{-# LANGUAGE RebindableSyntax #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -Wno-orphans #-} module ZkFold.Symbolic.Data.Ed25519 (Ed25519_Point) where import Prelude (fromInteger, type (~), ($)) import qualified Prelude as P import ZkFold.Base.Algebra.Basic.Class import ZkFold.Base.Algebra.Basic.Number import ZkFold.Base.Algebra.EllipticCurve.Class import ZkFold.Base.Algebra.EllipticCurve.Ed25519 (Ed25519_Base, Ed25519_PointOf) import ZkFold.Symbolic.Class (Symbolic (..)) import ZkFold.Symbolic.Data.Bool import ZkFold.Symbolic.Data.ByteString import ZkFold.Symbolic.Data.Combinators (RegisterSize (Auto)) import ZkFold.Symbolic.Data.Conditional import ZkFold.Symbolic.Data.FFA import ZkFold.Symbolic.Data.FieldElement type Ed25519_Point ctx = Ed25519_PointOf (FFA Ed25519_Base 'Auto ctx) instance (Symbolic ctx, KnownFFA Ed25519_Base 'Auto ctx) => CyclicGroup (Ed25519_Point ctx) where type ScalarFieldOf (Ed25519_Point ctx) = FieldElement ctx pointGen :: Ed25519_Point ctx pointGen = FFA Ed25519_Base 'Auto ctx -> FFA Ed25519_Base 'Auto ctx -> Ed25519_Point ctx forall field point. Planar field point => field -> field -> point pointXY (Natural -> FFA Ed25519_Base 'Auto ctx forall a b. FromConstant a b => a -> b fromConstant (Natural 15112221349535400772501151409588531511454012693041857206046113283949847762202 :: Natural)) (Natural -> FFA Ed25519_Base 'Auto ctx forall a b. FromConstant a b => a -> b fromConstant (Natural 46316835694926478169428394003475163141307993866256225615783033603165251855960 :: Natural)) instance ( Symbolic ctx , a ~ BaseField ctx , bits ~ NumberOfBits a , KnownFFA Ed25519_Base 'Auto ctx ) => Scale (FieldElement ctx) (Ed25519_Point ctx) where scale :: FieldElement ctx -> Ed25519_Point ctx -> Ed25519_Point ctx scale FieldElement ctx sc Ed25519_Point ctx x = [Ed25519_Point ctx] -> Ed25519_Point ctx forall (t :: Type -> Type) a. (Foldable t, AdditiveMonoid a) => t a -> a sum ([Ed25519_Point ctx] -> Ed25519_Point ctx) -> [Ed25519_Point ctx] -> Ed25519_Point ctx forall a b. (a -> b) -> a -> b $ (Natural -> Ed25519_Point ctx -> Ed25519_Point ctx) -> [Natural] -> [Ed25519_Point ctx] -> [Ed25519_Point ctx] forall a b c. (a -> b -> c) -> [a] -> [b] -> [c] P.zipWith (\Natural b Ed25519_Point ctx p -> forall b a. Conditional b a => a -> a -> b -> a bool @(Bool ctx) Ed25519_Point ctx forall a. AdditiveMonoid a => a zero Ed25519_Point ctx p (ByteString bits ctx -> Natural -> Bool ctx forall (c :: (Type -> Type) -> Type) (n :: Natural). Symbolic c => ByteString n c -> Natural -> Bool c isSet ByteString bits ctx bits Natural b)) [Natural upper, Natural upper Natural -> Natural -> Natural -! Natural 1 .. Natural 0] ((Ed25519_Point ctx -> Ed25519_Point ctx) -> Ed25519_Point ctx -> [Ed25519_Point ctx] forall a. (a -> a) -> a -> [a] P.iterate (\Ed25519_Point ctx e -> Ed25519_Point ctx e Ed25519_Point ctx -> Ed25519_Point ctx -> Ed25519_Point ctx forall a. AdditiveSemigroup a => a -> a -> a + Ed25519_Point ctx e) Ed25519_Point ctx x) where bits :: ByteString bits ctx bits :: ByteString bits ctx bits = ctx (Vector bits) -> ByteString bits ctx forall (n :: Natural) (context :: (Type -> Type) -> Type). context (Vector n) -> ByteString n context ByteString (ctx (Vector bits) -> ByteString bits ctx) -> ctx (Vector bits) -> ByteString bits ctx forall a b. (a -> b) -> a -> b $ FieldElement ctx -> Bits (FieldElement ctx) forall a. BinaryExpansion a => a -> Bits a binaryExpansion FieldElement ctx sc upper :: Natural upper :: Natural upper = forall (n :: Natural). KnownNat n => Natural value @bits Natural -> Natural -> Natural -! Natural 1