b $ forall (n :: Nat). KnownNat n => Nat value @n g :: Point curve g = Point curve forall curve. EllipticCurve curve => Point curve pointGen (UInt 256 'Auto c sInv, UInt 256 'Auto c _, UInt 256 'Auto c _) = UInt 256 'Auto c -> UInt 256 'Auto c -> (UInt 256 'Auto c, UInt 256 'Auto c, UInt 256 'Auto c) forall (n :: Nat) (c :: (Type -> Type) -> Type) (r :: RegisterSize). (Symbolic c, SemiEuclidean (UInt n r c), KnownNat n, KnownRegisters c n r, AdditiveGroup (UInt n r c), Eq (Bool c) (UInt n r c)) => UInt n r c -> UInt n r c -> (UInt n r c, UInt n r c, UInt n r c) eea UInt 256 'Auto c s UInt 256 'Auto c n u :: UInt 256 'Auto c u = (ByteString 256 c -> UInt 256 'Auto c forall a b. Iso a b => a -> b from ByteString 256 c message UInt 256 'Auto c -> UInt 256 'Auto c -> UInt 256 'Auto c forall a. MultiplicativeSemigroup a => a -> a -> a * UInt 256 'Auto c sInv) UInt 256 'Auto c -> UInt 256 'Auto c -> UInt 256 'Auto c forall a. SemiEuclidean a => a -> a -> a `mod` UInt 256 'Auto c n v :: UInt 256 'Auto c v = UInt 256 'Auto c r UInt 256 'Auto c -> UInt 256 'Auto c -> UInt 256 'Auto c forall a. MultiplicativeSemigroup a => a -> a -> a * UInt 256 'Auto c sInv UInt 256 'Auto c -> UInt 256 'Auto c -> UInt 256 'Auto c forall a. SemiEuclidean a => a -> a -> a `mod` UInt 256 'Auto c n c :: Point curve c = (UInt 256 'Auto c -> FieldElement c forall a b. Iso a b => a -> b from UInt 256 'Auto c u :: FieldElement c) FieldElement c -> Point curve -> Point curve forall b a. Scale b a => b -> a -> a `scale` Point curve g Point curve -> Point curve -> Point curve forall a. AdditiveSemigroup a => a -> a -> a + (UInt 256 'Auto c -> FieldElement c forall a b. Iso a b => a -> b from UInt 256 'Auto c v :: FieldElement c) FieldElement c -> Point curve -> Point curve forall b a. Scale b a => b -> a -> a `scale` Point curve publicKey