Copyright | Devin Mullins <devin.mullins@gmail.com> |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Devin Mullins <devin.mullins@gmail.com> |
Stability | unstable |
Portability | unportable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
XMonad.Config.Prime
Description
Deprecated: This module is a perpetual draft and will therefore be removed from xmonad-contrib in the near future.
This is a draft of a brand new config syntax for xmonad. It aims to be:
- easier to copy/paste snippets from the docs
- easier to get the gist for what's going on, for you imperative programmers
It's brand new, so it's pretty much guaranteed to break or change syntax. But what's the worst that could happen? Xmonad crashes and logs you out? It probably won't do that. Give it a try.
Synopsis
- xmonad :: (Default a, Read (l Window), LayoutClass l Window) => (a -> IO (XConfig l)) -> IO ()
- nothing :: Prime l l
- normalBorderColor :: Settable String (XConfig l)
- focusedBorderColor :: Settable String (XConfig l)
- terminal :: Settable String (XConfig l)
- modMask :: Settable KeyMask (XConfig l)
- borderWidth :: Settable Dimension (XConfig l)
- focusFollowsMouse :: Settable Bool (XConfig l)
- clickJustFocuses :: Settable Bool (XConfig l)
- class SettableClass s x y | s -> x y where
- class UpdateableClass s x y | s -> x y where
- manageHook :: Summable ManageHook ManageHook (XConfig l)
- handleEventHook :: Summable (Event -> X All) (Event -> X All) (XConfig l)
- workspaces :: Summable [String] [String] (XConfig l)
- logHook :: Summable (X ()) (X ()) (XConfig l)
- startupHook :: Summable (X ()) (X ()) (XConfig l)
- clientMask :: Summable EventMask EventMask (XConfig l)
- rootMask :: Summable EventMask EventMask (XConfig l)
- class SummableClass s y | s -> y where
- keys :: Keys (XConfig l)
- mouseBindings :: MouseBindings (XConfig l)
- class RemovableClass r y | r -> y where
- withWorkspaces :: Arr WorkspaceConfig WorkspaceConfig -> Prime l l
- wsNames :: Settable [String] WorkspaceConfig
- wsKeys :: Summable [String] [String] WorkspaceConfig
- wsActions :: Summable [(String, String -> X ())] [(String, String -> X ())] WorkspaceConfig
- wsSetName :: Int -> String -> Arr WorkspaceConfig WorkspaceConfig
- withScreens :: Arr ScreenConfig ScreenConfig -> Prime l l
- sKeys :: Summable [String] [String] ScreenConfig
- sActions :: Summable [(String, ScreenId -> X ())] [(String, ScreenId -> X ())] ScreenConfig
- onScreens :: Eq s => (i -> StackSet i l a s sd -> StackSet i l a s sd) -> s -> StackSet i l a s sd -> StackSet i l a s sd
- addLayout :: (LayoutClass l Window, LayoutClass r Window) => r Window -> Prime l (Choose l r)
- resetLayout :: LayoutClass r Window => r Window -> Prime l r
- modifyLayout :: LayoutClass r Window => (l Window -> r Window) -> Prime l r
- startWith :: XConfig l' -> Prime l l'
- apply :: (XConfig l -> XConfig l') -> Prime l l'
- applyIO :: (XConfig l -> IO (XConfig l')) -> Prime l l'
- class Typeable (a :: k)
- class Monad m => MonadIO (m :: Type -> Type) where
- (.|.) :: Bits a => a -> a -> a
- class Monad m => MonadState s (m :: Type -> Type) | m -> s where
- modify :: MonadState s m => (s -> s) -> m ()
- gets :: MonadState s m => (s -> a) -> m a
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- asks :: MonadReader r m => (r -> a) -> m a
- allocAll :: ColormapAlloc
- allocNone :: ColormapAlloc
- alreadyGrabbed :: GrabStatus
- always :: BackingStore
- anyModifier :: Modifier
- arcChord :: ArcMode
- arcPieSlice :: ArcMode
- asyncBoth :: AllowEvents
- asyncKeyboard :: AllowEvents
- asyncPointer :: AllowEvents
- badAccess :: ErrorCode
- badAlloc :: ErrorCode
- badAtom :: ErrorCode
- badColor :: ErrorCode
- badCursor :: ErrorCode
- badDrawable :: ErrorCode
- badFont :: ErrorCode
- badGC :: ErrorCode
- badIDChoice :: ErrorCode
- badImplementation :: ErrorCode
- badLength :: ErrorCode
- badMatch :: ErrorCode
- badName :: ErrorCode
- badPixmap :: ErrorCode
- badRequest :: ErrorCode
- badValue :: ErrorCode
- badWindow :: ErrorCode
- button1 :: Button
- button1Mask :: ButtonMask
- button1MotionMask :: EventMask
- button2 :: Button
- button2Mask :: ButtonMask
- button2MotionMask :: EventMask
- button3 :: Button
- button3Mask :: ButtonMask
- button3MotionMask :: EventMask
- button4 :: Button
- button4Mask :: ButtonMask
- button4MotionMask :: EventMask
- button5 :: Button
- button5Mask :: ButtonMask
- button5MotionMask :: EventMask
- buttonMotionMask :: EventMask
- buttonPress :: EventType
- buttonPressMask :: EventMask
- buttonRelease :: EventType
- buttonReleaseMask :: EventMask
- cWBackPixel :: AttributeMask
- cWBackPixmap :: AttributeMask
- cWBackingPixel :: AttributeMask
- cWBackingPlanes :: AttributeMask
- cWBackingStore :: AttributeMask
- cWBitGravity :: AttributeMask
- cWBorderPixel :: AttributeMask
- cWBorderPixmap :: AttributeMask
- cWColormap :: AttributeMask
- cWCursor :: AttributeMask
- cWDontPropagate :: AttributeMask
- cWEventMask :: AttributeMask
- cWOverrideRedirect :: AttributeMask
- cWSaveUnder :: AttributeMask
- cWWinGravity :: AttributeMask
- capButt :: CapStyle
- capNotLast :: CapStyle
- capProjecting :: CapStyle
- capRound :: CapStyle
- centerGravity :: BitGravity
- circulateNotify :: EventType
- circulateRequest :: EventType
- clientMessage :: EventType
- clipByChildren :: SubWindowMode
- colormapChangeMask :: EventMask
- colormapInstalled :: ColormapNotification
- colormapNotify :: EventType
- colormapUninstalled :: ColormapNotification
- complex :: PolygonShape
- configureNotify :: EventType
- configureRequest :: EventType
- controlMapIndex :: Modifier
- controlMask :: KeyMask
- convex :: PolygonShape
- coordModeOrigin :: CoordinateMode
- coordModePrevious :: CoordinateMode
- copyFromParent :: WindowClass
- createNotify :: EventType
- cursorShape :: QueryBestSizeClass
- destroyAll :: CloseDownMode
- destroyNotify :: EventType
- doBlue :: Word8
- doGreen :: Word8
- doRed :: Word8
- eastGravity :: BitGravity
- enterNotify :: EventType
- enterWindowMask :: EventMask
- evenOddRule :: FillRule
- expose :: EventType
- exposureMask :: EventMask
- familyChaos :: Protocol
- familyDECnet :: Protocol
- familyInternet :: Protocol
- fillOpaqueStippled :: FillStyle
- fillSolid :: FillStyle
- fillStippled :: FillStyle
- fillTiled :: FillStyle
- firstExtensionError :: ErrorCode
- focusChangeMask :: EventMask
- focusIn :: EventType
- focusOut :: EventType
- fontLeftToRight :: FontDirection
- fontRightToLeft :: FontDirection
- forgetGravity :: BitGravity
- gCArcMode :: GCMask
- gCBackground :: GCMask
- gCCapStyle :: GCMask
- gCClipMask :: GCMask
- gCClipXOrigin :: GCMask
- gCClipYOrigin :: GCMask
- gCDashList :: GCMask
- gCDashOffset :: GCMask
- gCFillRule :: GCMask
- gCFillStyle :: GCMask
- gCFont :: GCMask
- gCForeground :: GCMask
- gCFunction :: GCMask
- gCGraphicsExposures :: GCMask
- gCJoinStyle :: GCMask
- gCLastBit :: GCMask
- gCLineStyle :: GCMask
- gCLineWidth :: GCMask
- gCPlaneMask :: GCMask
- gCStipple :: GCMask
- gCSubwindowMode :: GCMask
- gCTile :: GCMask
- gCTileStipXOrigin :: GCMask
- gCTileStipYOrigin :: GCMask
- gXand :: GXFunction
- gXandInverted :: GXFunction
- gXandReverse :: GXFunction
- gXclear :: GXFunction
- gXcopy :: GXFunction
- gXcopyInverted :: GXFunction
- gXequiv :: GXFunction
- gXinvert :: GXFunction
- gXnand :: GXFunction
- gXnoop :: GXFunction
- gXnor :: GXFunction
- gXor :: GXFunction
- gXorInverted :: GXFunction
- gXorReverse :: GXFunction
- gXset :: GXFunction
- gXxor :: GXFunction
- grabFrozen :: GrabStatus
- grabInvalidTime :: GrabStatus
- grabModeAsync :: GrabMode
- grabModeSync :: GrabMode
- grabNotViewable :: GrabStatus
- grabSuccess :: GrabStatus
- graphicsExpose :: EventType
- gravityNotify :: EventType
- includeInferiors :: SubWindowMode
- inputOnly :: WindowClass
- inputOutput :: WindowClass
- joinBevel :: JoinStyle
- joinMiter :: JoinStyle
- joinRound :: JoinStyle
- keyPress :: EventType
- keyPressMask :: EventMask
- keyRelease :: EventType
- keyReleaseMask :: EventMask
- keymapNotify :: EventType
- keymapStateMask :: EventMask
- lASTEvent :: EventType
- lSBFirst :: ByteOrder
- lastExtensionError :: ErrorCode
- leaveNotify :: EventType
- leaveWindowMask :: EventMask
- lineDoubleDash :: LineStyle
- lineOnOffDash :: LineStyle
- lineSolid :: LineStyle
- lockMapIndex :: Modifier
- lockMask :: KeyMask
- lowerHighest :: CirculationDirection
- mSBFirst :: ByteOrder
- mapNotify :: EventType
- mapRequest :: EventType
- mappingKeyboard :: MappingRequest
- mappingModifier :: MappingRequest
- mappingNotify :: EventType
- mappingPointer :: MappingRequest
- mod1MapIndex :: Modifier
- mod1Mask :: KeyMask
- mod2MapIndex :: Modifier
- mod2Mask :: KeyMask
- mod3MapIndex :: Modifier
- mod3Mask :: KeyMask
- mod4MapIndex :: Modifier
- mod4Mask :: KeyMask
- mod5MapIndex :: Modifier
- mod5Mask :: KeyMask
- motionNotify :: EventType
- noEventMask :: EventMask
- noExpose :: EventType
- noModMask :: KeyMask
- nonconvex :: PolygonShape
- northEastGravity :: BitGravity
- northGravity :: BitGravity
- northWestGravity :: BitGravity
- notUseful :: BackingStore
- notifyAncestor :: NotifyDetail
- notifyDetailNone :: NotifyDetail
- notifyGrab :: NotifyMode
- notifyHint :: NotifyMode
- notifyInferior :: NotifyDetail
- notifyNonlinear :: NotifyDetail
- notifyNonlinearVirtual :: NotifyDetail
- notifyNormal :: NotifyMode
- notifyPointer :: NotifyDetail
- notifyPointerRoot :: NotifyDetail
- notifyUngrab :: NotifyMode
- notifyVirtual :: NotifyDetail
- notifyWhileGrabbed :: NotifyMode
- ownerGrabButtonMask :: EventMask
- placeOnBottom :: Place
- placeOnTop :: Place
- pointerMotionHintMask :: EventMask
- pointerMotionMask :: EventMask
- propertyChangeMask :: EventMask
- propertyDelete :: PropertyNotification
- propertyNewValue :: PropertyNotification
- propertyNotify :: EventType
- raiseLowest :: CirculationDirection
- reparentNotify :: EventType
- replayKeyboard :: AllowEvents
- replayPointer :: AllowEvents
- resizeRedirectMask :: EventMask
- resizeRequest :: EventType
- retainPermanent :: CloseDownMode
- retainTemporary :: CloseDownMode
- revertToNone :: FocusMode
- revertToParent :: FocusMode
- revertToPointerRoot :: FocusMode
- rrCrtcChangeNotifyMask :: EventMask
- rrNotify :: EventType
- rrNotifyCrtcChange :: EventType
- rrNotifyOutputChange :: EventType
- rrNotifyOutputProperty :: EventType
- rrOutputChangeNotifyMask :: EventMask
- rrOutputPropertyNotifyMask :: EventMask
- rrScreenChangeNotify :: EventType
- rrScreenChangeNotifyMask :: EventMask
- screenSaverCycleMask :: EventMask
- screenSaverNotify :: EventType
- screenSaverNotifyMask :: EventMask
- selectionClear :: EventType
- selectionNotify :: EventType
- selectionRequest :: EventType
- setModeDelete :: ChangeSaveSetMode
- setModeInsert :: ChangeSaveSetMode
- shiftMapIndex :: Modifier
- shiftMask :: KeyMask
- southEastGravity :: BitGravity
- southGravity :: BitGravity
- southWestGravity :: BitGravity
- staticGravity :: BitGravity
- stippleShape :: QueryBestSizeClass
- structureNotifyMask :: EventMask
- substructureNotifyMask :: EventMask
- substructureRedirectMask :: EventMask
- success :: ErrorCode
- syncBoth :: AllowEvents
- syncKeyboard :: AllowEvents
- syncPointer :: AllowEvents
- throwIfZero :: String -> IO Status -> IO ()
- tileShape :: QueryBestSizeClass
- unmapGravity :: WindowGravity
- unmapNotify :: EventType
- visibilityChangeMask :: EventMask
- visibilityFullyObscured :: Visibility
- visibilityNotify :: EventType
- visibilityPartiallyObscured :: Visibility
- visibilityUnobscured :: Visibility
- westGravity :: BitGravity
- whenMapped :: BackingStore
- windingRule :: FillRule
- xK_0 :: KeySym
- xK_1 :: KeySym
- xK_2 :: KeySym
- xK_3 :: KeySym
- xK_4 :: KeySym
- xK_5 :: KeySym
- xK_6 :: KeySym
- xK_7 :: KeySym
- xK_8 :: KeySym
- xK_9 :: KeySym
- xK_A :: KeySym
- xK_AE :: KeySym
- xK_Aacute :: KeySym
- xK_Acircumflex :: KeySym
- xK_Adiaeresis :: KeySym
- xK_Agrave :: KeySym
- xK_Alt_L :: KeySym
- xK_Alt_R :: KeySym
- xK_Aring :: KeySym
- xK_Atilde :: KeySym
- xK_B :: KeySym
- xK_BackSpace :: KeySym
- xK_Begin :: KeySym
- xK_Break :: KeySym
- xK_C :: KeySym
- xK_Cancel :: KeySym
- xK_Caps_Lock :: KeySym
- xK_Ccedilla :: KeySym
- xK_Clear :: KeySym
- xK_Codeinput :: KeySym
- xK_Control_L :: KeySym
- xK_Control_R :: KeySym
- xK_D :: KeySym
- xK_Delete :: KeySym
- xK_Down :: KeySym
- xK_E :: KeySym
- xK_ETH :: KeySym
- xK_Eacute :: KeySym
- xK_Ecircumflex :: KeySym
- xK_Ediaeresis :: KeySym
- xK_Egrave :: KeySym
- xK_End :: KeySym
- xK_Escape :: KeySym
- xK_Eth :: KeySym
- xK_Execute :: KeySym
- xK_F :: KeySym
- xK_F1 :: KeySym
- xK_F10 :: KeySym
- xK_F11 :: KeySym
- xK_F12 :: KeySym
- xK_F13 :: KeySym
- xK_F14 :: KeySym
- xK_F15 :: KeySym
- xK_F16 :: KeySym
- xK_F17 :: KeySym
- xK_F18 :: KeySym
- xK_F19 :: KeySym
- xK_F2 :: KeySym
- xK_F20 :: KeySym
- xK_F21 :: KeySym
- xK_F22 :: KeySym
- xK_F23 :: KeySym
- xK_F24 :: KeySym
- xK_F25 :: KeySym
- xK_F26 :: KeySym
- xK_F27 :: KeySym
- xK_F28 :: KeySym
- xK_F29 :: KeySym
- xK_F3 :: KeySym
- xK_F30 :: KeySym
- xK_F31 :: KeySym
- xK_F32 :: KeySym
- xK_F33 :: KeySym
- xK_F34 :: KeySym
- xK_F35 :: KeySym
- xK_F4 :: KeySym
- xK_F5 :: KeySym
- xK_F6 :: KeySym
- xK_F7 :: KeySym
- xK_F8 :: KeySym
- xK_F9 :: KeySym
- xK_Find :: KeySym
- xK_G :: KeySym
- xK_H :: KeySym
- xK_Help :: KeySym
- xK_Home :: KeySym
- xK_Hyper_L :: KeySym
- xK_Hyper_R :: KeySym
- xK_I :: KeySym
- xK_Iacute :: KeySym
- xK_Icircumflex :: KeySym
- xK_Idiaeresis :: KeySym
- xK_Igrave :: KeySym
- xK_Insert :: KeySym
- xK_J :: KeySym
- xK_K :: KeySym
- xK_KP_0 :: KeySym
- xK_KP_1 :: KeySym
- xK_KP_2 :: KeySym
- xK_KP_3 :: KeySym
- xK_KP_4 :: KeySym
- xK_KP_5 :: KeySym
- xK_KP_6 :: KeySym
- xK_KP_7 :: KeySym
- xK_KP_8 :: KeySym
- xK_KP_9 :: KeySym
- xK_KP_Add :: KeySym
- xK_KP_Begin :: KeySym
- xK_KP_Decimal :: KeySym
- xK_KP_Delete :: KeySym
- xK_KP_Divide :: KeySym
- xK_KP_Down :: KeySym
- xK_KP_End :: KeySym
- xK_KP_Enter :: KeySym
- xK_KP_Equal :: KeySym
- xK_KP_F1 :: KeySym
- xK_KP_F2 :: KeySym
- xK_KP_F3 :: KeySym
- xK_KP_F4 :: KeySym
- xK_KP_Home :: KeySym
- xK_KP_Insert :: KeySym
- xK_KP_Left :: KeySym
- xK_KP_Multiply :: KeySym
- xK_KP_Next :: KeySym
- xK_KP_Page_Down :: KeySym
- xK_KP_Page_Up :: KeySym
- xK_KP_Prior :: KeySym
- xK_KP_Right :: KeySym
- xK_KP_Separator :: KeySym
- xK_KP_Space :: KeySym
- xK_KP_Subtract :: KeySym
- xK_KP_Tab :: KeySym
- xK_KP_Up :: KeySym
- xK_L :: KeySym
- xK_L1 :: KeySym
- xK_L10 :: KeySym
- xK_L2 :: KeySym
- xK_L3 :: KeySym
- xK_L4 :: KeySym
- xK_L5 :: KeySym
- xK_L6 :: KeySym
- xK_L7 :: KeySym
- xK_L8 :: KeySym
- xK_L9 :: KeySym
- xK_Left :: KeySym
- xK_Linefeed :: KeySym
- xK_M :: KeySym
- xK_Menu :: KeySym
- xK_Meta_L :: KeySym
- xK_Meta_R :: KeySym
- xK_Mode_switch :: KeySym
- xK_Multi_key :: KeySym
- xK_MultipleCandidate :: KeySym
- xK_N :: KeySym
- xK_Next :: KeySym
- xK_Ntilde :: KeySym
- xK_Num_Lock :: KeySym
- xK_O :: KeySym
- xK_Oacute :: KeySym
- xK_Ocircumflex :: KeySym
- xK_Odiaeresis :: KeySym
- xK_Ograve :: KeySym
- xK_Ooblique :: KeySym
- xK_Otilde :: KeySym
- xK_P :: KeySym
- xK_Page_Down :: KeySym
- xK_Page_Up :: KeySym
- xK_Pause :: KeySym
- xK_PreviousCandidate :: KeySym
- xK_Print :: KeySym
- xK_Prior :: KeySym
- xK_Q :: KeySym
- xK_R :: KeySym
- xK_R1 :: KeySym
- xK_R10 :: KeySym
- xK_R11 :: KeySym
- xK_R12 :: KeySym
- xK_R13 :: KeySym
- xK_R14 :: KeySym
- xK_R15 :: KeySym
- xK_R2 :: KeySym
- xK_R3 :: KeySym
- xK_R4 :: KeySym
- xK_R5 :: KeySym
- xK_R6 :: KeySym
- xK_R7 :: KeySym
- xK_R8 :: KeySym
- xK_R9 :: KeySym
- xK_Redo :: KeySym
- xK_Return :: KeySym
- xK_Right :: KeySym
- xK_S :: KeySym
- xK_Scroll_Lock :: KeySym
- xK_Select :: KeySym
- xK_Shift_L :: KeySym
- xK_Shift_Lock :: KeySym
- xK_Shift_R :: KeySym
- xK_SingleCandidate :: KeySym
- xK_Super_L :: KeySym
- xK_Super_R :: KeySym
- xK_Sys_Req :: KeySym
- xK_T :: KeySym
- xK_THORN :: KeySym
- xK_Tab :: KeySym
- xK_Thorn :: KeySym
- xK_U :: KeySym
- xK_Uacute :: KeySym
- xK_Ucircumflex :: KeySym
- xK_Udiaeresis :: KeySym
- xK_Ugrave :: KeySym
- xK_Undo :: KeySym
- xK_Up :: KeySym
- xK_V :: KeySym
- xK_VoidSymbol :: KeySym
- xK_W :: KeySym
- xK_X :: KeySym
- xK_Y :: KeySym
- xK_Yacute :: KeySym
- xK_Z :: KeySym
- xK_a :: KeySym
- xK_aacute :: KeySym
- xK_acircumflex :: KeySym
- xK_acute :: KeySym
- xK_adiaeresis :: KeySym
- xK_ae :: KeySym
- xK_agrave :: KeySym
- xK_ampersand :: KeySym
- xK_apostrophe :: KeySym
- xK_aring :: KeySym
- xK_asciicircum :: KeySym
- xK_asciitilde :: KeySym
- xK_asterisk :: KeySym
- xK_at :: KeySym
- xK_atilde :: KeySym
- xK_b :: KeySym
- xK_backslash :: KeySym
- xK_bar :: KeySym
- xK_braceleft :: KeySym
- xK_braceright :: KeySym
- xK_bracketleft :: KeySym
- xK_bracketright :: KeySym
- xK_brokenbar :: KeySym
- xK_c :: KeySym
- xK_ccedilla :: KeySym
- xK_cedilla :: KeySym
- xK_cent :: KeySym
- xK_colon :: KeySym
- xK_comma :: KeySym
- xK_copyright :: KeySym
- xK_currency :: KeySym
- xK_d :: KeySym
- xK_degree :: KeySym
- xK_diaeresis :: KeySym
- xK_division :: KeySym
- xK_dollar :: KeySym
- xK_e :: KeySym
- xK_eacute :: KeySym
- xK_ecircumflex :: KeySym
- xK_ediaeresis :: KeySym
- xK_egrave :: KeySym
- xK_equal :: KeySym
- xK_eth :: KeySym
- xK_exclam :: KeySym
- xK_exclamdown :: KeySym
- xK_f :: KeySym
- xK_g :: KeySym
- xK_grave :: KeySym
- xK_greater :: KeySym
- xK_guillemotleft :: KeySym
- xK_guillemotright :: KeySym
- xK_h :: KeySym
- xK_hyphen :: KeySym
- xK_i :: KeySym
- xK_iacute :: KeySym
- xK_icircumflex :: KeySym
- xK_idiaeresis :: KeySym
- xK_igrave :: KeySym
- xK_j :: KeySym
- xK_k :: KeySym
- xK_l :: KeySym
- xK_less :: KeySym
- xK_m :: KeySym
- xK_macron :: KeySym
- xK_masculine :: KeySym
- xK_minus :: KeySym
- xK_mu :: KeySym
- xK_multiply :: KeySym
- xK_n :: KeySym
- xK_nobreakspace :: KeySym
- xK_notsign :: KeySym
- xK_ntilde :: KeySym
- xK_numbersign :: KeySym
- xK_o :: KeySym
- xK_oacute :: KeySym
- xK_ocircumflex :: KeySym
- xK_odiaeresis :: KeySym
- xK_ograve :: KeySym
- xK_onehalf :: KeySym
- xK_onequarter :: KeySym
- xK_onesuperior :: KeySym
- xK_ordfeminine :: KeySym
- xK_oslash :: KeySym
- xK_otilde :: KeySym
- xK_p :: KeySym
- xK_paragraph :: KeySym
- xK_parenleft :: KeySym
- xK_parenright :: KeySym
- xK_percent :: KeySym
- xK_period :: KeySym
- xK_periodcentered :: KeySym
- xK_plus :: KeySym
- xK_plusminus :: KeySym
- xK_q :: KeySym
- xK_question :: KeySym
- xK_questiondown :: KeySym
- xK_quotedbl :: KeySym
- xK_quoteleft :: KeySym
- xK_quoteright :: KeySym
- xK_r :: KeySym
- xK_registered :: KeySym
- xK_s :: KeySym
- xK_script_switch :: KeySym
- xK_section :: KeySym
- xK_semicolon :: KeySym
- xK_slash :: KeySym
- xK_space :: KeySym
- xK_ssharp :: KeySym
- xK_sterling :: KeySym
- xK_t :: KeySym
- xK_thorn :: KeySym
- xK_threequarters :: KeySym
- xK_threesuperior :: KeySym
- xK_twosuperior :: KeySym
- xK_u :: KeySym
- xK_uacute :: KeySym
- xK_ucircumflex :: KeySym
- xK_udiaeresis :: KeySym
- xK_ugrave :: KeySym
- xK_underscore :: KeySym
- xK_v :: KeySym
- xK_w :: KeySym
- xK_x :: KeySym
- xK_y :: KeySym
- xK_yacute :: KeySym
- xK_ydiaeresis :: KeySym
- xK_yen :: KeySym
- xK_z :: KeySym
- xRR_Connected :: Connection
- xRR_Disconnected :: Connection
- xRR_Reflect_X :: Reflection
- xRR_Reflect_Y :: Reflection
- xRR_Rotate_0 :: Rotation
- xRR_Rotate_180 :: Rotation
- xRR_Rotate_270 :: Rotation
- xRR_Rotate_90 :: Rotation
- xRR_UnknownConnection :: Connection
- xyBitmap :: ImageFormat
- xyPixmap :: ImageFormat
- zPixmap :: ImageFormat
- aRC :: Atom
- aTOM :: Atom
- bITMAP :: Atom
- cAP_HEIGHT :: Atom
- cARDINAL :: Atom
- cOLORMAP :: Atom
- cOPYRIGHT :: Atom
- cURSOR :: Atom
- cUT_BUFFER0 :: Atom
- cUT_BUFFER1 :: Atom
- cUT_BUFFER2 :: Atom
- cUT_BUFFER3 :: Atom
- cUT_BUFFER4 :: Atom
- cUT_BUFFER5 :: Atom
- cUT_BUFFER6 :: Atom
- cUT_BUFFER7 :: Atom
- dRAWABLE :: Atom
- eND_SPACE :: Atom
- fAMILY_NAME :: Atom
- fONT :: Atom
- fONT_NAME :: Atom
- fULL_NAME :: Atom
- getAtomName :: Display -> Atom -> IO (Maybe String)
- getAtomNames :: Display -> [Atom] -> IO [String]
- iNTEGER :: Atom
- iTALIC_ANGLE :: Atom
- internAtom :: Display -> String -> Bool -> IO Atom
- lAST_PREDEFINED :: Atom
- mAX_SPACE :: Atom
- mIN_SPACE :: Atom
- nORM_SPACE :: Atom
- nOTICE :: Atom
- pIXMAP :: Atom
- pOINT :: Atom
- pOINT_SIZE :: Atom
- pRIMARY :: Atom
- qUAD_WIDTH :: Atom
- rECTANGLE :: Atom
- rESOLUTION :: Atom
- rESOURCE_MANAGER :: Atom
- rGB_BEST_MAP :: Atom
- rGB_BLUE_MAP :: Atom
- rGB_COLOR_MAP :: Atom
- rGB_DEFAULT_MAP :: Atom
- rGB_GRAY_MAP :: Atom
- rGB_GREEN_MAP :: Atom
- rGB_RED_MAP :: Atom
- sECONDARY :: Atom
- sTRIKEOUT_ASCENT :: Atom
- sTRIKEOUT_DESCENT :: Atom
- sTRING :: Atom
- sUBSCRIPT_X :: Atom
- sUBSCRIPT_Y :: Atom
- sUPERSCRIPT_X :: Atom
- sUPERSCRIPT_Y :: Atom
- uNDERLINE_POSITION :: Atom
- uNDERLINE_THICKNESS :: Atom
- vISUALID :: Atom
- wEIGHT :: Atom
- wINDOW :: Atom
- wM_CLASS :: Atom
- wM_CLIENT_MACHINE :: Atom
- wM_COMMAND :: Atom
- wM_HINTS :: Atom
- wM_ICON_NAME :: Atom
- wM_ICON_SIZE :: Atom
- wM_NAME :: Atom
- wM_NORMAL_HINTS :: Atom
- wM_SIZE_HINTS :: Atom
- wM_TRANSIENT_FOR :: Atom
- wM_ZOOM_HINTS :: Atom
- x_HEIGHT :: Atom
- allocColor :: Display -> Colormap -> Color -> IO Color
- allocNamedColor :: Display -> Colormap -> String -> IO (Color, Color)
- copyColormapAndFree :: Display -> Colormap -> IO Colormap
- createColormap :: Display -> Window -> Visual -> ColormapAlloc -> IO Colormap
- freeColormap :: Display -> Colormap -> IO ()
- freeColors :: Display -> Colormap -> [Pixel] -> Pixel -> IO ()
- installColormap :: Display -> Colormap -> IO ()
- lookupColor :: Display -> Colormap -> String -> IO (Color, Color)
- parseColor :: Display -> Colormap -> String -> IO Color
- queryColor :: Display -> Colormap -> Color -> IO Color
- queryColors :: Display -> Colormap -> [Color] -> IO [Color]
- storeColor :: Display -> Colormap -> Color -> IO ()
- uninstallColormap :: Display -> Colormap -> IO ()
- copyGC :: Display -> GC -> Mask -> GC -> IO ()
- createGC :: Display -> Drawable -> IO GC
- flushGC :: Display -> GC -> IO ()
- freeGC :: Display -> GC -> IO ()
- gContextFromGC :: GC -> GContext
- setArcMode :: Display -> GC -> ArcMode -> IO ()
- setBackground :: Display -> GC -> Pixel -> IO ()
- setClipMask :: Display -> GC -> Pixmap -> IO ()
- setClipOrigin :: Display -> GC -> Position -> Position -> IO ()
- setDashes :: Display -> GC -> CInt -> String -> CInt -> IO ()
- setFillRule :: Display -> GC -> FillRule -> IO ()
- setFillStyle :: Display -> GC -> FillStyle -> IO ()
- setFont :: Display -> GC -> Font -> IO ()
- setForeground :: Display -> GC -> Pixel -> IO ()
- setFunction :: Display -> GC -> GXFunction -> IO ()
- setGraphicsExposures :: Display -> GC -> Bool -> IO ()
- setLineAttributes :: Display -> GC -> CInt -> LineStyle -> CapStyle -> JoinStyle -> IO ()
- setPlaneMask :: Display -> GC -> Pixel -> IO ()
- setState :: Display -> GC -> Pixel -> Pixel -> GXFunction -> Pixel -> IO ()
- setStipple :: Display -> GC -> Pixmap -> IO ()
- setSubwindowMode :: Display -> GC -> SubWindowMode -> IO ()
- setTSOrigin :: Display -> GC -> Position -> Position -> IO ()
- setTile :: Display -> GC -> Pixmap -> IO ()
- xC_X_cursor :: Glyph
- xC_arrow :: Glyph
- xC_based_arrow_down :: Glyph
- xC_based_arrow_up :: Glyph
- xC_boat :: Glyph
- xC_bogosity :: Glyph
- xC_bottom_left_corner :: Glyph
- xC_bottom_right_corner :: Glyph
- xC_bottom_side :: Glyph
- xC_bottom_tee :: Glyph
- xC_box_spiral :: Glyph
- xC_center_ptr :: Glyph
- xC_circle :: Glyph
- xC_clock :: Glyph
- xC_coffee_mug :: Glyph
- xC_cross :: Glyph
- xC_cross_reverse :: Glyph
- xC_crosshair :: Glyph
- xC_diamond_cross :: Glyph
- xC_dot :: Glyph
- xC_dotbox :: Glyph
- xC_double_arrow :: Glyph
- xC_draft_large :: Glyph
- xC_draft_small :: Glyph
- xC_draped_box :: Glyph
- xC_exchange :: Glyph
- xC_fleur :: Glyph
- xC_gobbler :: Glyph
- xC_gumby :: Glyph
- xC_hand1 :: Glyph
- xC_hand2 :: Glyph
- xC_heart :: Glyph
- xC_icon :: Glyph
- xC_iron_cross :: Glyph
- xC_left_ptr :: Glyph
- xC_left_side :: Glyph
- xC_left_tee :: Glyph
- xC_leftbutton :: Glyph
- xC_ll_angle :: Glyph
- xC_lr_angle :: Glyph
- xC_man :: Glyph
- xC_mouse :: Glyph
- xC_pencil :: Glyph
- xC_pirate :: Glyph
- xC_plus :: Glyph
- xC_question_arrow :: Glyph
- xC_right_ptr :: Glyph
- xC_right_side :: Glyph
- xC_right_tee :: Glyph
- xC_rightbutton :: Glyph
- xC_rtl_logo :: Glyph
- xC_sailboat :: Glyph
- xC_sb_down_arrow :: Glyph
- xC_sb_h_double_arrow :: Glyph
- xC_sb_left_arrow :: Glyph
- xC_sb_right_arrow :: Glyph
- xC_sb_up_arrow :: Glyph
- xC_sb_v_double_arrow :: Glyph
- xC_shuttle :: Glyph
- xC_sizing :: Glyph
- xC_spider :: Glyph
- xC_spraycan :: Glyph
- xC_star :: Glyph
- xC_target :: Glyph
- xC_tcross :: Glyph
- xC_top_left_arrow :: Glyph
- xC_top_left_corner :: Glyph
- xC_top_right_corner :: Glyph
- xC_top_side :: Glyph
- xC_top_tee :: Glyph
- xC_trek :: Glyph
- xC_ul_angle :: Glyph
- xC_umbrella :: Glyph
- xC_ur_angle :: Glyph
- xC_watch :: Glyph
- xC_xterm :: Glyph
- allPlanes_aux :: Pixel
- blackPixel :: Display -> ScreenNumber -> Pixel
- closeDisplay :: Display -> IO ()
- connectionNumber :: Display -> CInt
- defaultColormap :: Display -> ScreenNumber -> Colormap
- defaultDepth :: Display -> ScreenNumber -> CInt
- defaultGC :: Display -> ScreenNumber -> GC
- defaultRootWindow :: Display -> Window
- defaultScreen :: Display -> ScreenNumber
- defaultScreenOfDisplay :: Display -> Screen
- defaultVisual :: Display -> ScreenNumber -> Visual
- displayCells :: Display -> ScreenNumber -> CInt
- displayHeight :: Display -> ScreenNumber -> CInt
- displayHeightMM :: Display -> ScreenNumber -> CInt
- displayMotionBufferSize :: Display -> CInt
- displayPlanes :: Display -> ScreenNumber -> CInt
- displayString :: Display -> String
- displayWidth :: Display -> ScreenNumber -> CInt
- displayWidthMM :: Display -> ScreenNumber -> CInt
- imageByteOrder :: Display -> CInt
- maxRequestSize :: Display -> CInt
- noOp :: Display -> IO ()
- openDisplay :: String -> IO Display
- protocolRevision :: Display -> CInt
- protocolVersion :: Display -> CInt
- qLength :: Display -> IO CInt
- resourceManagerString :: Display -> String
- rootWindow :: Display -> ScreenNumber -> IO Window
- screenCount :: Display -> CInt
- screenOfDisplay :: Display -> ScreenNumber -> Screen
- screenResourceString :: Screen -> String
- serverVendor :: Display -> String
- whitePixel :: Display -> ScreenNumber -> Pixel
- allocaXEvent :: (XEventPtr -> IO a) -> IO a
- allowEvents :: Display -> AllowEvents -> Time -> IO ()
- asKeyEvent :: XEventPtr -> XKeyEventPtr
- checkMaskEvent :: Display -> EventMask -> XEventPtr -> IO Bool
- checkTypedEvent :: Display -> EventType -> XEventPtr -> IO Bool
- checkTypedWindowEvent :: Display -> Window -> EventType -> XEventPtr -> IO Bool
- checkWindowEvent :: Display -> Window -> EventMask -> XEventPtr -> IO Bool
- eventsQueued :: Display -> QueuedMode -> IO CInt
- flush :: Display -> IO ()
- get_ButtonEvent :: XEventPtr -> IO XButtonEvent
- get_ConfigureEvent :: XEventPtr -> IO XConfigureEvent
- get_EventType :: XEventPtr -> IO EventType
- get_ExposeEvent :: XEventPtr -> IO XExposeEvent
- get_KeyEvent :: XEventPtr -> IO XKeyEvent
- get_MotionEvent :: XEventPtr -> IO XMotionEvent
- get_Window :: XEventPtr -> IO Window
- gettimeofday_in_milliseconds :: IO Integer
- maskEvent :: Display -> EventMask -> XEventPtr -> IO ()
- nextEvent :: Display -> XEventPtr -> IO ()
- peekEvent :: Display -> XEventPtr -> IO ()
- pending :: Display -> IO CInt
- putBackEvent :: Display -> XEventPtr -> IO ()
- queuedAfterFlush :: QueuedMode
- queuedAfterReading :: QueuedMode
- queuedAlready :: QueuedMode
- selectInput :: Display -> Window -> EventMask -> IO ()
- sendEvent :: Display -> Window -> Bool -> EventMask -> XEventPtr -> IO ()
- sync :: Display -> Bool -> IO ()
- waitForEvent :: Display -> Word32 -> IO Bool
- windowEvent :: Display -> Window -> EventMask -> XEventPtr -> IO ()
- _xSetErrorHandler :: FunPtr CXErrorHandler -> IO (FunPtr CXErrorHandler)
- allHintsBitmask :: CLong
- anyButton :: Button
- anyKey :: KeyCode
- anyPropertyType :: Atom
- changeProperty16 :: Display -> Window -> Atom -> Atom -> CInt -> [CShort] -> IO ()
- changeProperty32 :: Display -> Window -> Atom -> Atom -> CInt -> [CLong] -> IO ()
- changeProperty8 :: Display -> Window -> Atom -> Atom -> CInt -> [CChar] -> IO ()
- changeWindowAttributes :: Display -> Window -> AttributeMask -> Ptr SetWindowAttributes -> IO ()
- configureWindow :: Display -> Window -> CULong -> WindowChanges -> IO ()
- createFontSet :: Display -> String -> IO ([String], String, FontSet)
- currentTime :: Time
- deleteProperty :: Display -> Window -> Atom -> IO ()
- eventName :: Event -> String
- eventTable :: [(EventType, String)]
- fetchName :: Display -> Window -> IO (Maybe String)
- freeFontSet :: Display -> FontSet -> IO ()
- freeStringList :: Ptr CString -> IO ()
- getClassHint :: Display -> Window -> IO ClassHint
- getCommand :: Display -> Window -> IO [String]
- getErrorEvent :: XErrorEventPtr -> IO ErrorEvent
- getEvent :: XEventPtr -> IO Event
- getModifierMapping :: Display -> IO [(Modifier, [KeyCode])]
- getTextProperty :: Display -> Window -> Atom -> IO TextProperty
- getTransientForHint :: Display -> Window -> IO (Maybe Window)
- getWMHints :: Display -> Window -> IO WMHints
- getWMNormalHints :: Display -> Window -> IO SizeHints
- getWMProtocols :: Display -> Window -> IO [Atom]
- getWindowAttributes :: Display -> Window -> IO WindowAttributes
- getWindowProperty16 :: Display -> Atom -> Window -> IO (Maybe [CShort])
- getWindowProperty32 :: Display -> Atom -> Window -> IO (Maybe [CLong])
- getWindowProperty8 :: Display -> Atom -> Window -> IO (Maybe [CChar])
- getXErrorHandler :: FunPtr CXErrorHandler -> CXErrorHandler
- iconMaskHintBit :: Int
- iconPixmapHintBit :: Int
- iconPositionHintBit :: Int
- iconWindowHintBit :: Int
- iconicState :: Int
- inputHintBit :: Int
- isCursorKey :: KeySym -> Bool
- isFunctionKey :: KeySym -> Bool
- isKeypadKey :: KeySym -> Bool
- isMiscFunctionKey :: KeySym -> Bool
- isModifierKey :: KeySym -> Bool
- isPFKey :: KeySym -> Bool
- isPrivateKeypadKey :: KeySym -> Bool
- killClient :: Display -> Window -> IO CInt
- mapRaised :: Display -> Window -> IO CInt
- mkXErrorHandler :: CXErrorHandler -> IO (FunPtr CXErrorHandler)
- none :: XID
- normalState :: Int
- pAspectBit :: Int
- pBaseSizeBit :: Int
- pMaxSizeBit :: Int
- pMinSizeBit :: Int
- pResizeIncBit :: Int
- pWinGravityBit :: Int
- propModeAppend :: CInt
- propModePrepend :: CInt
- propModeReplace :: CInt
- queryTree :: Display -> Window -> IO (Window, Window, [Window])
- rawGetWindowProperty :: Storable a => Int -> Display -> Atom -> Window -> IO (Maybe [a])
- refreshKeyboardMapping :: Event -> IO ()
- setClassHint :: Display -> Window -> ClassHint -> IO ()
- setClientMessageEvent :: XEventPtr -> Window -> Atom -> CInt -> Atom -> Time -> IO ()
- setClientMessageEvent' :: XEventPtr -> Window -> Atom -> CInt -> [CInt] -> IO ()
- setConfigureEvent :: XEventPtr -> Window -> Window -> CInt -> CInt -> CInt -> CInt -> CInt -> Window -> Bool -> IO ()
- setErrorHandler :: XErrorHandler -> IO ()
- setEventType :: XEventPtr -> EventType -> IO ()
- setKeyEvent :: XEventPtr -> Window -> Window -> Window -> KeyMask -> KeyCode -> Bool -> IO ()
- setSelectionNotify :: XEventPtr -> Window -> Atom -> Atom -> Atom -> Time -> IO ()
- setWMHints :: Display -> Window -> WMHints -> IO Status
- stateHintBit :: Int
- unmapWindow :: Display -> Window -> IO ()
- urgencyHintBit :: Int
- waIsUnmapped :: CInt
- waIsUnviewable :: CInt
- waIsViewable :: CInt
- wcDrawImageString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> String -> IO ()
- wcDrawString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> String -> IO ()
- wcFreeStringList :: Ptr CWString -> IO ()
- wcTextEscapement :: FontSet -> String -> Int32
- wcTextExtents :: FontSet -> String -> (Rectangle, Rectangle)
- wcTextPropertyToTextList :: Display -> TextProperty -> IO [String]
- windowGroupHintBit :: Int
- withServer :: Display -> IO () -> IO ()
- withdrawnState :: Int
- xAllocWMHints :: IO (Ptr WMHints)
- xChangeProperty :: Display -> Window -> Atom -> Atom -> CInt -> CInt -> Ptr CUChar -> CInt -> IO Status
- xConfigureWindow :: Display -> Window -> CULong -> Ptr WindowChanges -> IO CInt
- xConvertSelection :: Display -> Atom -> Atom -> Atom -> Window -> Time -> IO ()
- xCreateFontSet :: Display -> CString -> Ptr (Ptr CString) -> Ptr CInt -> Ptr CString -> IO (Ptr FontSet)
- xDeleteProperty :: Display -> Window -> Atom -> IO Status
- xFetchName :: Display -> Window -> Ptr CString -> IO Status
- xFreeModifiermap :: Ptr () -> IO (Ptr CInt)
- xGetClassHint :: Display -> Window -> Ptr ClassHint -> IO Status
- xGetCommand :: Display -> Window -> Ptr (Ptr CWString) -> Ptr CInt -> IO Status
- xGetModifierMapping :: Display -> IO (Ptr ())
- xGetSelectionOwner :: Display -> Atom -> IO Window
- xGetTextProperty :: Display -> Window -> Ptr TextProperty -> Atom -> IO Status
- xGetTransientForHint :: Display -> Window -> Ptr Window -> IO Status
- xGetWMHints :: Display -> Window -> IO (Ptr WMHints)
- xGetWMNormalHints :: Display -> Window -> Ptr SizeHints -> Ptr CLong -> IO Status
- xGetWMProtocols :: Display -> Window -> Ptr (Ptr Atom) -> Ptr CInt -> IO Status
- xGetWindowAttributes :: Display -> Window -> Ptr WindowAttributes -> IO Status
- xGetWindowProperty :: Display -> Window -> Atom -> CLong -> CLong -> Bool -> Atom -> Ptr Atom -> Ptr CInt -> Ptr CULong -> Ptr CULong -> Ptr (Ptr CUChar) -> IO Status
- xQueryTree :: Display -> Window -> Ptr Window -> Ptr Window -> Ptr (Ptr Window) -> Ptr CInt -> IO Status
- xRefreshKeyboardMapping :: Ptr () -> IO CInt
- xSetClassHint :: Display -> Window -> Ptr ClassHint -> IO ()
- xSetErrorHandler :: IO ()
- xSetSelectionOwner :: Display -> Atom -> Window -> Time -> IO ()
- xSetWMHints :: Display -> Window -> Ptr WMHints -> IO Status
- xUnmapWindow :: Display -> Window -> IO CInt
- xwcDrawImageString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> CWString -> CInt -> IO ()
- xwcDrawString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> CWString -> CInt -> IO ()
- xwcTextEscapement :: FontSet -> CWString -> CInt -> IO Int32
- xwcTextExtents :: FontSet -> CWString -> CInt -> Ptr Rectangle -> Ptr Rectangle -> IO CInt
- xwcTextPropertyToTextList :: Display -> Ptr TextProperty -> Ptr (Ptr CWString) -> Ptr CInt -> IO CInt
- ascentFromFontStruct :: FontStruct -> Int32
- descentFromFontStruct :: FontStruct -> Int32
- fontFromFontStruct :: FontStruct -> Font
- fontFromGC :: Display -> GC -> IO Font
- freeFont :: Display -> FontStruct -> IO ()
- loadQueryFont :: Display -> String -> IO FontStruct
- queryFont :: Display -> Font -> IO FontStruct
- textExtents :: FontStruct -> String -> (FontDirection, Int32, Int32, CharStruct)
- textWidth :: FontStruct -> String -> Int32
- createImage :: Display -> Visual -> CInt -> ImageFormat -> CInt -> Ptr CChar -> Dimension -> Dimension -> CInt -> CInt -> IO Image
- destroyImage :: Image -> IO ()
- getImage :: Display -> Drawable -> CInt -> CInt -> CUInt -> CUInt -> CULong -> ImageFormat -> IO Image
- getPixel :: Image -> CInt -> CInt -> CULong
- putImage :: Display -> Drawable -> GC -> Image -> Position -> Position -> Position -> Position -> Dimension -> Dimension -> IO ()
- xGetPixel :: Image -> CInt -> CInt -> IO CULong
- xFree :: Ptr a -> IO CInt
- activateScreenSaver :: Display -> IO ()
- allocaSetWindowAttributes :: (Ptr SetWindowAttributes -> IO a) -> IO a
- allowExposures :: AllowExposuresMode
- autoRepeatOff :: Display -> IO ()
- autoRepeatOn :: Display -> IO ()
- bell :: Display -> CInt -> IO ()
- bitmapBitOrder :: Display -> ByteOrder
- bitmapPad :: Display -> CInt
- bitmapUnit :: Display -> CInt
- copyArea :: Display -> Drawable -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> IO ()
- copyPlane :: Display -> Drawable -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> Pixel -> IO ()
- createFontCursor :: Display -> Glyph -> IO Cursor
- createGlyphCursor :: Display -> Font -> Font -> Glyph -> Glyph -> Color -> Color -> IO Cursor
- createPixmap :: Display -> Drawable -> Dimension -> Dimension -> CInt -> IO Pixmap
- createPixmapCursor :: Display -> Pixmap -> Pixmap -> Color -> Color -> Dimension -> Dimension -> IO Cursor
- defaultBlanking :: PreferBlankingMode
- defaultExposures :: AllowExposuresMode
- defineCursor :: Display -> Window -> Cursor -> IO ()
- displayKeycodes :: Display -> (CInt, CInt)
- displayName :: String -> String
- dontAllowExposures :: AllowExposuresMode
- dontPreferBlanking :: PreferBlankingMode
- drawArc :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Angle -> Angle -> IO ()
- drawArcs :: Display -> Drawable -> GC -> [Arc] -> IO ()
- drawImageString :: Display -> Drawable -> GC -> Position -> Position -> String -> IO ()
- drawLine :: Display -> Drawable -> GC -> Position -> Position -> Position -> Position -> IO ()
- drawLines :: Display -> Drawable -> GC -> [Point] -> CoordinateMode -> IO ()
- drawPoint :: Display -> Drawable -> GC -> Position -> Position -> IO ()
- drawPoints :: Display -> Drawable -> GC -> [Point] -> CoordinateMode -> IO ()
- drawRectangle :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> IO ()
- drawRectangles :: Display -> Drawable -> GC -> [Rectangle] -> IO ()
- drawSegments :: Display -> Drawable -> GC -> [Segment] -> IO ()
- drawString :: Display -> Drawable -> GC -> Position -> Position -> String -> IO ()
- fetchBuffer :: Display -> CInt -> IO String
- fetchBytes :: Display -> IO String
- fillArc :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Angle -> Angle -> IO ()
- fillArcs :: Display -> Drawable -> GC -> [Arc] -> IO ()
- fillPolygon :: Display -> Drawable -> GC -> [Point] -> PolygonShape -> CoordinateMode -> IO ()
- fillRectangle :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> IO ()
- fillRectangles :: Display -> Drawable -> GC -> [Rectangle] -> IO ()
- forceScreenSaver :: Display -> ScreenSaverMode -> IO ()
- freeCursor :: Display -> Font -> IO ()
- freePixmap :: Display -> Pixmap -> IO ()
- geometry :: Display -> CInt -> String -> String -> Dimension -> Dimension -> Dimension -> CInt -> CInt -> IO (CInt, Position, Position, Dimension, Dimension)
- getGeometry :: Display -> Drawable -> IO (Window, Position, Position, Dimension, Dimension, Dimension, CInt)
- getIconName :: Display -> Window -> IO String
- getInputFocus :: Display -> IO (Window, FocusMode)
- getPointerControl :: Display -> IO (CInt, CInt, CInt)
- getScreenSaver :: Display -> IO (CInt, CInt, PreferBlankingMode, AllowExposuresMode)
- getVisualInfo :: Display -> VisualInfoMask -> VisualInfo -> IO [VisualInfo]
- grabButton :: Display -> Button -> ButtonMask -> Window -> Bool -> EventMask -> GrabMode -> GrabMode -> Window -> Cursor -> IO ()
- grabKey :: Display -> KeyCode -> KeyMask -> Window -> Bool -> GrabMode -> GrabMode -> IO ()
- grabKeyboard :: Display -> Window -> Bool -> GrabMode -> GrabMode -> Time -> IO GrabStatus
- grabPointer :: Display -> Window -> Bool -> EventMask -> GrabMode -> GrabMode -> Window -> Cursor -> Time -> IO GrabStatus
- grabServer :: Display -> IO ()
- initThreads :: IO Status
- keycodeToKeysym :: Display -> KeyCode -> CInt -> IO KeySym
- keysymToKeycode :: Display -> KeySym -> IO KeyCode
- keysymToString :: KeySym -> String
- lastKnownRequestProcessed :: Display -> IO CInt
- lockDisplay :: Display -> IO ()
- lookupKeysym :: XKeyEventPtr -> CInt -> IO KeySym
- lookupString :: XKeyEventPtr -> IO (Maybe KeySym, String)
- matchVisualInfo :: Display -> ScreenNumber -> CInt -> CInt -> IO (Maybe VisualInfo)
- noSymbol :: KeySym
- preferBlanking :: PreferBlankingMode
- queryBestCursor :: Display -> Drawable -> Dimension -> Dimension -> IO (Dimension, Dimension)
- queryBestSize :: Display -> QueryBestSizeClass -> Drawable -> Dimension -> Dimension -> IO (Dimension, Dimension)
- queryBestStipple :: Display -> Drawable -> Dimension -> Dimension -> IO (Dimension, Dimension)
- queryBestTile :: Display -> Drawable -> Dimension -> Dimension -> IO (Dimension, Dimension)
- queryPointer :: Display -> Window -> IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
- readBitmapFile :: Display -> Drawable -> String -> IO (Either String (Dimension, Dimension, Pixmap, Maybe CInt, Maybe CInt))
- recolorCursor :: Display -> Cursor -> Color -> Color -> IO ()
- resetScreenSaver :: Display -> IO ()
- rmInitialize :: IO ()
- rotateBuffers :: Display -> CInt -> IO ()
- screenSaverActive :: ScreenSaverMode
- screenSaverReset :: ScreenSaverMode
- setCloseDownMode :: Display -> CloseDownMode -> IO ()
- setDefaultErrorHandler :: IO ()
- setIconName :: Display -> Window -> String -> IO ()
- setInputFocus :: Display -> Window -> FocusMode -> Time -> IO ()
- setLocaleModifiers :: String -> IO String
- setScreenSaver :: Display -> CInt -> CInt -> PreferBlankingMode -> AllowExposuresMode -> IO ()
- setTextProperty :: Display -> Window -> String -> Atom -> IO ()
- setWMProtocols :: Display -> Window -> [Atom] -> IO ()
- set_background_pixel :: Ptr SetWindowAttributes -> Pixel -> IO ()
- set_background_pixmap :: Ptr SetWindowAttributes -> Pixmap -> IO ()
- set_backing_pixel :: Ptr SetWindowAttributes -> Pixel -> IO ()
- set_backing_planes :: Ptr SetWindowAttributes -> Pixel -> IO ()
- set_backing_store :: Ptr SetWindowAttributes -> BackingStore -> IO ()
- set_bit_gravity :: Ptr SetWindowAttributes -> BitGravity -> IO ()
- set_border_pixel :: Ptr SetWindowAttributes -> Pixel -> IO ()
- set_border_pixmap :: Ptr SetWindowAttributes -> Pixmap -> IO ()
- set_colormap :: Ptr SetWindowAttributes -> Colormap -> IO ()
- set_cursor :: Ptr SetWindowAttributes -> Cursor -> IO ()
- set_do_not_propagate_mask :: Ptr SetWindowAttributes -> EventMask -> IO ()
- set_event_mask :: Ptr SetWindowAttributes -> EventMask -> IO ()
- set_override_redirect :: Ptr SetWindowAttributes -> Bool -> IO ()
- set_save_under :: Ptr SetWindowAttributes -> Bool -> IO ()
- set_win_gravity :: Ptr SetWindowAttributes -> WindowGravity -> IO ()
- storeBuffer :: Display -> String -> CInt -> IO ()
- storeBytes :: Display -> String -> IO ()
- stringToKeysym :: String -> KeySym
- supportsLocale :: IO Bool
- undefineCursor :: Display -> Window -> IO ()
- ungrabButton :: Display -> Button -> ButtonMask -> Window -> IO ()
- ungrabKey :: Display -> KeyCode -> KeyMask -> Window -> IO ()
- ungrabKeyboard :: Display -> Time -> IO ()
- ungrabPointer :: Display -> Time -> IO ()
- ungrabServer :: Display -> IO ()
- unlockDisplay :: Display -> IO ()
- visualAllMask :: VisualInfoMask
- visualBitsPerRGBMask :: VisualInfoMask
- visualBlueMaskMask :: VisualInfoMask
- visualClassMask :: VisualInfoMask
- visualColormapSizeMask :: VisualInfoMask
- visualDepthMask :: VisualInfoMask
- visualGreenMaskMask :: VisualInfoMask
- visualIDFromVisual :: Visual -> IO VisualID
- visualIDMask :: VisualInfoMask
- visualNoMask :: VisualInfoMask
- visualRedMaskMask :: VisualInfoMask
- visualScreenMask :: VisualInfoMask
- warpPointer :: Display -> Window -> Window -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> IO ()
- clipBox :: Region -> IO (Rectangle, CInt)
- createRegion :: IO Region
- emptyRegion :: Region -> IO Bool
- equalRegion :: Region -> Region -> IO Bool
- intersectRegion :: Region -> Region -> Region -> IO CInt
- offsetRegion :: Region -> Point -> IO CInt
- pointInRegion :: Region -> Point -> IO Bool
- polygonRegion :: [Point] -> FillRule -> IO Region
- rectInRegion :: Region -> Rectangle -> IO RectInRegionResult
- rectangleIn :: RectInRegionResult
- rectangleOut :: RectInRegionResult
- rectanglePart :: RectInRegionResult
- setRegion :: Display -> GC -> Region -> IO CInt
- shrinkRegion :: Region -> Point -> IO CInt
- subtractRegion :: Region -> Region -> Region -> IO CInt
- unionRectWithRegion :: Rectangle -> Region -> Region -> IO CInt
- unionRegion :: Region -> Region -> Region -> IO CInt
- xorRegion :: Region -> Region -> Region -> IO CInt
- blackPixelOfScreen :: Screen -> Pixel
- cellsOfScreen :: Screen -> CInt
- defaultColormapOfScreen :: Screen -> Colormap
- defaultDepthOfScreen :: Screen -> CInt
- defaultGCOfScreen :: Screen -> GC
- defaultVisualOfScreen :: Screen -> Visual
- displayOfScreen :: Screen -> Display
- doesBackingStore :: Screen -> Bool
- doesSaveUnders :: Screen -> Bool
- eventMaskOfScreen :: Screen -> EventMask
- heightMMOfScreen :: Screen -> Dimension
- heightOfScreen :: Screen -> Dimension
- maxCmapsOfScreen :: Screen -> CInt
- minCmapsOfScreen :: Screen -> CInt
- planesOfScreen :: Screen -> CInt
- rootWindowOfScreen :: Screen -> Window
- screenNumberOfScreen :: Screen -> ScreenNumber
- whitePixelOfScreen :: Screen -> Pixel
- widthMMOfScreen :: Screen -> Dimension
- widthOfScreen :: Screen -> Dimension
- addToSaveSet :: Display -> Window -> IO ()
- changeSaveSet :: Display -> Window -> ChangeSaveSetMode -> IO ()
- circulateSubwindows :: Display -> Window -> CirculationDirection -> IO ()
- circulateSubwindowsDown :: Display -> Window -> IO ()
- circulateSubwindowsUp :: Display -> Window -> IO ()
- clearArea :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> Bool -> IO ()
- clearWindow :: Display -> Window -> IO ()
- createSimpleWindow :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> CInt -> Pixel -> Pixel -> IO Window
- createWindow :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> CInt -> CInt -> WindowClass -> Visual -> AttributeMask -> Ptr SetWindowAttributes -> IO Window
- destroySubwindows :: Display -> Window -> IO ()
- destroyWindow :: Display -> Window -> IO ()
- iconifyWindow :: Display -> Window -> ScreenNumber -> IO ()
- lowerWindow :: Display -> Window -> IO ()
- mapSubwindows :: Display -> Window -> IO ()
- mapWindow :: Display -> Window -> IO ()
- moveResizeWindow :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> IO ()
- moveWindow :: Display -> Window -> Position -> Position -> IO ()
- raiseWindow :: Display -> Window -> IO ()
- removeFromSaveSet :: Display -> Window -> IO ()
- reparentWindow :: Display -> Window -> Window -> Position -> Position -> IO ()
- resizeWindow :: Display -> Window -> Dimension -> Dimension -> IO ()
- restackWindows :: Display -> [Window] -> IO ()
- setWindowBackground :: Display -> Window -> Pixel -> IO ()
- setWindowBackgroundPixmap :: Display -> Window -> Pixmap -> IO ()
- setWindowBorder :: Display -> Window -> Pixel -> IO ()
- setWindowBorderPixmap :: Display -> Window -> Pixmap -> IO ()
- setWindowBorderWidth :: Display -> Window -> Dimension -> IO ()
- setWindowColormap :: Display -> Window -> Colormap -> IO ()
- storeName :: Display -> Window -> String -> IO ()
- translateCoordinates :: Display -> Window -> Window -> Position -> Position -> IO (Bool, Position, Position, Window)
- unmapSubwindows :: Display -> Window -> IO ()
- withdrawWindow :: Display -> Window -> ScreenNumber -> IO ()
- defaultConfig :: XConfig (Choose Tall (Choose (Mirror Tall) Full))
- atom_WM_DELETE_WINDOW :: X Atom
- atom_WM_PROTOCOLS :: X Atom
- atom_WM_STATE :: X Atom
- atom_WM_TAKE_FOCUS :: X Atom
- binFileName :: Directories -> FilePath
- catchIO :: MonadIO m => IO () -> m ()
- catchX :: X a -> X a -> X a
- fromMessage :: Message m => SomeMessage -> Maybe m
- getAtom :: String -> X Atom
- getDirectories :: IO Directories
- getXMonadCacheDir :: X String
- getXMonadDataDir :: X String
- getXMonadDir :: X String
- installSignalHandlers :: MonadIO m => m ()
- io :: MonadIO m => IO a -> m a
- isRoot :: Window -> X Bool
- readsLayout :: Layout a -> String -> [(Layout a, String)]
- recompile :: MonadIO m => Directories -> Bool -> m Bool
- runOnWorkspaces :: (WindowSpace -> X WindowSpace) -> X ()
- runQuery :: Query a -> Window -> X a
- runX :: XConf -> XState -> X a -> IO (a, XState)
- spawn :: MonadIO m => String -> m ()
- spawnPID :: MonadIO m => String -> m ProcessID
- stateFileName :: Directories -> FilePath
- trace :: MonadIO m => String -> m ()
- uninstallSignalHandlers :: MonadIO m => m ()
- userCode :: X a -> X (Maybe a)
- userCodeDef :: a -> X a -> X a
- whenJust :: Monad m => Maybe a -> (a -> m ()) -> m ()
- whenX :: X Bool -> X () -> X ()
- withDisplay :: (Display -> X a) -> X a
- withWindowAttributes :: Display -> Window -> (WindowAttributes -> X ()) -> X ()
- withWindowSet :: (WindowSet -> X a) -> X a
- xfork :: MonadIO m => IO () -> m ProcessID
- xmessage :: MonadIO m => String -> m ()
- mirrorRect :: Rectangle -> Rectangle
- splitHorizontally :: Int -> Rectangle -> [Rectangle]
- splitHorizontallyBy :: RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
- splitVertically :: Int -> Rectangle -> [Rectangle]
- splitVerticallyBy :: RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
- tile :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
- (|||) :: l a -> r a -> Choose l r a
- launch :: forall (l :: Type -> Type). (LayoutClass l Window, Read (l Window)) => XConfig l -> Directories -> IO ()
- (-->) :: (Monad m, Monoid a) => m Bool -> m a -> m a
- (<&&>) :: Monad m => m Bool -> m Bool -> m Bool
- (<+>) :: Monoid m => m -> m -> m
- (<||>) :: Monad m => m Bool -> m Bool -> m Bool
- (=?) :: Eq a => Query a -> a -> Query Bool
- appName :: Query String
- className :: Query String
- composeAll :: Monoid m => [m] -> m
- doF :: (s -> s) -> Query (Endo s)
- doFloat :: ManageHook
- doIgnore :: ManageHook
- doShift :: WorkspaceId -> ManageHook
- getStringProperty :: Display -> Window -> String -> X (Maybe String)
- idHook :: Monoid m => m
- ifM :: Monad m => m Bool -> m a -> m a -> m a
- liftX :: X a -> Query a
- resource :: Query String
- stringProperty :: String -> Query String
- title :: Query String
- willFloat :: Query Bool
- applyAspectHint :: (D, D) -> D -> D
- applyMaxSizeHint :: D -> D -> D
- applyResizeIncHint :: D -> D -> D
- applySizeHints :: Integral a => Dimension -> SizeHints -> (a, a) -> D
- applySizeHints' :: SizeHints -> D -> D
- applySizeHintsContents :: Integral a => SizeHints -> (a, a) -> D
- broadcastMessage :: Message a => a -> X ()
- cacheNumlockMask :: X ()
- cleanMask :: KeyMask -> X KeyMask
- clearEvents :: EventMask -> X ()
- containedIn :: Rectangle -> Rectangle -> Bool
- extraModifiers :: X [KeyMask]
- float :: Window -> X ()
- floatLocation :: Window -> X (ScreenId, RationalRect)
- focus :: Window -> X ()
- getCleanedScreenInfo :: MonadIO m => Display -> m [Rectangle]
- hide :: Window -> X ()
- initColor :: Display -> String -> IO (Maybe Pixel)
- isClient :: Window -> X Bool
- isFixedSizeOrTransient :: Display -> Window -> X Bool
- kill :: X ()
- killWindow :: Window -> X ()
- manage :: Window -> X ()
- mkAdjust :: Window -> X (D -> D)
- mkGrabs :: [(KeyMask, KeySym)] -> X [(KeyMask, KeyCode)]
- modifyWindowSet :: (WindowSet -> WindowSet) -> X ()
- mouseDrag :: (Position -> Position -> X ()) -> X () -> X ()
- mouseMoveWindow :: Window -> X ()
- mouseResizeWindow :: Window -> X ()
- nubScreens :: [Rectangle] -> [Rectangle]
- pointScreen :: Position -> Position -> X (Maybe (Screen WorkspaceId (Layout Window) Window ScreenId ScreenDetail))
- pointWithin :: Position -> Position -> Rectangle -> Bool
- readStateFile :: forall (l :: Type -> Type). (LayoutClass l Window, Read (l Window)) => XConfig l -> X (Maybe XState)
- refresh :: X ()
- rescreen :: X ()
- restart :: String -> Bool -> X ()
- reveal :: Window -> X ()
- scaleRationalRect :: Rectangle -> RationalRect -> Rectangle
- screenWorkspace :: ScreenId -> X (Maybe WorkspaceId)
- sendMessage :: Message a => a -> X ()
- sendMessageWithNoRefresh :: Message a => a -> WindowSpace -> X ()
- setButtonGrab :: Bool -> Window -> X ()
- setFocusX :: Window -> X ()
- setInitialProperties :: Window -> X ()
- setLayout :: Layout Window -> X ()
- setTopFocus :: X ()
- setWMState :: Window -> Int -> X ()
- setWindowBorderWithFallback :: Display -> Window -> String -> Pixel -> X ()
- tileWindow :: Window -> Rectangle -> X ()
- unmanage :: Window -> X ()
- updateLayout :: WorkspaceId -> Maybe (Layout Window) -> X ()
- windowBracket :: (a -> Bool) -> X a -> X a
- windowBracket_ :: X Any -> X ()
- windows :: (WindowSet -> WindowSet) -> X ()
- withFocused :: (Window -> X ()) -> X ()
- withUnfocused :: (Window -> X ()) -> X ()
- writeStateToFile :: X ()
- type AllowEvents = CInt
- type ArcMode = CInt
- type Atom = Word64
- type AttributeMask = Mask
- type BackingStore = CInt
- type BitGravity = CInt
- type Button = Word32
- type ButtonMask = Modifier
- type ByteOrder = CInt
- type CapStyle = CInt
- type ChangeSaveSetMode = CInt
- type CirculationDirection = CInt
- type CloseDownMode = CInt
- type Colormap = XID
- type ColormapAlloc = CInt
- type ColormapNotification = CInt
- type Connection = Word16
- type CoordinateMode = CInt
- type Cursor = XID
- type Drawable = XID
- type ErrorCode = CInt
- type EventMask = Mask
- type EventType = Word32
- type FillRule = CInt
- type FillStyle = CInt
- type FocusMode = CInt
- type Font = XID
- type FontDirection = CInt
- type GCMask = CInt
- type GContext = XID
- type GXFunction = CInt
- type GrabMode = CInt
- type GrabStatus = CInt
- type ImageFormat = CInt
- type JoinStyle = CInt
- type KeyCode = Word8
- type KeyMask = Modifier
- type KeySym = XID
- type LineStyle = CInt
- type MappingRequest = CInt
- type Mask = Word64
- type Modifier = CUInt
- type NotifyDetail = CInt
- type NotifyMode = CInt
- type Pixmap = XID
- type Place = CInt
- type PolygonShape = CInt
- type PropertyNotification = CInt
- type Protocol = CInt
- type QueryBestSizeClass = CInt
- type RRCrtc = Word64
- type RRMode = Word64
- type RROutput = Word64
- type Reflection = Word16
- type Rotation = Word16
- type SizeID = Word16
- type Status = CInt
- type SubWindowMode = CInt
- type SubpixelOrder = Word16
- type Time = Word64
- type Visibility = CInt
- type VisualID = Word64
- type Window = XID
- type WindowClass = CInt
- type WindowGravity = CInt
- type XID = Word64
- type XRRModeFlags = Word64
- type QueuedMode = CInt
- type XButtonEvent = (Window, Window, Time, CInt, CInt, CInt, CInt, Modifier, Button, Bool)
- type XConfigureEvent = (Position, Position, Dimension, Dimension)
- newtype XEvent = XEvent XEventPtr
- type XEventPtr = Ptr XEvent
- type XExposeEvent = (Position, Position, Dimension, Dimension, CInt)
- type XKeyEvent = (Window, Window, Time, CInt, CInt, CInt, CInt, Modifier, KeyCode, Bool)
- type XKeyEventPtr = Ptr XKeyEvent
- type XMappingEvent = (MappingRequest, KeyCode, CInt)
- type XMotionEvent = (Window, Window, Time, CInt, CInt, CInt, CInt, Modifier, NotifyMode, Bool)
- type CXErrorHandler = Display -> XErrorEventPtr -> IO CInt
- data ClassHint = ClassHint {}
- data ErrorEvent = ErrorEvent {
- ev_type :: !CInt
- ev_display :: Display
- ev_serialnum :: !CULong
- ev_error_code :: !CUChar
- ev_request_code :: !CUChar
- ev_minor_code :: !CUChar
- ev_resourceid :: !XID
- data Event
- = AnyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- | ConfigureRequestEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_parent :: !Window
- ev_window :: !Window
- ev_x :: !CInt
- ev_y :: !CInt
- ev_width :: !CInt
- ev_height :: !CInt
- ev_border_width :: !CInt
- ev_above :: !Window
- ev_detail :: !NotifyDetail
- ev_value_mask :: !CULong
- | ConfigureEvent { }
- | MapRequestEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_parent :: !Window
- ev_window :: !Window
- | KeyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_root :: !Window
- ev_subwindow :: !Window
- ev_time :: !Time
- ev_x :: !CInt
- ev_y :: !CInt
- ev_x_root :: !CInt
- ev_y_root :: !CInt
- ev_state :: !KeyMask
- ev_keycode :: !KeyCode
- ev_same_screen :: !Bool
- | ButtonEvent { }
- | MotionEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_x :: !CInt
- ev_y :: !CInt
- ev_window :: !Window
- | DestroyWindowEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_event :: !Window
- ev_window :: !Window
- | UnmapEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_event :: !Window
- ev_window :: !Window
- ev_from_configure :: !Bool
- | MapNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_event :: !Window
- ev_window :: !Window
- ev_override_redirect :: !Bool
- | MappingNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_request :: !MappingRequest
- ev_first_keycode :: !KeyCode
- ev_count :: !CInt
- | CrossingEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_root :: !Window
- ev_subwindow :: !Window
- ev_time :: !Time
- ev_x :: !CInt
- ev_y :: !CInt
- ev_x_root :: !CInt
- ev_y_root :: !CInt
- ev_mode :: !NotifyMode
- ev_detail :: !NotifyDetail
- ev_same_screen :: !Bool
- ev_focus :: !Bool
- ev_state :: !Modifier
- | SelectionRequest {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_owner :: !Window
- ev_requestor :: !Window
- ev_selection :: !Atom
- ev_target :: !Atom
- ev_property :: !Atom
- ev_time :: !Time
- | SelectionClear {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_selection :: !Atom
- ev_time :: !Time
- | PropertyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_atom :: !Atom
- ev_time :: !Time
- ev_propstate :: !CInt
- | ExposeEvent { }
- | ClientMessageEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_message_type :: !Atom
- ev_data :: ![CInt]
- | RRScreenChangeNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_root :: !Window
- ev_timestamp :: !Time
- ev_config_timestamp :: !Time
- ev_size_index :: !SizeID
- ev_subpixel_order :: !SubpixelOrder
- ev_rotation :: !Rotation
- ev_width :: !CInt
- ev_height :: !CInt
- ev_mwidth :: !CInt
- ev_mheight :: !CInt
- | RRNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_subtype :: !CInt
- | RRCrtcChangeNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_subtype :: !CInt
- ev_crtc :: !RRCrtc
- ev_rr_mode :: !RRMode
- ev_rotation :: !Rotation
- ev_x :: !CInt
- ev_y :: !CInt
- ev_rr_width :: !CUInt
- ev_rr_height :: !CUInt
- | RROutputChangeNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_subtype :: !CInt
- ev_output :: !RROutput
- ev_crtc :: !RRCrtc
- ev_rr_mode :: !RRMode
- ev_rotation :: !Rotation
- ev_connection :: !Connection
- ev_subpixel_order :: !SubpixelOrder
- | RROutputPropertyNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_subtype :: !CInt
- ev_output :: !RROutput
- ev_property :: !Atom
- ev_timestamp :: !Time
- ev_rr_state :: !CInt
- | ScreenSaverNotifyEvent {
- ev_event_type :: !EventType
- ev_serial :: !CULong
- ev_send_event :: !Bool
- ev_event_display :: Display
- ev_window :: !Window
- ev_root :: !Window
- ev_ss_state :: !XScreenSaverState
- ev_ss_kind :: !XScreenSaverKind
- ev_forced :: !Bool
- ev_time :: !Time
- = AnyEvent {
- newtype FontSet = FontSet (Ptr FontSet)
- data SizeHints = SizeHints {
- sh_min_size :: Maybe (Dimension, Dimension)
- sh_max_size :: Maybe (Dimension, Dimension)
- sh_resize_inc :: Maybe (Dimension, Dimension)
- sh_aspect :: Maybe ((Dimension, Dimension), (Dimension, Dimension))
- sh_base_size :: Maybe (Dimension, Dimension)
- sh_win_gravity :: Maybe BitGravity
- data TextProperty = TextProperty {}
- data WMHints = WMHints {}
- data WindowAttributes = WindowAttributes {}
- data WindowChanges = WindowChanges {
- wc_x :: CInt
- wc_y :: CInt
- wc_width :: CInt
- wc_height :: CInt
- wc_border_width :: CInt
- wc_sibling :: Window
- wc_stack_mode :: CInt
- type XErrorEventPtr = Ptr ()
- type XErrorHandler = Display -> XErrorEventPtr -> IO ()
- type CharStruct = (CInt, CInt, CInt, CInt, CInt)
- data FontStruct
- type Glyph = Word16
- type AllowExposuresMode = CInt
- type PreferBlankingMode = CInt
- type ScreenSaverMode = CInt
- type VisualInfoMask = CLong
- type RectInRegionResult = CInt
- data Region
- type Angle = CInt
- data Arc = Arc {
- arc_x :: Position
- arc_y :: Position
- arc_width :: Dimension
- arc_height :: Dimension
- arc_angle1 :: Angle
- arc_angle2 :: Angle
- type Buffer = CInt
- data Color = Color {
- color_pixel :: Pixel
- color_red :: Word16
- color_green :: Word16
- color_blue :: Word16
- color_flags :: Word8
- type Dimension = Word32
- newtype Display = Display (Ptr Display)
- data GC
- data Image
- type Pixel = Word64
- data Point = Point {}
- type Position = Int32
- data Rectangle = Rectangle {
- rect_x :: !Position
- rect_y :: !Position
- rect_width :: !Dimension
- rect_height :: !Dimension
- data Screen
- type ScreenNumber = Word32
- data Segment = Segment {}
- data SetWindowAttributes
- data Visual
- data VisualInfo = VisualInfo {}
- class Default a where
- def :: a
- data ConfExtension = Typeable a => ConfExtension a
- type Directories = Directories' FilePath
- data Directories' a = Directories {}
- class Typeable a => ExtensionClass a where
- initialValue :: a
- extensionType :: a -> StateExtension
- data Layout a = (LayoutClass l a, Read (l a)) => Layout (l a)
- class (Show (layout a), Typeable layout) => LayoutClass (layout :: Type -> Type) a where
- runLayout :: Workspace WorkspaceId (layout a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (layout a))
- doLayout :: layout a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (layout a))
- pureLayout :: layout a -> Rectangle -> Stack a -> [(a, Rectangle)]
- emptyLayout :: layout a -> Rectangle -> X ([(a, Rectangle)], Maybe (layout a))
- handleMessage :: layout a -> SomeMessage -> X (Maybe (layout a))
- pureMessage :: layout a -> SomeMessage -> Maybe (layout a)
- description :: layout a -> String
- data LayoutMessages
- type ManageHook = Query (Endo WindowSet)
- class Typeable a => Message a
- newtype Query a = Query (ReaderT Window X a)
- newtype ScreenDetail = SD {}
- newtype ScreenId = S Int
- data SomeMessage = Message a => SomeMessage a
- data StateExtension
- = ExtensionClass a => StateExtension a
- | (Read a, Show a, ExtensionClass a) => PersistentExtension a
- type WindowSet = StackSet WorkspaceId (Layout Window) Window ScreenId ScreenDetail
- type WindowSpace = Workspace WorkspaceId (Layout Window) Window
- type WorkspaceId = String
- data X a
- data XConf = XConf {
- display :: Display
- config :: !(XConfig Layout)
- theRoot :: !Window
- normalBorder :: !Pixel
- focusedBorder :: !Pixel
- keyActions :: !(Map (KeyMask, KeySym) (X ()))
- buttonActions :: !(Map (KeyMask, Button) (Window -> X ()))
- mouseFocused :: !Bool
- mousePosition :: !(Maybe (Position, Position))
- currentEvent :: !(Maybe Event)
- directories :: !Directories
- data XConfig (l :: Type -> Type) = XConfig !String !String !String !(l Window) !ManageHook !(Event -> X All) ![String] !KeyMask !(XConfig Layout -> Map (ButtonMask, KeySym) (X ())) !(XConfig Layout -> Map (ButtonMask, Button) (Window -> X ())) !Dimension !(X ()) !(X ()) !Bool !Bool !EventMask !EventMask !([String] -> XConfig Layout -> IO (XConfig Layout)) !(Map TypeRep ConfExtension)
- data XState = XState {}
- data CLR
- data ChangeLayout
- data Choose (l :: Type -> Type) (r :: Type -> Type) a = Choose CLR (l a) (r a)
- data Full a = Full
- newtype IncMasterN = IncMasterN Int
- newtype JumpToLayout = JumpToLayout String
- newtype Mirror (l :: Type -> Type) a = Mirror (l a)
- data Resize
- data Tall a = Tall {
- tallNMaster :: !Int
- tallRatioIncrement :: !Rational
- tallRatio :: !Rational
- type D = (Dimension, Dimension)
- data StateFile = StateFile {
- sfWins :: StackSet WorkspaceId String Window ScreenId ScreenDetail
- sfExt :: [(String, String)]
- (++) :: [a] -> [a] -> [a]
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Monad m => MonadFail (m :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- class Foldable (t :: Type -> Type) where
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Semigroup a where
- (<>) :: a -> a -> a
- class Semigroup a => Monoid a where
- data Bool
- type String = [Char]
- data Char
- data Double
- data Float
- data Int
- data Integer
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Word
- data Either a b
- writeFile :: FilePath -> String -> IO ()
- readLn :: Read a => IO a
- readIO :: Read a => String -> IO a
- readFile :: FilePath -> IO String
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- putChar :: Char -> IO ()
- interact :: (String -> String) -> IO ()
- getLine :: IO String
- getContents :: IO String
- getChar :: IO Char
- appendFile :: FilePath -> String -> IO ()
- ioError :: IOError -> IO a
- type FilePath = String
- type IOError = IOException
- userError :: String -> IOError
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- or :: Foldable t => t Bool -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- words :: String -> [String]
- unwords :: [String] -> String
- unlines :: [String] -> String
- lines :: String -> [String]
- reads :: Read a => ReadS a
- read :: Read a => String -> a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- readParen :: Bool -> ReadS a -> ReadS a
- lex :: ReadS String
- type ReadS a = String -> [(a, String)]
- odd :: Integral a => a -> Bool
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- even :: Integral a => a -> Bool
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- type ShowS = String -> String
- shows :: Show a => a -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- showChar :: Char -> ShowS
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- tail :: [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- reverse :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- last :: [a] -> a
- iterate :: (a -> a) -> a -> [a]
- init :: [a] -> [a]
- head :: [a] -> a
- dropWhile :: (a -> Bool) -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- cycle :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- (!!) :: [a] -> Int -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- id :: a -> a
- flip :: (a -> b -> c) -> b -> a -> c
- const :: a -> b -> a
- asTypeOf :: a -> a -> a
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- type Prime l l' = Arr (XConfig l) (XConfig l')
- type Arr x y = x -> IO y
- (>>) :: Arr x y -> Arr y z -> Arr x z
- ifThenElse :: Bool -> a -> a -> a
Start here
To start with, create a ~/.xmonad/xmonad.hs
that looks like this:
{-# LANGUAGE RebindableSyntax #-} import XMonad.Config.Prime -- Imports go here. main = xmonad $ do nothing -- Configs go here.
This will give you a default xmonad install, with room to grow. The lines starting with double dashes are comments. You may delete them. Note that Haskell is a bit precise about indentation. Make sure all the statements in your do-block start at the same column, and make sure that any multi-line statements are formatted with a hanging indent. (For an example, see the 'keys =+' statement in the Example config section, below.)
After changing your config file, restart xmonad with mod-q (where, by default, "mod" == "alt").
xmonad :: (Default a, Read (l Window), LayoutClass l Window) => (a -> IO (XConfig l)) -> IO () Source #
This doesn't modify the config in any way. It's just here for your initial config because Haskell doesn't allow empty do-blocks. Feel free to delete it once you've added other stuff.
Attributes you can set
These are a bunch of attributes that you can set. Syntax looks like this:
terminal =: "urxvt"
Strings are double quoted, Dimensions are unquoted integers, booleans are
True
or False
(case-sensitive), and modMask
is usually mod1Mask
or
mod4Mask
.
normalBorderColor :: Settable String (XConfig l) Source #
Non-focused windows border color. Default: "#dddddd"
focusedBorderColor :: Settable String (XConfig l) Source #
Focused windows border color. Default: "#ff0000"
terminal :: Settable String (XConfig l) Source #
The preferred terminal application. Default: "xterm"
modMask :: Settable KeyMask (XConfig l) Source #
The mod modifier, as used by key bindings. Default: mod1Mask
(which is
probably alt on your computer).
borderWidth :: Settable Dimension (XConfig l) Source #
The border width (in pixels). Default: 1
focusFollowsMouse :: Settable Bool (XConfig l) Source #
Whether window focus follows the mouse cursor on move, or requires a mouse
click. (Mouse? What's that?) Default: True
clickJustFocuses :: Settable Bool (XConfig l) Source #
If True, a mouse click on an inactive window focuses it, but the click is
not passed to the window. If False, the click is also passed to the window.
Default True
class SettableClass s x y | s -> x y where Source #
Instances
UpdateableClass s x y => SettableClass s x y Source # | |
Defined in XMonad.Config.Prime |
class UpdateableClass s x y | s -> x y where Source #
Attributes you can add to
In addition to being able to set these attributes, they have a special
syntax for being able to add to them. The operator is =+
(the plus comes
after the equals), but each attribute has a different syntax for what
comes after the operator.
manageHook :: Summable ManageHook ManageHook (XConfig l) Source #
The action to run when a new window is opened. Default:
manageHook =: composeAll [className =? "MPlayer" --> doFloat, className =? "Gimp" --> doFloat]
To add more rules to this list, you can say, for instance:
import XMonad.StackSet ... manageHook =+ (className =? "Emacs" --> doF kill) manageHook =+ (className =? "Vim" --> doF shiftMaster)
Note that operator precedence mandates the parentheses here.
handleEventHook :: Summable (Event -> X All) (Event -> X All) (XConfig l) Source #
Custom X event handler. Return All True
if the default handler should
also be run afterwards. Default does nothing. To add an event handler:
import XMonad.Hooks.ServerMode ... handleEventHook =+ serverModeEventHook
workspaces :: Summable [String] [String] (XConfig l) Source #
List of workspaces' names. Default: map show [1 .. 9 :: Int]
. Adding
appends to the end:
workspaces =+ ["0"]
This is useless unless you also create keybindings for this.
logHook :: Summable (X ()) (X ()) (XConfig l) Source #
The action to perform when the windows set is changed. This happens
whenever focus change, a window is moved, etc. logHook =+
takes an X ()
and appends it via (>>)
. For instance:
import XMonad.Hooks.ICCCMFocus ... logHook =+ takeTopFocus
Note that if your expression is parametrically typed (e.g. of type
MonadIO m => m ()
), you'll need to explicitly annotate it, like so:
logHook =+ (io $ putStrLn "Hello, world!" :: X ())
startupHook :: Summable (X ()) (X ()) (XConfig l) Source #
The action to perform on startup. startupHook =+
takes an X ()
and
appends it via (>>)
. For instance:
import XMonad.Hooks.SetWMName ... startupHook =+ setWMName "LG3D"
Note that if your expression is parametrically typed (e.g. of type
MonadIO m => m ()
), you'll need to explicitly annotate it, as documented
in logHook
.
clientMask :: Summable EventMask EventMask (XConfig l) Source #
The client events that xmonad is interested in. This is useful in
combination with handleEventHook. Default: structureNotifyMask .|.
enterWindowMask .|. propertyChangeMask
clientMask =+ keyPressMask .|. keyReleaseMask
rootMask :: Summable EventMask EventMask (XConfig l) Source #
The root events that xmonad is interested in. This is useful in
combination with handleEventHook. Default: substructureRedirectMask .|.
substructureNotifyMask .|. enterWindowMask .|. leaveWindowMask .|.
structureNotifyMask .|. buttonPressMask
class SummableClass s y | s -> y where Source #
Attributes you can add to or remove from
The following support the the =+
for adding items and the =-
operator
for removing items.
mouseBindings :: MouseBindings (XConfig l) Source #
Mouse button bindings to an X
actions on a window. Default: see `man
xmonad`
. To make mod-scrollwheel switch workspaces:
import XMonad.Actions.CycleWS (nextWS, prevWS) ... mouseBindings =+ [((mod4Mask, button4), const prevWS), ((mod4Mask, button5), const nextWS)]
Note that you need to specify the numbered mod-mask e.g. mod4Mask
instead
of just modMask
.
class RemovableClass r y | r -> y where Source #
Modifying the list of workspaces
Workspaces can be configured through workspaces
, but then the keys
need
to be set, and this can be a bit laborious. withWorkspaces
provides a
convenient mechanism for common workspace updates.
withWorkspaces :: Arr WorkspaceConfig WorkspaceConfig -> Prime l l Source #
Configure workspaces through a Prime-like interface. Example:
withWorkspaces $ do wsKeys =+ ["0"] wsActions =+ [("M-M1-", windows . swapWithCurrent)] wsSetName 1 "mail"
This will set workspaces
and add the necessary keybindings to keys
. Note
that it won't remove old keybindings; it's just not that clever.
wsNames :: Settable [String] WorkspaceConfig Source #
The list of workspace names, like workspaces
but with two differences:
- If any entry is the empty string, it'll be replaced with the
corresponding entry in
wsKeys
. - The list is truncated to the size of
wsKeys
.
The default value is
.repeat
""
If you'd like to create workspaces without associated keyspecs, you can do
that afterwards, outside the withWorkspaces
block, with
.workspaces
=+
wsKeys :: Summable [String] [String] WorkspaceConfig Source #
The list of workspace keys. These are combined with the modifiers in
wsActions
to form the keybindings for navigating to workspaces. Default:
["1","2",...,"9"]
.
wsActions :: Summable [(String, String -> X ())] [(String, String -> X ())] WorkspaceConfig Source #
Mapping from key prefix to command. Its type is [(String, String ->
X())]
. The key prefix may be a modifier such as "M-"
, or a submap
prefix such as "M-a "
, or both, as in "M-a M-"
. The command is a
function that takes a workspace name and returns an X ()
. withWorkspaces
creates keybindings for the cartesian product of wsKeys
and wsActions
.
Default:
[("M-", windows . W.greedyView), ("M-S-", windows . W.shift)]
wsSetName :: Int -> String -> Arr WorkspaceConfig WorkspaceConfig Source #
A convenience for just modifying one entry in wsNames
, in case you only
want a few named workspaces. Example:
wsSetName 1 "mail" wsSetName 2 "web"
Modifying the screen keybindings
withScreens
provides a convenient mechanism to set keybindings for moving
between screens, much like withWorkspaces
.
withScreens :: Arr ScreenConfig ScreenConfig -> Prime l l Source #
Configure screen keys through a Prime-like interface:
withScreens $ do sKeys =: ["e", "r"]
This will add the necessary keybindings to keys
. Note that it won't remove
old keybindings; it's just not that clever.
sKeys :: Summable [String] [String] ScreenConfig Source #
The list of screen keys. These are combined with the modifiers in
sActions
to form the keybindings for navigating to workspaces. Default:
["w","e","r"]
.
sActions :: Summable [(String, ScreenId -> X ())] [(String, ScreenId -> X ())] ScreenConfig Source #
Mapping from key prefix to command. Its type is [(String, ScreenId ->
X())]
. Works the same as wsActions
except for a different function type.
Default:
[("M-", windows . onScreens W.view), ("M-S-", windows . onScreens W.shift)]
onScreens :: Eq s => (i -> StackSet i l a s sd -> StackSet i l a s sd) -> s -> StackSet i l a s sd -> StackSet i l a s sd Source #
Converts a stackset transformer parameterized on the workspace type into one
parameterized on the screen type. For example, you can use onScreens W.view
0
to navigate to the workspace on the 0th screen. If the screen id is not
recognized, the returned transformer acts as an identity function.
Modifying the layoutHook
Layouts are special. You can't modify them using the =:
or =.
operator.
You need to use the following functions.
addLayout :: (LayoutClass l Window, LayoutClass r Window) => r Window -> Prime l (Choose l r) Source #
Add a layout to the list of layouts choosable with mod-space. For instance:
import XMonad.Layout.Tabbed ... addLayout simpleTabbed
resetLayout :: LayoutClass r Window => r Window -> Prime l r Source #
Reset the layoutHook from scratch. For instance, to get rid of the wide layout:
resetLayout $ Tall 1 (3/100) (1/2) ||| Full
(The dollar is like an auto-closing parenthesis, so all the stuff to the right of it is treated like an argument to resetLayout.)
modifyLayout :: LayoutClass r Window => (l Window -> r Window) -> Prime l r Source #
Modify your layoutHook
with some wrapper function. You probably want to call
this after you're done calling addLayout
. Example:
import XMonad.Layout.NoBorders ... modifyLayout smartBorders
Updating the XConfig en masse
Finally, there are a few contrib modules that bundle multiple attribute updates together. There are three types: 1) wholesale replacements for the default config, 2) pure functions on the config, and 3) IO actions on the config. The syntax for each is different. Examples:
1) To start with a gnomeConfig
instead of the default,
we use startWith
:
import XMonad.Config.Gnome ... startWith gnomeConfig
2) withUrgencyHook
is a pure function, so we need
to use apply
:
import XMonad.Hooks.UrgencyHook ... apply $ withUrgencyHook dzenUrgencyHook
3) xmobar
returns an IO (XConfig l)
, so we need
to use applyIO
:
import XMonad.Hooks.DynamicLog ... applyIO xmobar
startWith :: XConfig l' -> Prime l l' Source #
Replace the current XConfig
with the given one. If you use this, you
probably want it to be the first line of your config.
The rest of the world
Everything you know and love from the core XMonad module is available for use in your config file, too.
The class Typeable
allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
class Monad m => MonadIO (m :: Type -> Type) where #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Methods
Lift a computation from the IO
monad.
This allows us to run IO computations in any monadic stack, so long as it supports these kinds of operations
(i.e. IO
is the base monad for the stack).
Example
import Control.Monad.Trans.State -- from the "transformers" library printState :: Show s => StateT s IO () printState = do state <- get liftIO $ print state
Had we omitted
, we would have ended up with this error:liftIO
• Couldn't match type ‘IO’ with ‘StateT s IO’ Expected type: StateT s IO () Actual type: IO ()
The important part here is the mismatch between StateT s IO ()
and
.IO
()
Luckily, we know of a function that takes an
and returns an IO
a(m a)
:
,
enabling us to run the program and see the expected results:liftIO
> evalStateT printState "hello" "hello" > evalStateT printState 3 3
Instances
class Monad m => MonadState s (m :: Type -> Type) | m -> s where #
Minimal definition is either both of get
and put
or just state
Methods
Return the state from the internals of the monad.
Replace the state inside the monad.
state :: (s -> (a, s)) -> m a #
Embed a simple state action into the monad.
Instances
MonadState XState X | |
MonadState XState PureX Source # | |
MonadState s m => MonadState s (ListT m) | |
MonadState s m => MonadState s (MaybeT m) | |
(Error e, MonadState s m) => MonadState s (ErrorT e m) | |
MonadState s m => MonadState s (ExceptT e m) | Since: mtl-2.2 |
MonadState s m => MonadState s (IdentityT m) | |
MonadState s m => MonadState s (ReaderT r m) | |
Monad m => MonadState s (StateT s m) | |
Monad m => MonadState s (StateT s m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
MonadState s m => MonadState s (ContT r m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
MonadState (TwoDState a) (TwoD a) Source # | |
(Show s, Read s, Typeable s) => MonadState (Maybe s) (StateQuery s) Source # | Instance of MonadState for StateQuery. |
Defined in XMonad.Util.WindowState Methods get :: StateQuery s (Maybe s) # put :: Maybe s -> StateQuery s () # state :: (Maybe s -> (a, Maybe s)) -> StateQuery s a # |
modify :: MonadState s m => (s -> s) -> m () #
Monadic state transformer.
Maps an old state to a new state inside a state monad. The old state is thrown away.
Main> :t modify ((+1) :: Int -> Int) modify (...) :: (MonadState Int a) => a ()
This says that modify (+1)
acts over any
Monad that is a member of the MonadState
class,
with an Int
state.
gets :: MonadState s m => (s -> a) -> m a #
Gets specific component of the state, using a projection function supplied.
class Monad m => MonadReader r (m :: Type -> Type) | m -> r where #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Methods
Retrieves the monad environment.
Arguments
:: (r -> r) | The function to modify the environment. |
-> m a |
|
-> m a |
Executes a computation in a modified environment.
Arguments
:: (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
Instances
MonadReader Window Query | |
MonadReader XConf X | |
MonadReader XConf PureX Source # | |
MonadReader Focus FocusQuery Source # | |
Defined in XMonad.Hooks.Focus Methods ask :: FocusQuery Focus # local :: (Focus -> Focus) -> FocusQuery a -> FocusQuery a # reader :: (Focus -> a) -> FocusQuery a # | |
MonadReader r m => MonadReader r (ListT m) | |
MonadReader r m => MonadReader r (MaybeT m) | |
(Error e, MonadReader r m) => MonadReader r (ErrorT e m) | |
MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 |
MonadReader r m => MonadReader r (IdentityT m) | |
Monad m => MonadReader r (ReaderT r m) | |
MonadReader r m => MonadReader r (StateT s m) | |
MonadReader r m => MonadReader r (StateT s m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
(Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
MonadReader r ((->) r) | |
MonadReader r' m => MonadReader r' (ContT r m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
(Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
Arguments
:: MonadReader r m | |
=> (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
always :: BackingStore #
anyModifier :: Modifier #
arcPieSlice :: ArcMode #
badRequest :: ErrorCode #
capNotLast :: CapStyle #
complex :: PolygonShape #
controlMask :: KeyMask #
convex :: PolygonShape #
evenOddRule :: FillRule #
familyChaos :: Protocol #
gCBackground :: GCMask #
gCCapStyle :: GCMask #
gCClipMask :: GCMask #
gCClipXOrigin :: GCMask #
gCClipYOrigin :: GCMask #
gCDashList :: GCMask #
gCDashOffset :: GCMask #
gCFillRule :: GCMask #
gCFillStyle :: GCMask #
gCForeground :: GCMask #
gCFunction :: GCMask #
gCJoinStyle :: GCMask #
gCLineStyle :: GCMask #
gCLineWidth :: GCMask #
gCPlaneMask :: GCMask #
gXand :: GXFunction #
gXclear :: GXFunction #
gXcopy :: GXFunction #
gXequiv :: GXFunction #
gXinvert :: GXFunction #
gXnand :: GXFunction #
gXnoop :: GXFunction #
gXnor :: GXFunction #
gXor :: GXFunction #
gXset :: GXFunction #
gXxor :: GXFunction #
keyRelease :: EventType #
mapRequest :: EventType #
placeOnBottom :: Place #
placeOnTop :: Place #
syncBoth :: AllowEvents #
windingRule :: FillRule #
xK_Adiaeresis :: KeySym #
xK_BackSpace :: KeySym #
xK_Caps_Lock :: KeySym #
xK_Ccedilla :: KeySym #
xK_Codeinput :: KeySym #
xK_Control_L :: KeySym #
xK_Control_R :: KeySym #
xK_Ediaeresis :: KeySym #
xK_Execute :: KeySym #
xK_Hyper_L :: KeySym #
xK_Hyper_R :: KeySym #
xK_Idiaeresis :: KeySym #
xK_KP_Begin :: KeySym #
xK_KP_Decimal :: KeySym #
xK_KP_Delete :: KeySym #
xK_KP_Divide :: KeySym #
xK_KP_Down :: KeySym #
xK_KP_Enter :: KeySym #
xK_KP_Equal :: KeySym #
xK_KP_Home :: KeySym #
xK_KP_Insert :: KeySym #
xK_KP_Left :: KeySym #
xK_KP_Next :: KeySym #
xK_KP_Page_Up :: KeySym #
xK_KP_Prior :: KeySym #
xK_KP_Right :: KeySym #
xK_KP_Space :: KeySym #
xK_Linefeed :: KeySym #
xK_Multi_key :: KeySym #
xK_Num_Lock :: KeySym #
xK_Odiaeresis :: KeySym #
xK_Ooblique :: KeySym #
xK_Page_Down :: KeySym #
xK_Page_Up :: KeySym #
xK_Shift_L :: KeySym #
xK_Shift_Lock :: KeySym #
xK_Shift_R :: KeySym #
xK_Super_L :: KeySym #
xK_Super_R :: KeySym #
xK_Sys_Req :: KeySym #
xK_Udiaeresis :: KeySym #
xK_VoidSymbol :: KeySym #
xK_adiaeresis :: KeySym #
xK_ampersand :: KeySym #
xK_apostrophe :: KeySym #
xK_asciitilde :: KeySym #
xK_asterisk :: KeySym #
xK_backslash :: KeySym #
xK_braceleft :: KeySym #
xK_braceright :: KeySym #
xK_brokenbar :: KeySym #
xK_ccedilla :: KeySym #
xK_cedilla :: KeySym #
xK_copyright :: KeySym #
xK_currency :: KeySym #
xK_diaeresis :: KeySym #
xK_division :: KeySym #
xK_ediaeresis :: KeySym #
xK_exclamdown :: KeySym #
xK_greater :: KeySym #
xK_idiaeresis :: KeySym #
xK_masculine :: KeySym #
xK_multiply :: KeySym #
xK_notsign :: KeySym #
xK_numbersign :: KeySym #
xK_odiaeresis :: KeySym #
xK_onehalf :: KeySym #
xK_onequarter :: KeySym #
xK_paragraph :: KeySym #
xK_parenleft :: KeySym #
xK_parenright :: KeySym #
xK_percent :: KeySym #
xK_plusminus :: KeySym #
xK_question :: KeySym #
xK_quotedbl :: KeySym #
xK_quoteleft :: KeySym #
xK_quoteright :: KeySym #
xK_registered :: KeySym #
xK_section :: KeySym #
xK_semicolon :: KeySym #
xK_sterling :: KeySym #
xK_udiaeresis :: KeySym #
xK_underscore :: KeySym #
xK_ydiaeresis :: KeySym #
xyBitmap :: ImageFormat #
xyPixmap :: ImageFormat #
zPixmap :: ImageFormat #
cAP_HEIGHT :: Atom #
cUT_BUFFER0 :: Atom #
cUT_BUFFER1 :: Atom #
cUT_BUFFER2 :: Atom #
cUT_BUFFER3 :: Atom #
cUT_BUFFER4 :: Atom #
cUT_BUFFER5 :: Atom #
cUT_BUFFER6 :: Atom #
cUT_BUFFER7 :: Atom #
fAMILY_NAME :: Atom #
iTALIC_ANGLE :: Atom #
lAST_PREDEFINED :: Atom #
nORM_SPACE :: Atom #
pOINT_SIZE :: Atom #
qUAD_WIDTH :: Atom #
rESOLUTION :: Atom #
rGB_BEST_MAP :: Atom #
rGB_BLUE_MAP :: Atom #
rGB_COLOR_MAP :: Atom #
rGB_DEFAULT_MAP :: Atom #
rGB_GRAY_MAP :: Atom #
rGB_GREEN_MAP :: Atom #
rGB_RED_MAP :: Atom #
sUBSCRIPT_X :: Atom #
sUBSCRIPT_Y :: Atom #
sUPERSCRIPT_X :: Atom #
sUPERSCRIPT_Y :: Atom #
wM_COMMAND :: Atom #
wM_ICON_NAME :: Atom #
wM_ICON_SIZE :: Atom #
wM_NORMAL_HINTS :: Atom #
wM_SIZE_HINTS :: Atom #
wM_ZOOM_HINTS :: Atom #
createColormap :: Display -> Window -> Visual -> ColormapAlloc -> IO Colormap #
freeColormap :: Display -> Colormap -> IO () #
installColormap :: Display -> Colormap -> IO () #
uninstallColormap :: Display -> Colormap -> IO () #
gContextFromGC :: GC -> GContext #
setFunction :: Display -> GC -> GXFunction -> IO () #
setSubwindowMode :: Display -> GC -> SubWindowMode -> IO () #
xC_X_cursor :: Glyph #
xC_bogosity :: Glyph #
xC_bottom_side :: Glyph #
xC_bottom_tee :: Glyph #
xC_box_spiral :: Glyph #
xC_center_ptr :: Glyph #
xC_coffee_mug :: Glyph #
xC_crosshair :: Glyph #
xC_draft_large :: Glyph #
xC_draft_small :: Glyph #
xC_draped_box :: Glyph #
xC_exchange :: Glyph #
xC_gobbler :: Glyph #
xC_iron_cross :: Glyph #
xC_left_ptr :: Glyph #
xC_left_side :: Glyph #
xC_left_tee :: Glyph #
xC_leftbutton :: Glyph #
xC_ll_angle :: Glyph #
xC_lr_angle :: Glyph #
xC_right_ptr :: Glyph #
xC_right_side :: Glyph #
xC_right_tee :: Glyph #
xC_rightbutton :: Glyph #
xC_rtl_logo :: Glyph #
xC_sailboat :: Glyph #
xC_sb_up_arrow :: Glyph #
xC_shuttle :: Glyph #
xC_spraycan :: Glyph #
xC_top_side :: Glyph #
xC_top_tee :: Glyph #
xC_ul_angle :: Glyph #
xC_umbrella :: Glyph #
xC_ur_angle :: Glyph #
allPlanes_aux :: Pixel #
blackPixel :: Display -> ScreenNumber -> Pixel #
closeDisplay :: Display -> IO () #
connectionNumber :: Display -> CInt #
defaultColormap :: Display -> ScreenNumber -> Colormap #
defaultDepth :: Display -> ScreenNumber -> CInt #
defaultGC :: Display -> ScreenNumber -> GC #
defaultRootWindow :: Display -> Window #
defaultScreen :: Display -> ScreenNumber #
defaultScreenOfDisplay :: Display -> Screen #
defaultVisual :: Display -> ScreenNumber -> Visual #
displayCells :: Display -> ScreenNumber -> CInt #
displayHeight :: Display -> ScreenNumber -> CInt #
displayHeightMM :: Display -> ScreenNumber -> CInt #
displayMotionBufferSize :: Display -> CInt #
displayPlanes :: Display -> ScreenNumber -> CInt #
displayString :: Display -> String #
displayWidth :: Display -> ScreenNumber -> CInt #
displayWidthMM :: Display -> ScreenNumber -> CInt #
imageByteOrder :: Display -> CInt #
maxRequestSize :: Display -> CInt #
openDisplay :: String -> IO Display #
protocolRevision :: Display -> CInt #
protocolVersion :: Display -> CInt #
resourceManagerString :: Display -> String #
rootWindow :: Display -> ScreenNumber -> IO Window #
screenCount :: Display -> CInt #
screenOfDisplay :: Display -> ScreenNumber -> Screen #
screenResourceString :: Screen -> String #
serverVendor :: Display -> String #
whitePixel :: Display -> ScreenNumber -> Pixel #
allocaXEvent :: (XEventPtr -> IO a) -> IO a #
allowEvents :: Display -> AllowEvents -> Time -> IO () #
asKeyEvent :: XEventPtr -> XKeyEventPtr #
eventsQueued :: Display -> QueuedMode -> IO CInt #
get_ButtonEvent :: XEventPtr -> IO XButtonEvent #
get_EventType :: XEventPtr -> IO EventType #
get_ExposeEvent :: XEventPtr -> IO XExposeEvent #
get_KeyEvent :: XEventPtr -> IO XKeyEvent #
get_MotionEvent :: XEventPtr -> IO XMotionEvent #
get_Window :: XEventPtr -> IO Window #
putBackEvent :: Display -> XEventPtr -> IO () #
anyPropertyType :: Atom #
changeWindowAttributes :: Display -> Window -> AttributeMask -> Ptr SetWindowAttributes -> IO () #
configureWindow :: Display -> Window -> CULong -> WindowChanges -> IO () #
currentTime :: Time #
eventTable :: [(EventType, String)] #
freeFontSet :: Display -> FontSet -> IO () #
freeStringList :: Ptr CString -> IO () #
getErrorEvent :: XErrorEventPtr -> IO ErrorEvent #
getTextProperty :: Display -> Window -> Atom -> IO TextProperty #
getWindowAttributes :: Display -> Window -> IO WindowAttributes #
iconMaskHintBit :: Int #
iconicState :: Int #
inputHintBit :: Int #
isCursorKey :: KeySym -> Bool #
isFunctionKey :: KeySym -> Bool #
isKeypadKey :: KeySym -> Bool #
isMiscFunctionKey :: KeySym -> Bool #
isModifierKey :: KeySym -> Bool #
isPrivateKeypadKey :: KeySym -> Bool #
mkXErrorHandler :: CXErrorHandler -> IO (FunPtr CXErrorHandler) #
normalState :: Int #
pAspectBit :: Int #
pBaseSizeBit :: Int #
pMaxSizeBit :: Int #
pMinSizeBit :: Int #
pResizeIncBit :: Int #
pWinGravityBit :: Int #
propModeAppend :: CInt #
propModePrepend :: CInt #
propModeReplace :: CInt #
refreshKeyboardMapping :: Event -> IO () #
setConfigureEvent :: XEventPtr -> Window -> Window -> CInt -> CInt -> CInt -> CInt -> CInt -> Window -> Bool -> IO () #
setErrorHandler :: XErrorHandler -> IO () #
setEventType :: XEventPtr -> EventType -> IO () #
stateHintBit :: Int #
unmapWindow :: Display -> Window -> IO () #
urgencyHintBit :: Int #
waIsUnmapped :: CInt #
waIsUnviewable :: CInt #
waIsViewable :: CInt #
wcDrawImageString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> String -> IO () #
wcFreeStringList :: Ptr CWString -> IO () #
wcTextEscapement :: FontSet -> String -> Int32 #
wcTextPropertyToTextList :: Display -> TextProperty -> IO [String] #
withServer :: Display -> IO () -> IO () #
withdrawnState :: Int #
xAllocWMHints :: IO (Ptr WMHints) #
xChangeProperty :: Display -> Window -> Atom -> Atom -> CInt -> CInt -> Ptr CUChar -> CInt -> IO Status #
xConfigureWindow :: Display -> Window -> CULong -> Ptr WindowChanges -> IO CInt #
xCreateFontSet :: Display -> CString -> Ptr (Ptr CString) -> Ptr CInt -> Ptr CString -> IO (Ptr FontSet) #
xGetModifierMapping :: Display -> IO (Ptr ()) #
xGetTextProperty :: Display -> Window -> Ptr TextProperty -> Atom -> IO Status #
xGetWindowAttributes :: Display -> Window -> Ptr WindowAttributes -> IO Status #
xGetWindowProperty :: Display -> Window -> Atom -> CLong -> CLong -> Bool -> Atom -> Ptr Atom -> Ptr CInt -> Ptr CULong -> Ptr CULong -> Ptr (Ptr CUChar) -> IO Status #
xQueryTree :: Display -> Window -> Ptr Window -> Ptr Window -> Ptr (Ptr Window) -> Ptr CInt -> IO Status #
xRefreshKeyboardMapping :: Ptr () -> IO CInt #
xSetErrorHandler :: IO () #
xwcDrawImageString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> CWString -> CInt -> IO () #
xwcDrawString :: Display -> Drawable -> FontSet -> GC -> Position -> Position -> CWString -> CInt -> IO () #
xwcTextPropertyToTextList :: Display -> Ptr TextProperty -> Ptr (Ptr CWString) -> Ptr CInt -> IO CInt #
ascentFromFontStruct :: FontStruct -> Int32 #
fontFromFontStruct :: FontStruct -> Font #
freeFont :: Display -> FontStruct -> IO () #
loadQueryFont :: Display -> String -> IO FontStruct #
textExtents :: FontStruct -> String -> (FontDirection, Int32, Int32, CharStruct) #
textWidth :: FontStruct -> String -> Int32 #
createImage :: Display -> Visual -> CInt -> ImageFormat -> CInt -> Ptr CChar -> Dimension -> Dimension -> CInt -> CInt -> IO Image #
destroyImage :: Image -> IO () #
getImage :: Display -> Drawable -> CInt -> CInt -> CUInt -> CUInt -> CULong -> ImageFormat -> IO Image #
putImage :: Display -> Drawable -> GC -> Image -> Position -> Position -> Position -> Position -> Dimension -> Dimension -> IO () #
activateScreenSaver :: Display -> IO () #
allocaSetWindowAttributes :: (Ptr SetWindowAttributes -> IO a) -> IO a #
autoRepeatOff :: Display -> IO () #
autoRepeatOn :: Display -> IO () #
bitmapBitOrder :: Display -> ByteOrder #
bitmapUnit :: Display -> CInt #
copyArea :: Display -> Drawable -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> IO () #
copyPlane :: Display -> Drawable -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> Pixel -> IO () #
createPixmapCursor :: Display -> Pixmap -> Pixmap -> Color -> Color -> Dimension -> Dimension -> IO Cursor #
displayKeycodes :: Display -> (CInt, CInt) #
displayName :: String -> String #
drawArc :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Angle -> Angle -> IO () #
drawPoints :: Display -> Drawable -> GC -> [Point] -> CoordinateMode -> IO () #
drawRectangle :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> IO () #
fetchBytes :: Display -> IO String #
fillArc :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> Angle -> Angle -> IO () #
fillPolygon :: Display -> Drawable -> GC -> [Point] -> PolygonShape -> CoordinateMode -> IO () #
fillRectangle :: Display -> Drawable -> GC -> Position -> Position -> Dimension -> Dimension -> IO () #
forceScreenSaver :: Display -> ScreenSaverMode -> IO () #
freeCursor :: Display -> Font -> IO () #
freePixmap :: Display -> Pixmap -> IO () #
geometry :: Display -> CInt -> String -> String -> Dimension -> Dimension -> Dimension -> CInt -> CInt -> IO (CInt, Position, Position, Dimension, Dimension) #
getGeometry :: Display -> Drawable -> IO (Window, Position, Position, Dimension, Dimension, Dimension, CInt) #
getScreenSaver :: Display -> IO (CInt, CInt, PreferBlankingMode, AllowExposuresMode) #
getVisualInfo :: Display -> VisualInfoMask -> VisualInfo -> IO [VisualInfo] #
grabButton :: Display -> Button -> ButtonMask -> Window -> Bool -> EventMask -> GrabMode -> GrabMode -> Window -> Cursor -> IO () #
grabKeyboard :: Display -> Window -> Bool -> GrabMode -> GrabMode -> Time -> IO GrabStatus #
grabPointer :: Display -> Window -> Bool -> EventMask -> GrabMode -> GrabMode -> Window -> Cursor -> Time -> IO GrabStatus #
grabServer :: Display -> IO () #
initThreads :: IO Status #
keysymToString :: KeySym -> String #
lastKnownRequestProcessed :: Display -> IO CInt #
lockDisplay :: Display -> IO () #
lookupKeysym :: XKeyEventPtr -> CInt -> IO KeySym #
lookupString :: XKeyEventPtr -> IO (Maybe KeySym, String) #
matchVisualInfo :: Display -> ScreenNumber -> CInt -> CInt -> IO (Maybe VisualInfo) #
queryBestSize :: Display -> QueryBestSizeClass -> Drawable -> Dimension -> Dimension -> IO (Dimension, Dimension) #
readBitmapFile :: Display -> Drawable -> String -> IO (Either String (Dimension, Dimension, Pixmap, Maybe CInt, Maybe CInt)) #
resetScreenSaver :: Display -> IO () #
rmInitialize :: IO () #
rotateBuffers :: Display -> CInt -> IO () #
setCloseDownMode :: Display -> CloseDownMode -> IO () #
setDefaultErrorHandler :: IO () #
setLocaleModifiers :: String -> IO String #
setScreenSaver :: Display -> CInt -> CInt -> PreferBlankingMode -> AllowExposuresMode -> IO () #
set_background_pixel :: Ptr SetWindowAttributes -> Pixel -> IO () #
set_background_pixmap :: Ptr SetWindowAttributes -> Pixmap -> IO () #
set_backing_pixel :: Ptr SetWindowAttributes -> Pixel -> IO () #
set_backing_planes :: Ptr SetWindowAttributes -> Pixel -> IO () #
set_backing_store :: Ptr SetWindowAttributes -> BackingStore -> IO () #
set_bit_gravity :: Ptr SetWindowAttributes -> BitGravity -> IO () #
set_border_pixel :: Ptr SetWindowAttributes -> Pixel -> IO () #
set_border_pixmap :: Ptr SetWindowAttributes -> Pixmap -> IO () #
set_colormap :: Ptr SetWindowAttributes -> Colormap -> IO () #
set_cursor :: Ptr SetWindowAttributes -> Cursor -> IO () #
set_do_not_propagate_mask :: Ptr SetWindowAttributes -> EventMask -> IO () #
set_event_mask :: Ptr SetWindowAttributes -> EventMask -> IO () #
set_override_redirect :: Ptr SetWindowAttributes -> Bool -> IO () #
set_save_under :: Ptr SetWindowAttributes -> Bool -> IO () #
set_win_gravity :: Ptr SetWindowAttributes -> WindowGravity -> IO () #
storeBytes :: Display -> String -> IO () #
stringToKeysym :: String -> KeySym #
supportsLocale :: IO Bool #
undefineCursor :: Display -> Window -> IO () #
ungrabButton :: Display -> Button -> ButtonMask -> Window -> IO () #
ungrabKeyboard :: Display -> Time -> IO () #
ungrabPointer :: Display -> Time -> IO () #
ungrabServer :: Display -> IO () #
unlockDisplay :: Display -> IO () #
visualIDFromVisual :: Visual -> IO VisualID #
warpPointer :: Display -> Window -> Window -> Position -> Position -> Dimension -> Dimension -> Position -> Position -> IO () #
createRegion :: IO Region #
emptyRegion :: Region -> IO Bool #
rectInRegion :: Region -> Rectangle -> IO RectInRegionResult #
blackPixelOfScreen :: Screen -> Pixel #
cellsOfScreen :: Screen -> CInt #
defaultDepthOfScreen :: Screen -> CInt #
defaultGCOfScreen :: Screen -> GC #
defaultVisualOfScreen :: Screen -> Visual #
displayOfScreen :: Screen -> Display #
doesBackingStore :: Screen -> Bool #
doesSaveUnders :: Screen -> Bool #
eventMaskOfScreen :: Screen -> EventMask #
heightMMOfScreen :: Screen -> Dimension #
heightOfScreen :: Screen -> Dimension #
maxCmapsOfScreen :: Screen -> CInt #
minCmapsOfScreen :: Screen -> CInt #
planesOfScreen :: Screen -> CInt #
rootWindowOfScreen :: Screen -> Window #
whitePixelOfScreen :: Screen -> Pixel #
widthMMOfScreen :: Screen -> Dimension #
widthOfScreen :: Screen -> Dimension #
addToSaveSet :: Display -> Window -> IO () #
changeSaveSet :: Display -> Window -> ChangeSaveSetMode -> IO () #
circulateSubwindows :: Display -> Window -> CirculationDirection -> IO () #
circulateSubwindowsDown :: Display -> Window -> IO () #
circulateSubwindowsUp :: Display -> Window -> IO () #
clearWindow :: Display -> Window -> IO () #
createSimpleWindow :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> CInt -> Pixel -> Pixel -> IO Window #
createWindow :: Display -> Window -> Position -> Position -> Dimension -> Dimension -> CInt -> CInt -> WindowClass -> Visual -> AttributeMask -> Ptr SetWindowAttributes -> IO Window #
destroySubwindows :: Display -> Window -> IO () #
destroyWindow :: Display -> Window -> IO () #
iconifyWindow :: Display -> Window -> ScreenNumber -> IO () #
lowerWindow :: Display -> Window -> IO () #
mapSubwindows :: Display -> Window -> IO () #
raiseWindow :: Display -> Window -> IO () #
removeFromSaveSet :: Display -> Window -> IO () #
restackWindows :: Display -> [Window] -> IO () #
translateCoordinates :: Display -> Window -> Window -> Position -> Position -> IO (Bool, Position, Position, Window) #
unmapSubwindows :: Display -> Window -> IO () #
withdrawWindow :: Display -> Window -> ScreenNumber -> IO () #
atom_WM_PROTOCOLS :: X Atom #
atom_WM_STATE :: X Atom #
atom_WM_TAKE_FOCUS :: X Atom #
binFileName :: Directories -> FilePath #
fromMessage :: Message m => SomeMessage -> Maybe m #
getXMonadDataDir :: X String #
getXMonadDir :: X String #
installSignalHandlers :: MonadIO m => m () #
runOnWorkspaces :: (WindowSpace -> X WindowSpace) -> X () #
stateFileName :: Directories -> FilePath #
uninstallSignalHandlers :: MonadIO m => m () #
userCodeDef :: a -> X a -> X a #
withDisplay :: (Display -> X a) -> X a #
withWindowAttributes :: Display -> Window -> (WindowAttributes -> X ()) -> X () #
withWindowSet :: (WindowSet -> X a) -> X a #
mirrorRect :: Rectangle -> Rectangle #
splitHorizontally :: Int -> Rectangle -> [Rectangle] #
splitVertically :: Int -> Rectangle -> [Rectangle] #
launch :: forall (l :: Type -> Type). (LayoutClass l Window, Read (l Window)) => XConfig l -> Directories -> IO () #
composeAll :: Monoid m => [m] -> m #
doFloat :: ManageHook #
doIgnore :: ManageHook #
doShift :: WorkspaceId -> ManageHook #
stringProperty :: String -> Query String #
applyMaxSizeHint :: D -> D -> D #
applyResizeIncHint :: D -> D -> D #
applySizeHints' :: SizeHints -> D -> D #
applySizeHintsContents :: Integral a => SizeHints -> (a, a) -> D #
broadcastMessage :: Message a => a -> X () #
cacheNumlockMask :: X () #
clearEvents :: EventMask -> X () #
containedIn :: Rectangle -> Rectangle -> Bool #
extraModifiers :: X [KeyMask] #
floatLocation :: Window -> X (ScreenId, RationalRect) #
getCleanedScreenInfo :: MonadIO m => Display -> m [Rectangle] #
killWindow :: Window -> X () #
modifyWindowSet :: (WindowSet -> WindowSet) -> X () #
mouseMoveWindow :: Window -> X () #
mouseResizeWindow :: Window -> X () #
nubScreens :: [Rectangle] -> [Rectangle] #
pointScreen :: Position -> Position -> X (Maybe (Screen WorkspaceId (Layout Window) Window ScreenId ScreenDetail)) #
readStateFile :: forall (l :: Type -> Type). (LayoutClass l Window, Read (l Window)) => XConfig l -> X (Maybe XState) #
scaleRationalRect :: Rectangle -> RationalRect -> Rectangle #
screenWorkspace :: ScreenId -> X (Maybe WorkspaceId) #
sendMessage :: Message a => a -> X () #
sendMessageWithNoRefresh :: Message a => a -> WindowSpace -> X () #
setButtonGrab :: Bool -> Window -> X () #
setInitialProperties :: Window -> X () #
setTopFocus :: X () #
setWMState :: Window -> Int -> X () #
tileWindow :: Window -> Rectangle -> X () #
updateLayout :: WorkspaceId -> Maybe (Layout Window) -> X () #
windowBracket :: (a -> Bool) -> X a -> X a #
windowBracket_ :: X Any -> X () #
withFocused :: (Window -> X ()) -> X () #
withUnfocused :: (Window -> X ()) -> X () #
writeStateToFile :: X () #
type AllowEvents = CInt #
type AttributeMask = Mask #
type BackingStore = CInt #
type BitGravity = CInt #
type ButtonMask = Modifier #
type ChangeSaveSetMode = CInt #
type CirculationDirection = CInt #
type CloseDownMode = CInt #
type ColormapAlloc = CInt #
type ColormapNotification = CInt #
type Connection = Word16 #
type CoordinateMode = CInt #
type FontDirection = CInt #
type GXFunction = CInt #
type GrabStatus = CInt #
type ImageFormat = CInt #
type MappingRequest = CInt #
type NotifyDetail = CInt #
type NotifyMode = CInt #
type PolygonShape = CInt #
type PropertyNotification = CInt #
type QueryBestSizeClass = CInt #
type Reflection = Word16 #
type SubWindowMode = CInt #
type SubpixelOrder = Word16 #
type Visibility = CInt #
type WindowClass = CInt #
type WindowGravity = CInt #
type XRRModeFlags = Word64 #
type QueuedMode = CInt #
Instances
Data XEvent | |
Defined in Graphics.X11.Xlib.Event Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> XEvent -> c XEvent # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c XEvent # toConstr :: XEvent -> Constr # dataTypeOf :: XEvent -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c XEvent) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c XEvent) # gmapT :: (forall b. Data b => b -> b) -> XEvent -> XEvent # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> XEvent -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> XEvent -> r # gmapQ :: (forall d. Data d => d -> u) -> XEvent -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> XEvent -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> XEvent -> m XEvent # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> XEvent -> m XEvent # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> XEvent -> m XEvent # | |
Show XEvent | |
Eq XEvent | |
Ord XEvent | |
type XKeyEventPtr = Ptr XKeyEvent #
type XMappingEvent = (MappingRequest, KeyCode, CInt) #
type CXErrorHandler = Display -> XErrorEventPtr -> IO CInt #
data ErrorEvent #
Constructors
ErrorEvent | |
Fields
|
Constructors
Constructors
SizeHints | |
Fields
|
Instances
Storable SizeHints | |
Defined in Graphics.X11.Xlib.Extras |
data TextProperty #
Constructors
TextProperty | |
Instances
Storable TextProperty | |
Defined in Graphics.X11.Xlib.Extras Methods sizeOf :: TextProperty -> Int # alignment :: TextProperty -> Int # peekElemOff :: Ptr TextProperty -> Int -> IO TextProperty # pokeElemOff :: Ptr TextProperty -> Int -> TextProperty -> IO () # peekByteOff :: Ptr b -> Int -> IO TextProperty # pokeByteOff :: Ptr b -> Int -> TextProperty -> IO () # peek :: Ptr TextProperty -> IO TextProperty # poke :: Ptr TextProperty -> TextProperty -> IO () # |
Constructors
WMHints | |
Fields
|
Instances
data WindowAttributes #
Constructors
WindowAttributes | |
Fields
|
Instances
Storable WindowAttributes | |
Defined in Graphics.X11.Xlib.Extras Methods sizeOf :: WindowAttributes -> Int # alignment :: WindowAttributes -> Int # peekElemOff :: Ptr WindowAttributes -> Int -> IO WindowAttributes # pokeElemOff :: Ptr WindowAttributes -> Int -> WindowAttributes -> IO () # peekByteOff :: Ptr b -> Int -> IO WindowAttributes # pokeByteOff :: Ptr b -> Int -> WindowAttributes -> IO () # peek :: Ptr WindowAttributes -> IO WindowAttributes # poke :: Ptr WindowAttributes -> WindowAttributes -> IO () # |
data WindowChanges #
Constructors
WindowChanges | |
Fields
|
Instances
Storable WindowChanges | |
Defined in Graphics.X11.Xlib.Extras Methods sizeOf :: WindowChanges -> Int # alignment :: WindowChanges -> Int # peekElemOff :: Ptr WindowChanges -> Int -> IO WindowChanges # pokeElemOff :: Ptr WindowChanges -> Int -> WindowChanges -> IO () # peekByteOff :: Ptr b -> Int -> IO WindowChanges # pokeByteOff :: Ptr b -> Int -> WindowChanges -> IO () # peek :: Ptr WindowChanges -> IO WindowChanges # poke :: Ptr WindowChanges -> WindowChanges -> IO () # |
type XErrorEventPtr = Ptr () #
type XErrorHandler = Display -> XErrorEventPtr -> IO () #
data FontStruct #
Instances
Data FontStruct | |
Defined in Graphics.X11.Xlib.Font Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FontStruct -> c FontStruct # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FontStruct # toConstr :: FontStruct -> Constr # dataTypeOf :: FontStruct -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FontStruct) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FontStruct) # gmapT :: (forall b. Data b => b -> b) -> FontStruct -> FontStruct # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FontStruct -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FontStruct -> r # gmapQ :: (forall d. Data d => d -> u) -> FontStruct -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FontStruct -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FontStruct -> m FontStruct # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FontStruct -> m FontStruct # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FontStruct -> m FontStruct # | |
Show FontStruct | |
Defined in Graphics.X11.Xlib.Font Methods showsPrec :: Int -> FontStruct -> ShowS # show :: FontStruct -> String # showList :: [FontStruct] -> ShowS # | |
Eq FontStruct | |
Defined in Graphics.X11.Xlib.Font | |
Ord FontStruct | |
Defined in Graphics.X11.Xlib.Font Methods compare :: FontStruct -> FontStruct -> Ordering # (<) :: FontStruct -> FontStruct -> Bool # (<=) :: FontStruct -> FontStruct -> Bool # (>) :: FontStruct -> FontStruct -> Bool # (>=) :: FontStruct -> FontStruct -> Bool # max :: FontStruct -> FontStruct -> FontStruct # min :: FontStruct -> FontStruct -> FontStruct # |
type AllowExposuresMode = CInt #
type PreferBlankingMode = CInt #
type ScreenSaverMode = CInt #
type VisualInfoMask = CLong #
type RectInRegionResult = CInt #
Instances
Data Region | |
Defined in Graphics.X11.Xlib.Region Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Region -> c Region # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Region # toConstr :: Region -> Constr # dataTypeOf :: Region -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Region) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Region) # gmapT :: (forall b. Data b => b -> b) -> Region -> Region # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Region -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Region -> r # gmapQ :: (forall d. Data d => d -> u) -> Region -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Region -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Region -> m Region # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Region -> m Region # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Region -> m Region # | |
Show Region | |
Eq Region | |
Ord Region | |
Constructors
Arc | |
Fields
|
Constructors
Color | |
Fields
|
Instances
Data Color | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Color -> c Color # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Color # dataTypeOf :: Color -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Color) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Color) # gmapT :: (forall b. Data b => b -> b) -> Color -> Color # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Color -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Color -> r # gmapQ :: (forall d. Data d => d -> u) -> Color -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Color -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Color -> m Color # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Color -> m Color # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Color -> m Color # | |
Storable Color | |
Show Color | |
Eq Color | |
Instances
Data Display | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Display -> c Display # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Display # toConstr :: Display -> Constr # dataTypeOf :: Display -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Display) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Display) # gmapT :: (forall b. Data b => b -> b) -> Display -> Display # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Display -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Display -> r # gmapQ :: (forall d. Data d => d -> u) -> Display -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Display -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Display -> m Display # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Display -> m Display # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Display -> m Display # | |
Show Display | |
Eq Display | |
Ord Display | |
Defined in Graphics.X11.Xlib.Types |
Instances
Data GC | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GC -> c GC # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GC # dataTypeOf :: GC -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c GC) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GC) # gmapT :: (forall b. Data b => b -> b) -> GC -> GC # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GC -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GC -> r # gmapQ :: (forall d. Data d => d -> u) -> GC -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> GC -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GC -> m GC # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GC -> m GC # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GC -> m GC # | |
Show GC | |
Eq GC | |
Ord GC | |
Instances
Data Image | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Image -> c Image # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Image # dataTypeOf :: Image -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Image) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Image) # gmapT :: (forall b. Data b => b -> b) -> Image -> Image # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Image -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Image -> r # gmapQ :: (forall d. Data d => d -> u) -> Image -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Image -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Image -> m Image # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Image -> m Image # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Image -> m Image # | |
Show Image | |
Eq Image | |
Ord Image | |
Instances
Data Point | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Point -> c Point # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Point # dataTypeOf :: Point -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Point) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Point) # gmapT :: (forall b. Data b => b -> b) -> Point -> Point # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Point -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Point -> r # gmapQ :: (forall d. Data d => d -> u) -> Point -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Point -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Point -> m Point # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Point -> m Point # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Point -> m Point # | |
Storable Point | |
Show Point | |
Eq Point | |
Constructors
Rectangle | |
Fields
|
Instances
Data Rectangle | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rectangle -> c Rectangle # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Rectangle # toConstr :: Rectangle -> Constr # dataTypeOf :: Rectangle -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Rectangle) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Rectangle) # gmapT :: (forall b. Data b => b -> b) -> Rectangle -> Rectangle # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rectangle -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rectangle -> r # gmapQ :: (forall d. Data d => d -> u) -> Rectangle -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rectangle -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rectangle -> m Rectangle # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rectangle -> m Rectangle # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rectangle -> m Rectangle # | |
Storable Rectangle | |
Defined in Graphics.X11.Xlib.Types | |
Read Rectangle | |
Show Rectangle | |
Eq Rectangle | |
PPrint Rectangle Source # | |
Instances
Data Screen | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Screen -> c Screen # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Screen # toConstr :: Screen -> Constr # dataTypeOf :: Screen -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Screen) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Screen) # gmapT :: (forall b. Data b => b -> b) -> Screen -> Screen # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Screen -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Screen -> r # gmapQ :: (forall d. Data d => d -> u) -> Screen -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Screen -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Screen -> m Screen # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Screen -> m Screen # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Screen -> m Screen # | |
Show Screen | |
Eq Screen | |
Ord Screen | |
PPrint Screen Source # | |
type ScreenNumber = Word32 #
Constructors
Segment | |
Instances
Data Segment | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Segment -> c Segment # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Segment # toConstr :: Segment -> Constr # dataTypeOf :: Segment -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Segment) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Segment) # gmapT :: (forall b. Data b => b -> b) -> Segment -> Segment # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Segment -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Segment -> r # gmapQ :: (forall d. Data d => d -> u) -> Segment -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Segment -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Segment -> m Segment # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Segment -> m Segment # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Segment -> m Segment # | |
Storable Segment | |
Show Segment | |
Eq Segment | |
data SetWindowAttributes #
Instances
Instances
Data Visual | |
Defined in Graphics.X11.Xlib.Types Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Visual -> c Visual # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Visual # toConstr :: Visual -> Constr # dataTypeOf :: Visual -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Visual) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Visual) # gmapT :: (forall b. Data b => b -> b) -> Visual -> Visual # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Visual -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Visual -> r # gmapQ :: (forall d. Data d => d -> u) -> Visual -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Visual -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Visual -> m Visual # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Visual -> m Visual # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Visual -> m Visual # | |
Show Visual | |
Eq Visual | |
Ord Visual | |
data VisualInfo #
Constructors
VisualInfo | |
Fields |
Instances
Storable VisualInfo | |
Defined in Graphics.X11.Xlib.Types Methods sizeOf :: VisualInfo -> Int # alignment :: VisualInfo -> Int # peekElemOff :: Ptr VisualInfo -> Int -> IO VisualInfo # pokeElemOff :: Ptr VisualInfo -> Int -> VisualInfo -> IO () # peekByteOff :: Ptr b -> Int -> IO VisualInfo # pokeByteOff :: Ptr b -> Int -> VisualInfo -> IO () # peek :: Ptr VisualInfo -> IO VisualInfo # poke :: Ptr VisualInfo -> VisualInfo -> IO () # | |
Show VisualInfo | |
Defined in Graphics.X11.Xlib.Types Methods showsPrec :: Int -> VisualInfo -> ShowS # show :: VisualInfo -> String # showList :: [VisualInfo] -> ShowS # | |
Default VisualInfo | |
Defined in Graphics.X11.Xlib.Types Methods def :: VisualInfo # | |
Eq VisualInfo | |
Defined in Graphics.X11.Xlib.Types |
Minimal complete definition
Nothing
Instances
data ConfExtension #
Constructors
Typeable a => ConfExtension a |
type Directories = Directories' FilePath #
data Directories' a #
Constructors
Directories | |
Instances
class Typeable a => ExtensionClass a where #
Minimal complete definition
Instances
ExtensionClass KeymapTable Source # | |
Defined in XMonad.Actions.KeyRemap | |
ExtensionClass Navigation2DConfig Source # | |
Defined in XMonad.Actions.Navigation2D | |
ExtensionClass PrefixArgument Source # | |
Defined in XMonad.Actions.Prefix | |
ExtensionClass Spawner Source # | |
Defined in XMonad.Actions.SpawnOn | |
ExtensionClass MasterHistory Source # | |
Defined in XMonad.Actions.SwapPromote | |
ExtensionClass FocusLock Source # | |
Defined in XMonad.Hooks.Focus | |
ExtensionClass RecentsMap Source # | |
Defined in XMonad.Hooks.RefocusLast | |
ExtensionClass RefocusLastToggle Source # | |
Defined in XMonad.Hooks.RefocusLast | |
ExtensionClass ActionQueue Source # | |
Defined in XMonad.Util.ActionQueue | |
ExtensionClass Minimized Source # | |
Defined in XMonad.Util.Minimize | |
ExtensionClass PositionStore Source # | |
Defined in XMonad.Util.PositionStore |
Constructors
(LayoutClass l a, Read (l a)) => Layout (l a) |
Instances
LayoutClass Layout Window | |
Defined in XMonad.Core Methods runLayout :: Workspace WorkspaceId (Layout Window) Window -> Rectangle -> X ([(Window, Rectangle)], Maybe (Layout Window)) # doLayout :: Layout Window -> Rectangle -> Stack Window -> X ([(Window, Rectangle)], Maybe (Layout Window)) # pureLayout :: Layout Window -> Rectangle -> Stack Window -> [(Window, Rectangle)] # emptyLayout :: Layout Window -> Rectangle -> X ([(Window, Rectangle)], Maybe (Layout Window)) # handleMessage :: Layout Window -> SomeMessage -> X (Maybe (Layout Window)) # pureMessage :: Layout Window -> SomeMessage -> Maybe (Layout Window) # description :: Layout Window -> String # | |
Show (Layout a) | |
PPrint (Layout a) Source # | |
class (Show (layout a), Typeable layout) => LayoutClass (layout :: Type -> Type) a where #
Minimal complete definition
Nothing
Methods
runLayout :: Workspace WorkspaceId (layout a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (layout a)) #
doLayout :: layout a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (layout a)) #
pureLayout :: layout a -> Rectangle -> Stack a -> [(a, Rectangle)] #
emptyLayout :: layout a -> Rectangle -> X ([(a, Rectangle)], Maybe (layout a)) #
handleMessage :: layout a -> SomeMessage -> X (Maybe (layout a)) #
pureMessage :: layout a -> SomeMessage -> Maybe (layout a) #
description :: layout a -> String #
Instances
data LayoutMessages #
Constructors
Hide | |
ReleaseResources |
Instances
Eq LayoutMessages | |
Defined in XMonad.Core Methods (==) :: LayoutMessages -> LayoutMessages -> Bool # (/=) :: LayoutMessages -> LayoutMessages -> Bool # | |
Message LayoutMessages | |
Defined in XMonad.Core |
type ManageHook = Query (Endo WindowSet) #
class Typeable a => Message a #
Instances
newtype ScreenDetail #
Constructors
SD | |
Fields |
Instances
Read ScreenDetail | |
Defined in XMonad.Core Methods readsPrec :: Int -> ReadS ScreenDetail # readList :: ReadS [ScreenDetail] # | |
Show ScreenDetail | |
Defined in XMonad.Core Methods showsPrec :: Int -> ScreenDetail -> ShowS # show :: ScreenDetail -> String # showList :: [ScreenDetail] -> ShowS # | |
Eq ScreenDetail | |
Defined in XMonad.Core | |
PPrint ScreenDetail Source # | |
Defined in XMonad.Config.Dmwit |
Instances
Enum ScreenId | |
Num ScreenId | |
Read ScreenId | |
Integral ScreenId | |
Defined in XMonad.Core | |
Real ScreenId | |
Defined in XMonad.Core Methods toRational :: ScreenId -> Rational # | |
Show ScreenId | |
Eq ScreenId | |
Ord ScreenId | |
Defined in XMonad.Core | |
PPrint ScreenId Source # | |
data SomeMessage #
Constructors
Message a => SomeMessage a |
data StateExtension #
Constructors
ExtensionClass a => StateExtension a | |
(Read a, Show a, ExtensionClass a) => PersistentExtension a |
type WindowSet = StackSet WorkspaceId (Layout Window) Window ScreenId ScreenDetail #
type WindowSpace = Workspace WorkspaceId (Layout Window) Window #
type WorkspaceId = String #
Instances
MonadFail X | |
Defined in XMonad.Core | |
MonadIO X | |
Defined in XMonad.Core | |
Applicative X | |
Functor X | |
Monad X | |
XLike X Source # | |
MonadReader XConf X | |
MonadState XState X | |
Monoid a => Monoid (X a) | |
Semigroup a => Semigroup (X a) | |
Default a => Default (X a) | |
Defined in XMonad.Core | |
HasName (X ()) Source # | |
UrgencyHook (Window -> X ()) Source # | |
Defined in XMonad.Hooks.UrgencyHook | |
HasName (X (), String) Source # | |
HasName (X (), [String]) Source # | |
Constructors
XConf | |
Fields
|
Instances
data XConfig (l :: Type -> Type) #
Constructors
XConfig !String !String !String !(l Window) !ManageHook !(Event -> X All) ![String] !KeyMask !(XConfig Layout -> Map (ButtonMask, KeySym) (X ())) !(XConfig Layout -> Map (ButtonMask, Button) (Window -> X ())) !Dimension !(X ()) !(X ()) !Bool !Bool !EventMask !EventMask !([String] -> XConfig Layout -> IO (XConfig Layout)) !(Map TypeRep ConfExtension) |
Constructors
XState | |
Instances
data ChangeLayout #
Constructors
FirstLayout | |
NextLayout |
Instances
Show ChangeLayout | |
Defined in XMonad.Layout Methods showsPrec :: Int -> ChangeLayout -> ShowS # show :: ChangeLayout -> String # showList :: [ChangeLayout] -> ShowS # | |
Eq ChangeLayout | |
Defined in XMonad.Layout | |
Message ChangeLayout | |
Defined in XMonad.Layout |
data Choose (l :: Type -> Type) (r :: Type -> Type) a #
Instances
(LayoutClass l a, LayoutClass r a) => LayoutClass (Choose l r) a | |
Defined in XMonad.Layout Methods runLayout :: Workspace WorkspaceId (Choose l r a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (Choose l r a)) # doLayout :: Choose l r a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (Choose l r a)) # pureLayout :: Choose l r a -> Rectangle -> Stack a -> [(a, Rectangle)] # emptyLayout :: Choose l r a -> Rectangle -> X ([(a, Rectangle)], Maybe (Choose l r a)) # handleMessage :: Choose l r a -> SomeMessage -> X (Maybe (Choose l r a)) # pureMessage :: Choose l r a -> SomeMessage -> Maybe (Choose l r a) # description :: Choose l r a -> String # | |
(Read (l a), Read (r a)) => Read (Choose l r a) | |
(Show (l a), Show (r a)) => Show (Choose l r a) | |
Constructors
Full |
Instances
LayoutClass Full a | |
Defined in XMonad.Layout Methods runLayout :: Workspace WorkspaceId (Full a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (Full a)) # doLayout :: Full a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (Full a)) # pureLayout :: Full a -> Rectangle -> Stack a -> [(a, Rectangle)] # emptyLayout :: Full a -> Rectangle -> X ([(a, Rectangle)], Maybe (Full a)) # handleMessage :: Full a -> SomeMessage -> X (Maybe (Full a)) # pureMessage :: Full a -> SomeMessage -> Maybe (Full a) # description :: Full a -> String # | |
Read (Full a) | |
Show (Full a) | |
newtype IncMasterN #
Constructors
IncMasterN Int |
Instances
Show IncMasterN Source # | |
Defined in XMonad.Util.NamedActions Methods showsPrec :: Int -> IncMasterN -> ShowS # show :: IncMasterN -> String # showList :: [IncMasterN] -> ShowS # | |
Message IncMasterN | |
Defined in XMonad.Layout |
newtype JumpToLayout #
Constructors
JumpToLayout String |
Instances
Message JumpToLayout | |
Defined in XMonad.Layout |
newtype Mirror (l :: Type -> Type) a #
Constructors
Mirror (l a) |
Instances
LayoutClass l a => LayoutClass (Mirror l) a | |
Defined in XMonad.Layout Methods runLayout :: Workspace WorkspaceId (Mirror l a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (Mirror l a)) # doLayout :: Mirror l a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (Mirror l a)) # pureLayout :: Mirror l a -> Rectangle -> Stack a -> [(a, Rectangle)] # emptyLayout :: Mirror l a -> Rectangle -> X ([(a, Rectangle)], Maybe (Mirror l a)) # handleMessage :: Mirror l a -> SomeMessage -> X (Maybe (Mirror l a)) # pureMessage :: Mirror l a -> SomeMessage -> Maybe (Mirror l a) # description :: Mirror l a -> String # | |
Read (l a) => Read (Mirror l a) | |
Show (l a) => Show (Mirror l a) | |
Constructors
Tall | |
Fields
|
Instances
LayoutClass Tall a | |
Defined in XMonad.Layout Methods runLayout :: Workspace WorkspaceId (Tall a) a -> Rectangle -> X ([(a, Rectangle)], Maybe (Tall a)) # doLayout :: Tall a -> Rectangle -> Stack a -> X ([(a, Rectangle)], Maybe (Tall a)) # pureLayout :: Tall a -> Rectangle -> Stack a -> [(a, Rectangle)] # emptyLayout :: Tall a -> Rectangle -> X ([(a, Rectangle)], Maybe (Tall a)) # handleMessage :: Tall a -> SomeMessage -> X (Maybe (Tall a)) # pureMessage :: Tall a -> SomeMessage -> Maybe (Tall a) # description :: Tall a -> String # | |
Read (Tall a) | |
Show (Tall a) | |
Constructors
StateFile | |
Fields
|
(Almost) everything you know and love from the Haskell Prelude is
available for use in your config file. Note that >>
has been overriden, so
if you want to create do-blocks for normal monads, you'll need some let
statements or a separate module. (See the Troubleshooting section.)
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of seq a b
is bottom if a
is bottom, and
otherwise equal to b
. In other words, it evaluates the first
argument a
to weak head normal form (WHNF). seq
is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b
does
not guarantee that a
will be evaluated before b
.
The only guarantee given by seq
is that the both a
and b
will be evaluated before seq
returns a value.
In particular, this means that b
may be evaluated before
a
. If you need to guarantee a specific order of evaluation,
you must use the function pseq
from the "parallel" package.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>
filter odd [1, 2, 3]
[1,3]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
>>>
zip [1, 2] ['a', 'b']
[(1, 'a'), (2, 'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>
zip [1] ['a', 'b']
[(1, 'a')]>>>
zip [1, 2] ['a']
[(1, 'a')]>>>
zip [] [1..]
[]>>>
zip [1..] []
[]
zip
is right-lazy:
>>>
zip [] _|_
[]>>>
zip _|_ []
_|_
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
print :: Show a => a -> IO () #
The print
function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show
; print
converts values to strings for output using the show
operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map
f xs
is the list obtained by applying f
to
each element of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>
map (+1) [1, 2, 3]
[2,3,4]
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
Note that (
is levity-polymorphic in its result type, so that
$
)foo
where $
Truefoo :: Bool -> Int#
is well-typed.
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
The Bounded
class is used to name the upper and lower limits of a
type. Ord
is not a superclass of Bounded
since types that are not
totally ordered may also have upper and lower bounds.
The Bounded
class may be derived for any enumeration type;
minBound
is the first constructor listed in the data
declaration
and maxBound
is the last.
Bounded
may also be derived for single-constructor datatypes whose
constituent types are in Bounded
.
Instances
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ
adds 1.
the predecessor of a value. For numeric types, pred
subtracts 1.
Convert from an Int
.
Convert to an Int
.
It is implementation-dependent what fromEnum
returns when
applied to a value that is too large to fit in an Int
.
Used in Haskell's translation of [n..]
with [n..] = enumFrom n
,
a possible implementation being enumFrom n = n : enumFrom (succ n)
.
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n'
, a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n')
,
worker s v = v : worker s (s v)
, x = fromEnum n' - fromEnum n
and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] #
Used in Haskell's translation of [n..m]
with
[n..m] = enumFromTo n m
, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = []
.
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] #
Used in Haskell's translation of [n,n'..m]
with
[n,n'..m] = enumFromThenTo n n' m
, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m
,
x = fromEnum n' - fromEnum n
, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
The Haskell Report defines no laws for Eq
. However, ==
is customarily
expected to implement an equivalence relationship where two values comparing
equal are indistinguishable by "public" functions, with a "public" function
being one not allowing to see implementation details. For example, for a
type representing non-normalised natural numbers modulo 100, a "public"
function doesn't make the difference between 1 and 201. It is expected to
have the following properties:
Instances
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating
. However, (
, +
)(
and *
)exp
are customarily expected to define an exponential field and have
the following properties:
exp (a + b)
=exp a * exp b
exp (fromInteger 0)
=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional
. However, (
and
+
)(
are customarily expected to define a division ring and have the
following properties:*
)
recip
gives the multiplicative inversex * recip x
=recip x * x
=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional
implement a field. However, all instances in base
do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational
(that is
).
A floating literal stands for an application of Ratio
Integer
fromRational
to a value of type Rational
, so such literals have type
(
.Fractional
a) => a
Instances
Fractional CDouble | |
Fractional CFloat | |
Fractional NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (/) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # recip :: NominalDiffTime -> NominalDiffTime # fromRational :: Rational -> NominalDiffTime # | |
RealFloat a => Fractional (Complex a) | Since: base-2.1 |
Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral
. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div
/mod
and quot
/rem
pairs, given
suitable Euclidean functions f
and g
:
x
=y * quot x y + rem x y
withrem x y
=fromInteger 0
org (rem x y)
<g y
x
=y * div x y + mod x y
withmod x y
=fromInteger 0
orf (mod x y)
<f y
An example of a suitable Euclidean function, for Integer
's instance, is
abs
.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
conversion to Integer
Instances
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
Inject a value into the monadic type.
Instances
Monad Complex | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Option | Since: base-4.9.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad Par1 | Since: base-4.9.0.0 |
Monad P | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad ReadPrec | Since: base-2.1 |
Monad Seq | |
Monad Tree | |
Monad IO | Since: base-2.1 |
Monad Query | |
Monad X | |
Monad FocusQuery Source # | |
Defined in XMonad.Hooks.Focus Methods (>>=) :: FocusQuery a -> (a -> FocusQuery b) -> FocusQuery b # (>>) :: FocusQuery a -> FocusQuery b -> FocusQuery b # return :: a -> FocusQuery a # | |
Monad Parser Source # | |
Monad PureX Source # | |
Monad Maybe | Since: base-2.1 |
Monad Solo | Since: base-4.15 |
Monad [] | Since: base-2.1 |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad m => Monad (ListT m) | |
Monad m => Monad (MaybeT m) | |
Monad (TwoD a) Source # | |
Monad m => Monad (Invisible m) Source # | |
Monad (StateQuery s) Source # | |
Defined in XMonad.Util.WindowState Methods (>>=) :: StateQuery s a -> (a -> StateQuery s b) -> StateQuery s b # (>>) :: StateQuery s a -> StateQuery s b -> StateQuery s b # return :: a -> StateQuery s a # | |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (ExceptT e m) | |
Monad m => Monad (IdentityT m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (ContT r m) | |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
Monad ((->) r) | Since: base-2.1 |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
A type f
is a Functor if it provides a function fmap
which, given any types a
and b
lets you apply any function from (a -> b)
to turn an f a
into an f b
, preserving the
structure of f
. Furthermore f
needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap
and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap
is used to apply a function of type (a -> b)
to a value of type f a
,
where f is a functor, to produce a value of type f b
.
Note that for any type constructor with more than one parameter (e.g., Either
),
only the last type parameter can be modified with fmap
(e.g., b
in `Either a b`).
Some type constructors with two parameters or more have a
instance that allows
both the last and the penultimate parameters to be mapped over.
==== ExamplesBifunctor
Convert from a
to a Maybe
IntMaybe String
using show
:
>>>
fmap show Nothing
Nothing>>>
fmap show (Just 3)
Just "3"
Convert from an
to an
Either
Int IntEither Int String
using show
:
>>>
fmap show (Left 17)
Left 17>>>
fmap show (Right 17)
Right "17"
Double each element of a list:
>>>
fmap (*2) [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
fmap even (2,2)
(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements `(a,b,c)` can also be written `(,,) a b c` and its Functor
instance
is defined for `Functor ((,,) a b)` (i.e., only the third parameter is free to be mapped over
with fmap
).
It explains why fmap
can be used with tuples containing values of different types as in the
following example:
>>>
fmap even ("hello", 1.0, 4)
("hello",1.0,True)
Instances
Functor ZipList | Since: base-2.1 |
Functor Handler | Since: base-4.6.0.0 |
Functor Complex | Since: base-4.9.0.0 |
Functor Identity | Since: base-4.8.0.0 |
Functor First | Since: base-4.8.0.0 |
Functor Last | Since: base-4.8.0.0 |
Functor Down | Since: base-4.11.0.0 |
Functor First | Since: base-4.9.0.0 |
Functor Last | Since: base-4.9.0.0 |
Functor Max | Since: base-4.9.0.0 |
Functor Min | Since: base-4.9.0.0 |
Functor Option | Since: base-4.9.0.0 |
Functor Dual | Since: base-4.8.0.0 |
Functor Product | Since: base-4.8.0.0 |
Functor Sum | Since: base-4.8.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
Functor STM | Since: base-4.3.0.0 |
Functor Par1 | Since: base-4.9.0.0 |
Functor P | Since: base-4.8.0.0 |
Defined in Text.ParserCombinators.ReadP | |
Functor ReadP | Since: base-2.1 |
Functor ReadPrec | Since: base-2.1 |
Functor IntMap | |
Functor Digit | |
Functor Elem | |
Functor FingerTree | |
Defined in Data.Sequence.Internal Methods fmap :: (a -> b) -> FingerTree a -> FingerTree b # (<$) :: a -> FingerTree b -> FingerTree a # | |
Functor Node | |
Functor Seq | |
Functor ViewL | |
Functor ViewR | |
Functor Tree | |
Functor IO | Since: base-2.1 |
Functor Directories' | |
Defined in XMonad.Core Methods fmap :: (a -> b) -> Directories' a -> Directories' b # (<$) :: a -> Directories' b -> Directories' a # | |
Functor Query | |
Functor X | |
Functor Stack | |
Defined in XMonad.StackSet | |
Functor Cursors Source # | |
Functor FocusQuery Source # | |
Defined in XMonad.Hooks.Focus Methods fmap :: (a -> b) -> FocusQuery a -> FocusQuery b # (<$) :: a -> FocusQuery b -> FocusQuery a # | |
Functor Parser Source # | |
Functor PureX Source # | |
Functor Maybe | Since: base-2.1 |
Functor Solo | Since: base-4.15 |
Functor [] | Since: base-2.1 |
Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Functor (Either a) | Since: base-3.0 |
Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Functor (Arg a) | Since: base-4.9.0.0 |
Functor (Array i) | Since: base-2.1 |
Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Functor (Map k) | |
Functor m => Functor (ListT m) | |
Functor m => Functor (MaybeT m) | |
Functor (TwoD a) Source # | |
Functor m => Functor (Invisible m) Source # | |
Functor (StateQuery s) Source # | |
Defined in XMonad.Util.WindowState Methods fmap :: (a -> b) -> StateQuery s a -> StateQuery s b # (<$) :: a -> StateQuery s b -> StateQuery s a # | |
Functor ((,) a) | Since: base-2.1 |
Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Functor m => Functor (Kleisli m a) | Since: base-4.14.0.0 |
Functor (Const m :: Type -> Type) | Since: base-2.1 |
Functor f => Functor (Ap f) | Since: base-4.12.0.0 |
Functor f => Functor (Alt f) | Since: base-4.8.0.0 |
Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
Functor (URec (Ptr ()) :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Functor (WhenMissing f x) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b # (<$) :: a -> WhenMissing f x b -> WhenMissing f x a # | |
Functor m => Functor (ErrorT e m) | |
Functor m => Functor (ExceptT e m) | |
Functor m => Functor (IdentityT m) | |
Functor m => Functor (ReaderT r m) | |
Functor m => Functor (StateT s m) | |
Functor m => Functor (StateT s m) | |
Functor m => Functor (WriterT w m) | |
Functor m => Functor (WriterT w m) | |
Functor ((,,) a b) | Since: base-4.14.0.0 |
(Functor f, Functor g) => Functor (Product f g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (Sum f g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
Functor (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Functor f => Functor (WhenMatched f x y) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # (<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Functor (WhenMissing f k x) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # (<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Functor (ContT r m) | |
Functor ((,,,) a b c) | Since: base-4.14.0.0 |
Functor ((->) r) | Since: base-2.1 |
(Functor f, Functor g) => Functor (Compose f g) | Since: base-4.9.0.0 |
(Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
Functor f => Functor (WhenMatched f k x y) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # (<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
Functor m => Functor (RWST r w s m) | |
Functor m => Functor (RWST r w s m) | |
Basic numeric class.
The Haskell Report defines no laws for Num
. However, (
and +
)(
are
customarily expected to define a ring and have the following properties:*
)
- Associativity of
(
+
) (x + y) + z
=x + (y + z)
- Commutativity of
(
+
) x + y
=y + x
is the additive identityfromInteger
0x + fromInteger 0
=x
negate
gives the additive inversex + negate x
=fromInteger 0
- Associativity of
(
*
) (x * y) * z
=x * (y * z)
is the multiplicative identityfromInteger
1x * fromInteger 1
=x
andfromInteger 1 * x
=x
- Distributivity of
(
with respect to*
)(
+
) a * (b + c)
=(a * b) + (a * c)
and(b + c) * a
=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord
implement an ordered ring. Indeed, in base
only Integer
and
Rational
do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs
and signum
should satisfy the law:
abs x * signum x == x
For real numbers, the signum
is either -1
(negative), 0
(zero)
or 1
(positive).
fromInteger :: Integer -> a #
Conversion from an Integer
.
An integer literal represents the application of the function
fromInteger
to the appropriate value of type Integer
,
so such literals have type (
.Num
a) => a
Instances
The Ord
class is used for totally ordered datatypes.
Instances of Ord
can be derived for any user-defined datatype whose
constituent types are in Ord
. The declared order of the constructors in
the data declaration determines the ordering in derived Ord
instances. The
Ordering
datatype allows a single comparison to determine the precise
ordering of two objects.
The Haskell Report defines no laws for Ord
. However, <=
is customarily
expected to implement a non-strict partial order and have the following
properties:
- Transitivity
- if
x <= y && y <= z
=True
, thenx <= z
=True
- Reflexivity
x <= x
=True
- Antisymmetry
- if
x <= y && y <= x
=True
, thenx == y
=True
Note that the following operator interactions are expected to hold:
x >= y
=y <= x
x < y
=x <= y && x /= y
x > y
=y < x
x < y
=compare x y == LT
x > y
=compare x y == GT
x == y
=compare x y == EQ
min x y == if x <= y then x else y
=True
max x y == if x >= y then x else y
=True
Note that (7.) and (8.) do not require min
and max
to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==)
.
Minimal complete definition: either compare
or <=
.
Using compare
can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
Ord FdSet | |
Ord TimeZone | |
Defined in Graphics.X11.Xlib.Event | |
Ord XEvent | |
Ord FontSet | |
Defined in Graphics.X11.Xlib.Extras | |
Ord FontStruct | |
Defined in Graphics.X11.Xlib.Font Methods compare :: FontStruct -> FontStruct -> Ordering # (<) :: FontStruct -> FontStruct -> Bool # (<=) :: FontStruct -> FontStruct -> Bool # (>) :: FontStruct -> FontStruct -> Bool # (>=) :: FontStruct -> FontStruct -> Bool # max :: FontStruct -> FontStruct -> FontStruct # min :: FontStruct -> FontStruct -> FontStruct # | |
Ord XComposeStatus | |
Defined in Graphics.X11.Xlib.Misc Methods compare :: XComposeStatus -> XComposeStatus -> Ordering # (<) :: XComposeStatus -> XComposeStatus -> Bool # (<=) :: XComposeStatus -> XComposeStatus -> Bool # (>) :: XComposeStatus -> XComposeStatus -> Bool # (>=) :: XComposeStatus -> XComposeStatus -> Bool # | |
Ord XErrorEvent | |
Defined in Graphics.X11.Xlib.Misc | |
Ord XTextProperty | |
Defined in Graphics.X11.Xlib.Misc Methods compare :: XTextProperty -> XTextProperty -> Ordering # (<) :: XTextProperty -> XTextProperty -> Bool # (<=) :: XTextProperty -> XTextProperty -> Bool # (>) :: XTextProperty -> XTextProperty -> Bool # (>=) :: XTextProperty -> XTextProperty -> Bool # | |
Ord Region | |
Ord Display | |
Defined in Graphics.X11.Xlib.Types | |
Ord GC | |
Ord GCValues | |
Defined in Graphics.X11.Xlib.Types | |
Ord Image | |
Ord Screen | |
Ord SetWindowAttributes | |
Defined in Graphics.X11.Xlib.Types Methods compare :: SetWindowAttributes -> SetWindowAttributes -> Ordering # (<) :: SetWindowAttributes -> SetWindowAttributes -> Bool # (<=) :: SetWindowAttributes -> SetWindowAttributes -> Bool # (>) :: SetWindowAttributes -> SetWindowAttributes -> Bool # (>=) :: SetWindowAttributes -> SetWindowAttributes -> Bool # max :: SetWindowAttributes -> SetWindowAttributes -> SetWindowAttributes # min :: SetWindowAttributes -> SetWindowAttributes -> SetWindowAttributes # | |
Ord Visual | |
Ord XRRScreenConfiguration | |
Defined in Graphics.X11.Xrandr Methods compare :: XRRScreenConfiguration -> XRRScreenConfiguration -> Ordering # (<) :: XRRScreenConfiguration -> XRRScreenConfiguration -> Bool # (<=) :: XRRScreenConfiguration -> XRRScreenConfiguration -> Bool # (>) :: XRRScreenConfiguration -> XRRScreenConfiguration -> Bool # (>=) :: XRRScreenConfiguration -> XRRScreenConfiguration -> Bool # max :: XRRScreenConfiguration -> XRRScreenConfiguration -> XRRScreenConfiguration # min :: XRRScreenConfiguration -> XRRScreenConfiguration -> XRRScreenConfiguration # | |
Ord All | Since: base-2.1 |
Ord Any | Since: base-2.1 |
Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
Ord Unique | |
Ord Version | Since: base-2.1 |
Ord Void | Since: base-4.8.0.0 |
Ord CBool | |
Ord CChar | |
Ord CClock | |
Ord CDouble | |
Ord CFloat | |
Ord CInt | |
Ord CIntMax | |
Ord CIntPtr | |
Ord CLLong | |
Ord CLong | |
Ord CPtrdiff | |
Defined in Foreign.C.Types | |
Ord CSChar | |
Ord CSUSeconds | |
Defined in Foreign.C.Types Methods compare :: CSUSeconds -> CSUSeconds -> Ordering # (<) :: CSUSeconds -> CSUSeconds -> Bool # (<=) :: CSUSeconds -> CSUSeconds -> Bool # (>) :: CSUSeconds -> CSUSeconds -> Bool # (>=) :: CSUSeconds -> CSUSeconds -> Bool # max :: CSUSeconds -> CSUSeconds -> CSUSeconds # min :: CSUSeconds -> CSUSeconds -> CSUSeconds # | |
Ord CShort | |
Ord CSigAtomic | |
Defined in Foreign.C.Types Methods compare :: CSigAtomic -> CSigAtomic -> Ordering # (<) :: CSigAtomic -> CSigAtomic -> Bool # (<=) :: CSigAtomic -> CSigAtomic -> Bool # (>) :: CSigAtomic -> CSigAtomic -> Bool # (>=) :: CSigAtomic -> CSigAtomic -> Bool # max :: CSigAtomic -> CSigAtomic -> CSigAtomic # min :: CSigAtomic -> CSigAtomic -> CSigAtomic # | |
Ord CSize | |
Ord CTime | |
Ord CUChar | |
Ord CUInt | |
Ord CUIntMax | |
Defined in Foreign.C.Types | |
Ord CUIntPtr | |
Defined in Foreign.C.Types | |
Ord CULLong | |
Ord CULong | |
Ord CUSeconds | |
Ord CUShort | |
Ord CWchar | |
Ord IntPtr | |
Ord WordPtr | |
Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
Ord ErrorCall | Since: base-4.7.0.0 |
Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
Ord Fingerprint | Since: base-4.4.0.0 |
Defined in GHC.Fingerprint.Type Methods compare :: Fingerprint -> Fingerprint -> Ordering # (<) :: Fingerprint -> Fingerprint -> Bool # (<=) :: Fingerprint -> Fingerprint -> Bool # (>) :: Fingerprint -> Fingerprint -> Bool # (>=) :: Fingerprint -> Fingerprint -> Bool # max :: Fingerprint -> Fingerprint -> Fingerprint # min :: Fingerprint -> Fingerprint -> Fingerprint # | |
Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
Ord Fixity | Since: base-4.6.0.0 |
Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
Ord ExitCode | |
Defined in GHC.IO.Exception | |
Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
Ord Newline | Since: base-4.3.0.0 |
Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
Ord IOMode | Since: base-4.2.0.0 |
Ord Int16 | Since: base-2.1 |
Ord Int32 | Since: base-2.1 |
Ord Int64 | Since: base-2.1 |
Ord Int8 | Since: base-2.1 |
Ord GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods compare :: GeneralCategory -> GeneralCategory -> Ordering # (<) :: GeneralCategory -> GeneralCategory -> Bool # (<=) :: GeneralCategory -> GeneralCategory -> Bool # (>) :: GeneralCategory -> GeneralCategory -> Bool # (>=) :: GeneralCategory -> GeneralCategory -> Bool # max :: GeneralCategory -> GeneralCategory -> GeneralCategory # min :: GeneralCategory -> GeneralCategory -> GeneralCategory # | |
Ord Word16 | Since: base-2.1 |
Ord Word32 | Since: base-2.1 |
Ord Word64 | Since: base-2.1 |
Ord CBlkCnt | |
Ord CBlkSize | |
Defined in System.Posix.Types | |
Ord CCc | |
Ord CClockId | |
Defined in System.Posix.Types | |
Ord CDev | |
Ord CFsBlkCnt | |
Ord CFsFilCnt | |
Ord CGid | |
Ord CId | |
Ord CIno | |
Ord CKey | |
Ord CMode | |
Ord CNfds | |
Ord CNlink | |
Ord COff | |
Ord CPid | |
Ord CRLim | |
Ord CSocklen | |
Defined in System.Posix.Types | |
Ord CSpeed | |
Ord CSsize | |
Ord CTcflag | |
Ord CTimer | |
Ord CUid | |
Ord Fd | |
Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
Ord ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
Ord IntSet | |
Ord FileType | |
Defined in System.Directory.Internal.Common | |
Ord Permissions | |
Defined in System.Directory.Internal.Common Methods compare :: Permissions -> Permissions -> Ordering # (<) :: Permissions -> Permissions -> Bool # (<=) :: Permissions -> Permissions -> Bool # (>) :: Permissions -> Permissions -> Bool # (>=) :: Permissions -> Permissions -> Bool # max :: Permissions -> Permissions -> Permissions # min :: Permissions -> Permissions -> Permissions # | |
Ord XdgDirectory | |
Defined in System.Directory.Internal.Common Methods compare :: XdgDirectory -> XdgDirectory -> Ordering # (<) :: XdgDirectory -> XdgDirectory -> Bool # (<=) :: XdgDirectory -> XdgDirectory -> Bool # (>) :: XdgDirectory -> XdgDirectory -> Bool # (>=) :: XdgDirectory -> XdgDirectory -> Bool # max :: XdgDirectory -> XdgDirectory -> XdgDirectory # min :: XdgDirectory -> XdgDirectory -> XdgDirectory # | |
Ord XdgDirectoryList | |
Defined in System.Directory.Internal.Common Methods compare :: XdgDirectoryList -> XdgDirectoryList -> Ordering # (<) :: XdgDirectoryList -> XdgDirectoryList -> Bool # (<=) :: XdgDirectoryList -> XdgDirectoryList -> Bool # (>) :: XdgDirectoryList -> XdgDirectoryList -> Bool # (>=) :: XdgDirectoryList -> XdgDirectoryList -> Bool # max :: XdgDirectoryList -> XdgDirectoryList -> XdgDirectoryList # min :: XdgDirectoryList -> XdgDirectoryList -> XdgDirectoryList # | |
Ord Ordering | |
Defined in GHC.Classes | |
Ord TyCon | |
Ord Cardinality | |
Defined in System.Random.GFinite | |
Ord Day | |
Ord NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods compare :: NominalDiffTime -> NominalDiffTime -> Ordering # (<) :: NominalDiffTime -> NominalDiffTime -> Bool # (<=) :: NominalDiffTime -> NominalDiffTime -> Bool # (>) :: NominalDiffTime -> NominalDiffTime -> Bool # (>=) :: NominalDiffTime -> NominalDiffTime -> Bool # max :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # min :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime # | |
Ord UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime | |
Ord UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods compare :: UniversalTime -> UniversalTime -> Ordering # (<) :: UniversalTime -> UniversalTime -> Bool # (<=) :: UniversalTime -> UniversalTime -> Bool # (>) :: UniversalTime -> UniversalTime -> Bool # (>=) :: UniversalTime -> UniversalTime -> Bool # max :: UniversalTime -> UniversalTime -> UniversalTime # min :: UniversalTime -> UniversalTime -> UniversalTime # | |
Ord TimeLocale | |
Defined in Data.Time.Format.Locale Methods compare :: TimeLocale -> TimeLocale -> Ordering # (<) :: TimeLocale -> TimeLocale -> Bool # (<=) :: TimeLocale -> TimeLocale -> Bool # (>) :: TimeLocale -> TimeLocale -> Bool # (>=) :: TimeLocale -> TimeLocale -> Bool # max :: TimeLocale -> TimeLocale -> TimeLocale # min :: TimeLocale -> TimeLocale -> TimeLocale # | |
Ord LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
Ord TimeOfDay | |
Defined in Data.Time.LocalTime.Internal.TimeOfDay | |
Ord TimeZone | |
Defined in Data.Time.LocalTime.Internal.TimeZone | |
Ord ScreenId | |
Defined in XMonad.Core | |
Ord Navigation2D Source # | |
Defined in XMonad.Actions.Navigation2D Methods compare :: Navigation2D -> Navigation2D -> Ordering # (<) :: Navigation2D -> Navigation2D -> Bool # (<=) :: Navigation2D -> Navigation2D -> Bool # (>) :: Navigation2D -> Navigation2D -> Bool # (>=) :: Navigation2D -> Navigation2D -> Bool # max :: Navigation2D -> Navigation2D -> Navigation2D # min :: Navigation2D -> Navigation2D -> Navigation2D # | |
Ord PhysicalScreen Source # | |
Defined in XMonad.Actions.PhysicalScreens Methods compare :: PhysicalScreen -> PhysicalScreen -> Ordering # (<) :: PhysicalScreen -> PhysicalScreen -> Bool # (<=) :: PhysicalScreen -> PhysicalScreen -> Bool # (>) :: PhysicalScreen -> PhysicalScreen -> Bool # (>=) :: PhysicalScreen -> PhysicalScreen -> Bool # max :: PhysicalScreen -> PhysicalScreen -> PhysicalScreen # min :: PhysicalScreen -> PhysicalScreen -> PhysicalScreen # | |
Ord ScreenCorner Source # | |
Defined in XMonad.Hooks.ScreenCorners Methods compare :: ScreenCorner -> ScreenCorner -> Ordering # (<) :: ScreenCorner -> ScreenCorner -> Bool # (<=) :: ScreenCorner -> ScreenCorner -> Bool # (>) :: ScreenCorner -> ScreenCorner -> Bool # (>=) :: ScreenCorner -> ScreenCorner -> Bool # max :: ScreenCorner -> ScreenCorner -> ScreenCorner # min :: ScreenCorner -> ScreenCorner -> ScreenCorner # | |
Ord Alignment Source # | |
Ord Orientation Source # | |
Defined in XMonad.Layout.HintedTile Methods compare :: Orientation -> Orientation -> Ordering # (<) :: Orientation -> Orientation -> Bool # (<=) :: Orientation -> Orientation -> Bool # (>) :: Orientation -> Orientation -> Bool # (>=) :: Orientation -> Orientation -> Bool # max :: Orientation -> Orientation -> Orientation # min :: Orientation -> Orientation -> Orientation # | |
Ord NamedWindow Source # | |
Defined in XMonad.Util.NamedWindows Methods compare :: NamedWindow -> NamedWindow -> Ordering # (<) :: NamedWindow -> NamedWindow -> Bool # (<=) :: NamedWindow -> NamedWindow -> Bool # (>) :: NamedWindow -> NamedWindow -> Bool # (>=) :: NamedWindow -> NamedWindow -> Bool # max :: NamedWindow -> NamedWindow -> NamedWindow # min :: NamedWindow -> NamedWindow -> NamedWindow # | |
Ord Direction2D Source # | |
Defined in XMonad.Util.Types Methods compare :: Direction2D -> Direction2D -> Ordering # (<) :: Direction2D -> Direction2D -> Bool # (<=) :: Direction2D -> Direction2D -> Bool # (>) :: Direction2D -> Direction2D -> Bool # (>=) :: Direction2D -> Direction2D -> Bool # max :: Direction2D -> Direction2D -> Direction2D # min :: Direction2D -> Direction2D -> Direction2D # | |
Ord Word8 | Since: base-2.1 |
Ord Integer | |
Ord Natural | |
Ord () | |
Ord Bool | |
Ord Char | |
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Ord Int | |
Ord Word | |
Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
Ord a => Ord (First a) | Since: base-2.1 |
Ord a => Ord (Last a) | Since: base-2.1 |
Ord a => Ord (Down a) | Since: base-4.6.0.0 |
Ord a => Ord (First a) | Since: base-4.9.0.0 |
Ord a => Ord (Last a) | Since: base-4.9.0.0 |
Ord a => Ord (Max a) | Since: base-4.9.0.0 |
Ord a => Ord (Min a) | Since: base-4.9.0.0 |
Ord a => Ord (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup | |
Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |
Ord a => Ord (Dual a) | Since: base-2.1 |
Ord a => Ord (Product a) | Since: base-2.1 |
Ord a => Ord (Sum a) | Since: base-2.1 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # | |
Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
Ord (FunPtr a) | |
Defined in GHC.Ptr | |
Ord (Ptr a) | Since: base-2.1 |
Integral a => Ord (Ratio a) | Since: base-2.0.1 |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Ord a => Ord (Seq a) | |
Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
Ord a => Ord (Set a) | |
Ord g => Ord (StateGen g) | |
Defined in System.Random.Internal | |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Ord a => Ord [a] | |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
Ord (Proxy s) | Since: base-4.7.0.0 |
Ord a => Ord (Arg a b) | Since: base-4.9.0.0 |
Ord (TypeRep a) | Since: base-4.4.0.0 |
(Ix i, Ord e) => Ord (Array i e) | Since: base-2.1 |
Ord (U1 p) | Since: base-4.7.0.0 |
Ord (V1 p) | Since: base-4.9.0.0 |
(Ord k, Ord v) => Ord (Map k v) | |
(Ord1 m, Ord a) => Ord (ListT m a) | |
(Ord1 m, Ord a) => Ord (MaybeT m a) | |
Defined in Control.Monad.Trans.Maybe | |
(Ord a, Ord b) => Ord (a, b) | |
Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
Ord (f a) => Ord (Ap f a) | Since: base-4.12.0.0 |
Ord (f a) => Ord (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
Ord (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) | |
Defined in Control.Monad.Trans.Except Methods compare :: ExceptT e m a -> ExceptT e m a -> Ordering # (<) :: ExceptT e m a -> ExceptT e m a -> Bool # (<=) :: ExceptT e m a -> ExceptT e m a -> Bool # (>) :: ExceptT e m a -> ExceptT e m a -> Bool # (>=) :: ExceptT e m a -> ExceptT e m a -> Bool # | |
(Ord1 f, Ord a) => Ord (IdentityT f a) | |
Defined in Control.Monad.Trans.Identity Methods compare :: IdentityT f a -> IdentityT f a -> Ordering # (<) :: IdentityT f a -> IdentityT f a -> Bool # (<=) :: IdentityT f a -> IdentityT f a -> Bool # (>) :: IdentityT f a -> IdentityT f a -> Bool # (>=) :: IdentityT f a -> IdentityT f a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) | |
Defined in Control.Monad.Trans.Writer.Strict Methods compare :: WriterT w m a -> WriterT w m a -> Ordering # (<) :: WriterT w m a -> WriterT w m a -> Bool # (<=) :: WriterT w m a -> WriterT w m a -> Bool # (>) :: WriterT w m a -> WriterT w m a -> Bool # (>=) :: WriterT w m a -> WriterT w m a -> Bool # | |
(Ord a, Ord b, Ord c) => Ord (a, b, c) | |
(Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods compare :: Product f g a -> Product f g a -> Ordering # (<) :: Product f g a -> Product f g a -> Bool # (<=) :: Product f g a -> Product f g a -> Bool # (>) :: Product f g a -> Product f g a -> Bool # (>=) :: Product f g a -> Product f g a -> Bool # | |
(Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) | Since: base-4.9.0.0 |
Ord (a :~~: b) | Since: base-4.10.0.0 |
(Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
(Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods compare :: Compose f g a -> Compose f g a -> Ordering # (<) :: Compose f g a -> Compose f g a -> Bool # (<=) :: Compose f g a -> Compose f g a -> Bool # (>) :: Compose f g a -> Compose f g a -> Bool # (>=) :: Compose f g a -> Compose f g a -> Bool # | |
Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # |
Parsing of String
s, producing values.
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Why do both readsPrec
and readPrec
exist, and why does GHC opt to
implement readPrec
in derived Read
instances instead of readsPrec
?
The reason is that readsPrec
is based on the ReadS
type, and although
ReadS
is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec
, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes
language extension. Therefore, readPrec
(and its
cousin, readListPrec
) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec
instead of readsPrec
whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read
instances in GHC will implement
readPrec
instead of readsPrec
. The default implementations of
readsPrec
(and its cousin, readList
) will simply use readPrec
under
the hood. If you are writing a Read
instance by hand, it is recommended
to write it like so:
instanceRead
T wherereadPrec
= ...readListPrec
=readListPrecDefault
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that
showsPrec
started with.
Instances
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2
)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix
in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat
applied to a real floating-point
number returns the significand expressed as an Integer
and an
appropriately scaled exponent (an Int
). If
yields decodeFloat
x(m,n)
, then x
is equal in value to m*b^^n
, where b
is the floating-point radix, and furthermore, either m
and n
are both zero or else b^(d-1) <=
, where abs
m < b^dd
is
the value of
.
In particular, floatDigits
x
. If the type
contains a negative zero, also decodeFloat
0 = (0,0)
.
The result of decodeFloat
(-0.0) = (0,0)
is unspecified if either of
decodeFloat
x
or isNaN
x
is isInfinite
xTrue
.
encodeFloat :: Integer -> Int -> a #
encodeFloat
performs the inverse of decodeFloat
in the
sense that for finite x
with the exception of -0.0
,
.
uncurry
encodeFloat
(decodeFloat
x) = x
is one of the two closest representable
floating-point numbers to encodeFloat
m nm*b^^n
(or ±Infinity
if overflow
occurs); usually the closer, but if m
contains too many bits,
the result may be rounded in the wrong direction.
exponent
corresponds to the second component of decodeFloat
.
and for finite nonzero exponent
0 = 0x
,
.
If exponent
x = snd (decodeFloat
x) + floatDigits
xx
is a finite floating-point number, it is equal in value to
, where significand
x * b ^^ exponent
xb
is the
floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
significand :: a -> a #
The first component of decodeFloat
, scaled to lie in the open
interval (-1
,1
), either 0.0
or of absolute value >= 1/b
,
where b
is the floating-point radix.
The behaviour is unspecified on infinite or NaN
values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True
if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True
if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True
if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True
if the argument is an IEEE negative zero
True
if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x
and y
,
computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2
y x(x,y)
.
returns a value in the range [atan2
y x-pi
,
pi
]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported.
, with atan2
y 1y
in a type
that is RealFloat
, should return the same value as
.
A default definition of atan
yatan2
is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction
takes a real fractional number x
and returns a pair (n,f)
such that x = n+f
, and:
n
is an integral number with the same sign asx
; andf
is a fraction with the same type and sign asx
, and with absolute value less than1
.
The default definitions of the ceiling
, floor
, truncate
and round
functions are in terms of properFraction
.
truncate :: Integral b => a -> b #
returns the integer nearest truncate
xx
between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round
xx
;
the even integer if x
is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling
xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor
xx
Instances
RealFrac CDouble | |
RealFrac CFloat | |
RealFrac NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods properFraction :: Integral b => NominalDiffTime -> (b, NominalDiffTime) # truncate :: Integral b => NominalDiffTime -> b # round :: Integral b => NominalDiffTime -> b # ceiling :: Integral b => NominalDiffTime -> b # floor :: Integral b => NominalDiffTime -> b # | |
RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 |
Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Conversion of values to readable String
s.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
class Monad m => MonadFail (m :: Type -> Type) where #
When a value is bound in do
-notation, the pattern on the left
hand side of <-
might not match. In this case, this class
provides a function to recover.
A Monad
without a MonadFail
instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat
).
Instances of MonadFail
should satisfy the following law: fail s
should
be a left zero for >>=
,
fail s >>= f = fail s
If your Monad
is also MonadPlus
, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Option | Since: base-4.9.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative P | Since: base-4.5.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative ReadPrec | Since: base-4.6.0.0 |
Applicative Seq | Since: containers-0.5.4 |
Applicative Tree | |
Applicative IO | Since: base-2.1 |
Applicative Query | |
Applicative X | |
Applicative FocusQuery Source # | |
Defined in XMonad.Hooks.Focus Methods pure :: a -> FocusQuery a # (<*>) :: FocusQuery (a -> b) -> FocusQuery a -> FocusQuery b # liftA2 :: (a -> b -> c) -> FocusQuery a -> FocusQuery b -> FocusQuery c # (*>) :: FocusQuery a -> FocusQuery b -> FocusQuery b # (<*) :: FocusQuery a -> FocusQuery b -> FocusQuery a # | |
Applicative Parser Source # | |
Applicative PureX Source # | |
Applicative Maybe | Since: base-2.1 |
Applicative Solo | Since: base-4.15 |
Applicative [] | Since: base-2.1 |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Either e) | Since: base-3.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Applicative m => Applicative (ListT m) | |
(Functor m, Monad m) => Applicative (MaybeT m) | |
Applicative (TwoD a) Source # | |
Applicative m => Applicative (Invisible m) Source # | |
Defined in XMonad.Util.Invisible | |
Applicative (StateQuery s) Source # | |
Defined in XMonad.Util.WindowState Methods pure :: a -> StateQuery s a # (<*>) :: StateQuery s (a -> b) -> StateQuery s a -> StateQuery s b # liftA2 :: (a -> b -> c) -> StateQuery s a -> StateQuery s b -> StateQuery s c # (*>) :: StateQuery s a -> StateQuery s b -> StateQuery s b # (<*) :: StateQuery s a -> StateQuery s b -> StateQuery s a # | |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
(Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
(Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
Applicative ((->) r) | Since: base-2.1 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
class Foldable (t :: Type -> Type) where #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-} data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) deriving Foldable
A more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Methods
foldMap :: Monoid m => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (
. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>
)foldMap'
instead.
Examples
Basic usage:
>>>
foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>>
foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>>
foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]
When a Monoid's (
is lazy in its second argument, <>
)foldMap
can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>
import qualified Data.ByteString.Lazy as L
>>>
import qualified Data.ByteString.Builder as B
>>>
let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20
>>>
let lbs = B.toLazyByteString $ foldMap bld [0..]
>>>
L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldr :: (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr
, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr
can produce a terminating
expression from an unbounded list.
For a general Foldable
structure this should be semantically identical
to,
foldr f z =foldr
f z .toList
Examples
Basic usage:
>>>
foldr (||) False [False, True, False]
True
>>>
foldr (||) False []
False
>>>
foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures
⚠️ Applying foldr
to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
(
short-circuits on ||
)True
values, so the following terminates
because there is a True
value finitely far from the left side:
>>>
foldr (||) False (True : repeat False)
True
But the following doesn't terminate:
>>>
foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument
Applying foldr
to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined
, but []
is more clear):
>>>
take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]
foldl :: (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl
, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl
will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl'
instead of foldl
. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1
in the above
example) before applying them to the operator (e.g. to (`f` x2)
).
This results in a thunk chain \(\mathcal{O}(n)\) elements long, which
then must be evaluated from the outside-in.
For a general Foldable
structure this should be semantically identical
to:
foldl f z =foldl
f z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'
.
>>>
foldl (+) 42 [1,2,3,4]
52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>
foldl (\acc c -> c : acc) "abcd" "efgh"
"hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>
foldl (\a _ -> a) 0 $ repeat 1
* Hangs forever *
foldr1 :: (a -> a -> a) -> t a -> a #
A variant of foldr
that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
Examples
Basic usage:
>>>
foldr1 (+) [1..4]
10
>>>
foldr1 (+) []
Exception: Prelude.foldr1: empty list
>>>
foldr1 (+) Nothing
*** Exception: foldr1: empty structure
>>>
foldr1 (-) [1..4]
-2
>>>
foldr1 (&&) [True, False, True, True]
False
>>>
foldr1 (||) [False, False, True, True]
True
>>>
foldr1 (+) [1..]
* Hangs forever *
foldl1 :: (a -> a -> a) -> t a -> a #
A variant of foldl
that has no base case,
and thus may only be applied to non-empty structures.
This function is non-total and will raise a runtime exception if the structure happens to be empty.
foldl1
f =foldl1
f .toList
Examples
Basic usage:
>>>
foldl1 (+) [1..4]
10
>>>
foldl1 (+) []
*** Exception: Prelude.foldl1: empty list
>>>
foldl1 (+) Nothing
*** Exception: foldl1: empty structure
>>>
foldl1 (-) [1..4]
-8
>>>
foldl1 (&&) [True, False, True, True]
False
>>>
foldl1 (||) [False, False, True, True]
True
>>>
foldl1 (+) [1..]
* Hangs forever *
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>
null []
True
>>>
null [1]
False
null
is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>
null [1..]
False
Since: base-4.8.0.0
Returns the size/length of a finite structure as an Int
. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>
length []
0
>>>
length ['a', 'b', 'c']
3>>>
length [1..]
* Hangs forever *
Since: base-4.8.0.0
elem :: Eq a => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem
is often used in infix form.
Examples
Basic usage:
>>>
3 `elem` []
False
>>>
3 `elem` [1,2]
False
>>>
3 `elem` [1,2,3,4,5]
True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>
3 `elem` [1..]
True
>>>
3 `elem` ([4..] ++ [3])
* Hangs forever *
Since: base-4.8.0.0
maximum :: Ord a => t a -> a #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>
maximum [1..10]
10
>>>
maximum []
*** Exception: Prelude.maximum: empty list
>>>
maximum Nothing
*** Exception: maximum: empty structure
Since: base-4.8.0.0
minimum :: Ord a => t a -> a #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>
minimum [1..10]
1
>>>
minimum []
*** Exception: Prelude.minimum: empty list
>>>
minimum Nothing
*** Exception: minimum: empty structure
Since: base-4.8.0.0
The sum
function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>
sum []
0
>>>
sum [42]
42
>>>
sum [1..10]
55
>>>
sum [4.1, 2.0, 1.7]
7.8
>>>
sum [1..]
* Hangs forever *
Since: base-4.8.0.0
product :: Num a => t a -> a #
The product
function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>
product []
1
>>>
product [42]
42
>>>
product [1..10]
3628800
>>>
product [4.1, 2.0, 1.7]
13.939999999999998
>>>
product [1..]
* Hangs forever *
Since: base-4.8.0.0
Instances
Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m # foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m # foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldMap' :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m # foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m # foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Directories' | |
Defined in XMonad.Core Methods fold :: Monoid m => Directories' m -> m # foldMap :: Monoid m => (a -> m) -> Directories' a -> m # foldMap' :: Monoid m => (a -> m) -> Directories' a -> m # foldr :: (a -> b -> b) -> b -> Directories' a -> b # foldr' :: (a -> b -> b) -> b -> Directories' a -> b # foldl :: (b -> a -> b) -> b -> Directories' a -> b # foldl' :: (b -> a -> b) -> b -> Directories' a -> b # foldr1 :: (a -> a -> a) -> Directories' a -> a # foldl1 :: (a -> a -> a) -> Directories' a -> a # toList :: Directories' a -> [a] # null :: Directories' a -> Bool # length :: Directories' a -> Int # elem :: Eq a => a -> Directories' a -> Bool # maximum :: Ord a => Directories' a -> a # minimum :: Ord a => Directories' a -> a # sum :: Num a => Directories' a -> a # product :: Num a => Directories' a -> a # | |
Foldable Stack | |
Defined in XMonad.StackSet Methods fold :: Monoid m => Stack m -> m # foldMap :: Monoid m => (a -> m) -> Stack a -> m # foldMap' :: Monoid m => (a -> m) -> Stack a -> m # foldr :: (a -> b -> b) -> b -> Stack a -> b # foldr' :: (a -> b -> b) -> b -> Stack a -> b # foldl :: (b -> a -> b) -> b -> Stack a -> b # foldl' :: (b -> a -> b) -> b -> Stack a -> b # foldr1 :: (a -> a -> a) -> Stack a -> a # foldl1 :: (a -> a -> a) -> Stack a -> a # elem :: Eq a => a -> Stack a -> Bool # maximum :: Ord a => Stack a -> a # minimum :: Ord a => Stack a -> a # | |
Foldable Cursors Source # | |
Defined in XMonad.Actions.WorkspaceCursors Methods fold :: Monoid m => Cursors m -> m # foldMap :: Monoid m => (a -> m) -> Cursors a -> m # foldMap' :: Monoid m => (a -> m) -> Cursors a -> m # foldr :: (a -> b -> b) -> b -> Cursors a -> b # foldr' :: (a -> b -> b) -> b -> Cursors a -> b # foldl :: (b -> a -> b) -> b -> Cursors a -> b # foldl' :: (b -> a -> b) -> b -> Cursors a -> b # foldr1 :: (a -> a -> a) -> Cursors a -> a # foldl1 :: (a -> a -> a) -> Cursors a -> a # elem :: Eq a => a -> Cursors a -> Bool # maximum :: Ord a => Cursors a -> a # minimum :: Ord a => Cursors a -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldMap' :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m # foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m # foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] # null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m # foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative
(or,
therefore, Monad
) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>
traverse Just [1,2,3,4]
Just [1,2,3,4]
>>>
traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]
In the next examples, we show that Nothing
and Left
values short
circuit the created structure.
>>>
traverse (const Nothing) [1,2,3,4]
Nothing
>>>
traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]
Nothing
>>>
traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_
.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>
sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]
>>>
sequenceA [Right 1, Right 2, Right 3]
Right [1,2,3]
The next two example show Nothing
and Just
will short circuit
the resulting structure if present in the input. For more context,
check the Traversable
instances for Either
and Maybe
.
>>>
sequenceA [Just 1, Just 2, Just 3, Nothing]
Nothing
>>>
sequenceA [Right 1, Right 2, Right 3, Left 4]
Left 4
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_
.
Examples
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_
.
Examples
Basic usage:
The first two examples are instances where the input and
and output of sequence
are isomorphic.
>>>
sequence $ Right [1,2,3,4]
[Right 1,Right 2,Right 3,Right 4]
>>>
sequence $ [Right 1,Right 2,Right 3,Right 4]
Right [1,2,3,4]
The following examples demonstrate short circuit behavior
for sequence
.
>>>
sequence $ Left [1,2,3,4]
Left [1,2,3,4]
>>>
sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]
Left 0
Instances
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
Since: base-4.9.0.0
Instances
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>
"Hello world" <> mempty
"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
Monoid IntSet | |
Monoid Ordering | Since: base-2.1 |
Monoid Opacity Source # | |
Monoid RescreenConfig Source # | |
Defined in XMonad.Hooks.Rescreen Methods mappend :: RescreenConfig -> RescreenConfig -> RescreenConfig # mconcat :: [RescreenConfig] -> RescreenConfig # | |
Monoid StatusBarConfig Source # | |
Defined in XMonad.Hooks.StatusBar Methods mappend :: StatusBarConfig -> StatusBarConfig -> StatusBarConfig # mconcat :: [StatusBarConfig] -> StatusBarConfig # | |
Monoid WallpaperList Source # | |
Defined in XMonad.Hooks.WallpaperSetter Methods mempty :: WallpaperList # mappend :: WallpaperList -> WallpaperList -> WallpaperList # mconcat :: [WallpaperList] -> WallpaperList # | |
Monoid () | Since: base-2.1 |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Monoid (IntMap a) | |
Monoid (Seq a) | |
Monoid (MergeSet a) | |
Ord a => Monoid (Set a) | |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Query a) | |
Monoid a => Monoid (X a) | |
Monoid a => Monoid (FocusQuery a) Source # | |
Defined in XMonad.Hooks.Focus Methods mempty :: FocusQuery a # mappend :: FocusQuery a -> FocusQuery a -> FocusQuery a # mconcat :: [FocusQuery a] -> FocusQuery a # | |
Monoid (Parser a) Source # | |
Monoid a => Monoid (PureX a) Source # | |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (a) | Since: base-4.15 |
Monoid [a] | Since: base-2.1 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Monoid (U1 p) | Since: base-4.12.0.0 |
Ord k => Monoid (Map k v) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
Instances
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
Bounded Bool | Since: base-2.1 |
Enum Bool | Since: base-2.1 |
Generic Bool | |
SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
Ix Bool | Since: base-2.1 |
Read Bool | Since: base-2.1 |
Show Bool | Since: base-2.1 |
NFData Bool | |
Defined in Control.DeepSeq | |
Eq Bool | |
Ord Bool | |
Random Bool | |
Finite Bool | |
Defined in System.Random.GFinite | |
Uniform Bool | |
Defined in System.Random.Internal | |
UniformRange Bool | |
Defined in System.Random.Internal | |
SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type DemoteRep Bool | |
Defined in GHC.Generics | |
type Rep Bool | Since: base-4.6.0.0 |
data Sing (a :: Bool) | |
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and
chr
).
Instances
Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
Bounded Char | Since: base-2.1 |
Enum Char | Since: base-2.1 |
Ix Char | Since: base-2.1 |
Read Char | Since: base-2.1 |
Show Char | Since: base-2.1 |
IsChar Char | Since: base-2.1 |
PrintfArg Char | Since: base-2.1 |
Defined in Text.Printf | |
NFData Char | |
Defined in Control.DeepSeq | |
Eq Char | |
Ord Char | |
Random Char | |
Finite Char | |
Defined in System.Random.GFinite | |
Uniform Char | |
Defined in System.Random.Internal | |
UniformRange Char | |
Defined in System.Random.Internal | |
ErrorList Char | |
Defined in Control.Monad.Trans.Error | |
HasColorizer String Source # | |
Defined in XMonad.Actions.GridSelect | |
PPrint Char Source # | |
Generic1 (URec Char :: k -> Type) | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
HasName [Char] Source # | |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
HasName (X (), String) Source # | |
HasName (X (), [String]) Source # | |
HasName (NamedAction, String) Source # | |
Defined in XMonad.Util.NamedActions | |
Generic (URec Char p) | |
Show (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Storable Double | Since: base-2.1 |
Floating Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Read Double | Since: base-2.1 |
PrintfArg Double | Since: base-2.1 |
Defined in Text.Printf | |
Default Double | |
Defined in Data.Default.Class | |
NFData Double | |
Defined in Control.DeepSeq | |
Eq Double | Note that due to the presence of
Also note that
|
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Random Double | |
UniformRange Double | |
Defined in System.Random.Internal | |
Generic1 (URec Double :: k -> Type) | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
Show (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Storable Float | Since: base-2.1 |
Floating Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Read Float | Since: base-2.1 |
PrintfArg Float | Since: base-2.1 |
Defined in Text.Printf | |
Default Float | |
Defined in Data.Default.Class | |
NFData Float | |
Defined in Control.DeepSeq | |
Eq Float | Note that due to the presence of
Also note that
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Random Float | |
UniformRange Float | |
Defined in System.Random.Internal | |
Generic1 (URec Float :: k -> Type) | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Float p) | |
Show (URec Float p) | |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Bits Int | Since: base-2.1 |
Defined in Data.Bits | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Num Int | Since: base-2.1 |
Read Int | Since: base-2.1 |
Integral Int | Since: base-2.0.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
PrintfArg Int | Since: base-2.1 |
Defined in Text.Printf | |
Default Int | |
Defined in Data.Default.Class | |
NFData Int | |
Defined in Control.DeepSeq | |
Eq Int | |
Ord Int | |
Random Int | |
Finite Int | |
Defined in System.Random.GFinite | |
Uniform Int | |
Defined in System.Random.Internal | |
UniformRange Int | |
Defined in System.Random.Internal | |
PPrint Int Source # | |
Generic1 (URec Int :: k -> Type) | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
Show (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int
), IS
constructor is used.
Otherwise IP
and IN
constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Instances
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
MonadFix Maybe | Since: base-2.1 |
Defined in Control.Monad.Fix | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
Traversable Maybe | Since: base-2.1 |
Alternative Maybe | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
MonadPlus Maybe | Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Generic (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
Default (Maybe a) | |
Defined in Data.Default.Class | |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Finite a => Finite (Maybe a) | |
Defined in System.Random.GFinite Methods cardinality :: Proxy# (Maybe a) -> Cardinality toFinite :: Integer -> Maybe a fromFinite :: Maybe a -> Integer | |
PPrint a => PPrint (Maybe a) Source # | |
Generic1 Maybe | |
SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Show s, Read s, Typeable s) => MonadState (Maybe s) (StateQuery s) Source # | Instance of MonadState for StateQuery. |
Defined in XMonad.Util.WindowState Methods get :: StateQuery s (Maybe s) # put :: Maybe s -> StateQuery s () # state :: (Maybe s -> (a, Maybe s)) -> StateQuery s a # | |
SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
data Sing (b :: Maybe a) | |
type Rep1 Maybe | Since: base-4.6.0.0 |
Instances
Monoid Ordering | Since: base-2.1 |
Semigroup Ordering | Since: base-4.9.0.0 |
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Generic Ordering | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
Default Ordering | |
Defined in Data.Default.Class | |
NFData Ordering | |
Defined in Control.DeepSeq | |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Finite Ordering | |
Defined in System.Random.GFinite Methods cardinality :: Proxy# Ordering -> Cardinality toFinite :: Integer -> Ordering fromFinite :: Ordering -> Integer | |
type Rep Ordering | Since: base-4.6.0.0 |
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
MonadFix IO | Since: base-2.1 |
Defined in Control.Monad.Fix | |
MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
Alternative IO | Since: base-4.9.0.0 |
Applicative IO | Since: base-2.1 |
Functor IO | Since: base-2.1 |
Monad IO | Since: base-2.1 |
MonadPlus IO | Since: base-4.9.0.0 |
MonadError IOException IO | |
Defined in Control.Monad.Error.Class | |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
a ~ () => HPrintfType (IO a) | Since: base-4.7.0.0 |
Defined in Text.Printf | |
a ~ () => PrintfType (IO a) | Since: base-4.7.0.0 |
Defined in Text.Printf | |
Default a => Default (IO a) | |
Defined in Data.Default.Class | |
HasName (IO ()) Source # | |
Instances
Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in Data.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
Bounded Word | Since: base-2.1 |
Enum Word | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Num Word | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Integral Word | Since: base-2.1 |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Show Word | Since: base-2.1 |
PrintfArg Word | Since: base-2.1 |
Defined in Text.Printf | |
Default Word | |
Defined in Data.Default.Class | |
NFData Word | |
Defined in Control.DeepSeq | |
Eq Word | |
Ord Word | |
Random Word | |
Finite Word | |
Defined in System.Random.GFinite | |
Uniform Word | |
Defined in System.Random.Internal | |
UniformRange Word | |
Defined in System.Random.Internal | |
Generic1 (URec Word :: k -> Type) | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Word p) | |
Show (URec Word p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
MonadFix (Either e) | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Applicative (Either e) | Since: base-3.0 |
Functor (Either a) | Since: base-3.0 |
Monad (Either e) | Since: base-4.4.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Generic1 (Either a :: Type -> Type) | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Generic (Either a b) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Finite a, Finite b) => Finite (Either a b) | |
Defined in System.Random.GFinite Methods cardinality :: Proxy# (Either a b) -> Cardinality toFinite :: Integer -> Either a b fromFinite :: Either a b -> Integer | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) |
writeFile :: FilePath -> String -> IO () #
The computation writeFile
file str
function writes the string str
,
to the file file
.
readFile :: FilePath -> IO String #
The readFile
function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents
.
interact :: (String -> String) -> IO () #
The interact
function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
getContents :: IO String #
The getContents
operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents
stdin
).
appendFile :: FilePath -> String -> IO () #
The computation appendFile
file str
function appends the string str
,
to the file file
.
Note that writeFile
and appendFile
write a literal string
to a file. To write a value of any printable type, as with print
,
use the show
function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
File and directory names are values of type String
, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
type IOError = IOException #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence
.
sequence_
is just like sequenceA_
, but specialised to monadic
actions.
or :: Foldable t => t Bool -> Bool #
or
returns the disjunction of a container of Bools. For the
result to be False
, the container must be finite; True
, however,
results from a True
value finitely far from the left end.
Examples
Basic usage:
>>>
or []
False
>>>
or [True]
True
>>>
or [False]
False
>>>
or [True, True, False]
True
>>>
or (True : repeat False) -- Infinite list [True,False,False,False,...
True
>>>
or (repeat False)
* Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem
is the negation of elem
.
Examples
Basic usage:
>>>
3 `notElem` []
True
>>>
3 `notElem` [1,2]
True
>>>
3 `notElem` [1,2,3,4,5]
False
For infinite structures, notElem
terminates if the value exists at a
finite distance from the left side of the structure:
>>>
3 `notElem` [1..]
False
>>>
3 `notElem` ([4..] ++ [3])
* Hangs forever *
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>
concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>
concatMap (take 3) (Just [1..])
[1,2,3]
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>
concat (Just [1, 2, 3])
[1,2,3]
>>>
concat (Left 42)
[]
>>>
concat [[1, 2, 3], [4, 5], [6], []]
[1,2,3,4,5,6]
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>
any (> 3) []
False
>>>
any (> 3) [1,2]
False
>>>
any (> 3) [1,2,3,4,5]
True
>>>
any (> 3) [1..]
True
>>>
any (> 3) [0, -1..]
* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and
returns the conjunction of a container of Bools. For the
result to be True
, the container must be finite; False
, however,
results from a False
value finitely far from the left end.
Examples
Basic usage:
>>>
and []
True
>>>
and [True]
True
>>>
and [False]
False
>>>
and [True, True, False]
False
>>>
and (False : repeat True) -- Infinite list [False,True,True,True,...
False
>>>
and (repeat True)
* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>
all (> 3) []
True
>>>
all (> 3) [1,2]
False
>>>
all (> 3) [1,2,3,4,5]
False
>>>
all (> 3) [1..]
False
>>>
all (> 3) [4..]
* Hangs forever *
words
breaks a string up into a list of words, which were delimited
by white space.
>>>
words "Lorem ipsum\ndolor"
["Lorem","ipsum","dolor"]
lines
breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>
lines ""
[]
>>>
lines "\n"
[""]
>>>
lines "one"
["one"]
>>>
lines "one\n"
["one"]
>>>
lines "one\n\n"
["one",""]
>>>
lines "one\ntwo"
["one","two"]
>>>
lines "one\ntwo\n"
["one","two"]
Thus
contains at least as many elements as newlines in lines
ss
.
read :: Read a => String -> a #
The read
function reads input from a string, which must be
completely consumed by the input process. read
fails with an error
if the
parse is unsuccessful, and it is therefore discouraged from being used in
real applications. Use readMaybe
or readEither
for safe alternatives.
>>>
read "123" :: Int
123
>>>
read "hello" :: Int
*** Exception: Prelude.read: no parse
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either
type.
If the value is
, apply the first function to Left
aa
;
if it is
, apply the second function to Right
bb
.
Examples
We create two values of type
, one using the
Either
String
Int
Left
constructor and another using the Right
constructor. Then
we apply "either" the length
function (if we have a String
)
or the "times-two" function (if we have an Int
):
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
either length (*2) s
3>>>
either length (*2) n
6
The lex
function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex
returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex
"" = [("","")]lex
fails (i.e. returns []
).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm
x yx
and y
divide.
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd
x yx
and y
of which
every common factor of x
and y
is also a factor; for example
, gcd
4 2 = 2
, gcd
(-4) 6 = 2
= gcd
0 44
.
= gcd
0 00
.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types,
,
the result may be negative if one of the arguments is abs
minBound
< 0
(and
necessarily is if the other is minBound
0
or
) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
showString :: String -> ShowS #
utility function converting a String
to a show function that
simply prepends the string unchanged.
utility function converting a Char
to a show function that
simply prepends the character unchanged.
zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] #
The zipWith3
function takes a function which combines three
elements, as well as three lists and returns a list of the function applied
to corresponding elements, analogous to zipWith
.
It is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 (,,) xs ys zs == zip3 xs ys zs zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example,
is applied to two lists to produce the list of
corresponding sums:zipWith
(+)
>>>
zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
zipWith
is right-lazy:
>>>
zipWith f [] _|_
[]
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
>>>
unzip []
([],[])>>>
unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
.
>>>
takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]>>>
takeWhile (< 9) [1,2,3]
[1,2,3]>>>
takeWhile (< 0) [1,2,3]
[]
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >=
.length
xs
>>>
take 5 "Hello World!"
"Hello">>>
take 3 [1,2,3,4,5]
[1,2,3]>>>
take 3 [1,2]
[1,2]>>>
take 3 []
[]>>>
take (-1) [1,2]
[]>>>
take 0 [1,2]
[]
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
\(\mathcal{O}(1)\). Extract the elements after the head of a list, which must be non-empty.
>>>
tail [1, 2, 3]
[2,3]>>>
tail [1]
[]>>>
tail []
Exception: Prelude.tail: empty list
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
>>>
splitAt 6 "Hello World!"
("Hello ","World!")>>>
splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])>>>
splitAt 1 [1,2,3]
([1],[2,3])>>>
splitAt 3 [1,2,3]
([1,2,3],[])>>>
splitAt 4 [1,2,3]
([1,2,3],[])>>>
splitAt 0 [1,2,3]
([],[1,2,3])>>>
splitAt (-1) [1,2,3]
([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
satisfy p
and second element is the remainder of the list:
>>>
span (< 3) [1,2,3,4,1,2,3,4]
([1,2],[3,4,1,2,3,4])>>>
span (< 9) [1,2,3]
([1,2,3],[])>>>
span (< 0) [1,2,3]
([],[1,2,3])
scanr1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanr1
is a variant of scanr
that has no starting
value argument.
>>>
scanr1 (+) [1..4]
[10,9,7,4]>>>
scanr1 (+) []
[]>>>
scanr1 (-) [1..4]
[-2,3,-1,4]>>>
scanr1 (&&) [True, False, True, True]
[False,False,True,True]>>>
scanr1 (||) [True, True, False, False]
[True,True,False,False]>>>
force $ scanr1 (+) [1..]
*** Exception: stack overflow
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr
is the right-to-left dual of scanl
. Note that the order of parameters on the accumulating function are reversed compared to scanl
.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>
scanr (+) 0 [1..4]
[10,9,7,4,0]>>>
scanr (+) 42 []
[42]>>>
scanr (-) 100 [1..4]
[98,-97,99,-96,100]>>>
scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>
force $ scanr (+) 0 [1..]
*** Exception: stack overflow
scanl1 :: (a -> a -> a) -> [a] -> [a] #
\(\mathcal{O}(n)\). scanl1
is a variant of scanl
that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>
scanl1 (+) [1..4]
[1,3,6,10]>>>
scanl1 (+) []
[]>>>
scanl1 (-) [1..4]
[1,-1,-4,-8]>>>
scanl1 (&&) [True, False, True, True]
[True,False,False,False]>>>
scanl1 (||) [False, False, True, True]
[False,False,True,True]>>>
scanl1 (+) [1..]
* Hangs forever *
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl
is similar to foldl
, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>
scanl (+) 0 [1..4]
[0,1,3,6,10]>>>
scanl (+) 42 []
[42]>>>
scanl (-) 100 [1..4]
[100,99,97,94,90]>>>
scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>
scanl (+) 0 [1..]
* Hangs forever *
reverse
xs
returns the elements of xs
in reverse order.
xs
must be finite.
>>>
reverse []
[]>>>
reverse [42]
[42]>>>
reverse [2,5,7]
[7,5,2]>>>
reverse [1..]
* Hangs forever *
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
>>>
replicate 0 True
[]>>>
replicate (-1) True
[]>>>
replicate 4 True
[True,True,True,True]
repeat
x
is an infinite list, with x
the value of every element.
>>>
take 20 $ repeat 17
[17,17,17,17,17,17,17,17,17...
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
\(\mathcal{O}(n)\). lookup
key assocs
looks up a key in an association
list.
>>>
lookup 2 []
Nothing>>>
lookup 2 [(1, "first")]
Nothing>>>
lookup 2 [(1, "first"), (2, "second"), (3, "third")]
Just "second"
\(\mathcal{O}(n)\). Extract the last element of a list, which must be finite and non-empty.
>>>
last [1, 2, 3]
3>>>
last [1..]
* Hangs forever *>>>
last []
Exception: Prelude.last: empty list
iterate :: (a -> a) -> a -> [a] #
iterate
f x
returns an infinite list of repeated applications
of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Note that iterate
is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate'
for a strict
variant of this function.
>>>
take 10 $ iterate not True
[True,False,True,False...>>>
take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63...
\(\mathcal{O}(n)\). Return all the elements of a list except the last one. The list must be non-empty.
>>>
init [1, 2, 3]
[1,2]>>>
init [1]
[]>>>
init []
Exception: Prelude.init: empty list
\(\mathcal{O}(1)\). Extract the first element of a list, which must be non-empty.
>>>
head [1, 2, 3]
1>>>
head [1..]
1>>>
head []
Exception: Prelude.head: empty list
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >=
.length
xs
>>>
drop 6 "Hello World!"
"World!">>>
drop 3 [1,2,3,4,5]
[4,5]>>>
drop 3 [1,2]
[]>>>
drop 3 []
[]>>>
drop (-1) [1,2]
[1,2]>>>
drop 0 [1,2]
[1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>
cycle []
*** Exception: Prelude.cycle: empty list>>>
take 20 $ cycle [42]
[42,42,42,42,42,42,42,42,42,42...>>>
take 20 $ cycle [2, 5, 7]
[2,5,7,2,5,7,2,5,7,2,5,7...
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
>>>
break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])>>>
break (< 9) [1,2,3]
([],[1,2,3])>>>
break (> 9) [1,2,3]
([1,2,3],[])
(!!) :: [a] -> Int -> a infixl 9 #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex
,
which takes an index of any integral type.
>>>
['a', 'b', 'c'] !! 0
'a'>>>
['a', 'b', 'c'] !! 2
'c'>>>
['a', 'b', 'c'] !! 3
Exception: Prelude.!!: index too large>>>
['a', 'b', 'c'] !! (-1)
Exception: Prelude.!!: negative index
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe
function takes a default value, a function, and a Maybe
value. If the Maybe
value is Nothing
, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just
and returns the result.
Examples
Basic usage:
>>>
maybe False odd (Just 3)
True
>>>
maybe False odd Nothing
False
Read an integer from a string using readMaybe
. If we succeed,
return twice the integer; that is, apply (*2)
to it. If instead
we fail to parse an integer, return 0
by default:
>>>
import Text.Read ( readMaybe )
>>>
maybe 0 (*2) (readMaybe "5")
10>>>
maybe 0 (*2) (readMaybe "")
0
Apply show
to a Maybe Int
. If we have Just n
, we want to show
the underlying Int
n
. But if we have Nothing
, we return the
empty string instead of (for example) "Nothing":
>>>
maybe "" show (Just 5)
"5">>>
maybe "" show Nothing
""
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry
converts a curried function to a function on pairs.
Examples
>>>
uncurry (+) (1,2)
3
>>>
uncurry ($) (show, 1)
"1"
>>>
map (uncurry max) [(1,2), (3,4), (6,8)]
[2,4,8]
until :: (a -> Bool) -> (a -> a) -> a -> a #
yields the result of applying until
p ff
until p
holds.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip
ff
.
>>>
flip (++) "hello" "world"
"worldhello"
const x
is a unary function which evaluates to x
for all inputs.
>>>
const 42 "hello"
42
>>>
map (const 42) [0..3]
[42,42,42,42]
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=
, but with the arguments interchanged.
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a #
A variant of error
that does not produce a stack trace.
Since: base-4.9.0.0
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error
stops execution and displays an error message.
Core
These are the building blocks on which the config language is built. Regular people shouldn't need to know about these.
type Prime l l' = Arr (XConfig l) (XConfig l') Source #
A Prime is a function that transforms an XConfig. It's not a monad, but we turn on RebindableSyntax so we can abuse the pretty do notation.
type Arr x y = x -> IO y Source #
An Arr is a generalization of Prime. Don't reference the type, if you can avoid it. It might go away in the future.
ifThenElse :: Bool -> a -> a -> a Source #
Because of RebindableSyntax, this is necessary to enable you to use if-then-else expressions. No need to call it directly.
Example config
As an example, I've included below a subset of my current config. Note that my import statements specify individual identifiers in parentheticals. That's optional. The default is to import the entire module. I just find it helpful to remind me where things came from.
{-# LANGUAGE RebindableSyntax #-} import XMonad.Config.Prime import XMonad.Actions.CycleWS (prevWS, nextWS) import XMonad.Actions.SwapWorkspaces (swapWithCurrent) import XMonad.Actions.WindowNavigation (withWindowNavigation) import XMonad.Layout.Fullscreen (fullscreenSupport) import XMonad.Layout.NoBorders (smartBorders) import XMonad.Layout.Tabbed (simpleTabbed) main = xmonad $ do modMask =: mod4Mask normalBorderColor =: "#222222" terminal =: "urxvt" focusFollowsMouse =: False resetLayout $ Tall 1 (3/100) (1/2) ||| simpleTabbed modifyLayout smartBorders apply fullscreenSupport applyIO $ withWindowNavigation (xK_w, xK_a, xK_s, xK_d) withWorkspaces $ do wsKeys =+ ["0"] wsActions =+ [("M-M1-", windows . swapWithCurrent)] keys =+ [ ("M-,", sendMessage $ IncMasterN (-1)), ("M-.", sendMessage $ IncMasterN 1), ("M-M1-d", spawn "date | dzen2 -fg '#eeeeee' -p 2"), ("C-S-q", return ()), ("<XF86AudioLowerVolume>", spawn "amixer set Master 5%-"), ("<XF86AudioRaiseVolume>", spawn "amixer set Master 5%+"), ("M-M1-x", kill), ("M-i", prevWS), ("M-o", nextWS) ]
Troubleshooting
Only the last line of my config seems to take effect. What gives?
You're missing the {-# LANGUAGE RebindableSyntax #-}
line at the top.
How do I do use normal monads like X
or IO
?
Here are a couple of ways:
import qualified Prelude as P ... test1, test2 :: X () test1 = spawn "echo Hi" P.>> spawn "echo Bye" test2 = do spawn "echo Hi" spawn "echo Bye" where (>>) = (P.>>)
How do I use the old keyboard syntax?
You can use apply
and supply your own Haskell function. For instance:
apply $ flip additionalKeys $ [((mod1Mask, xK_z), spawn "date | dzen2 -fg '#eeeeee' -p 2")]
How do I run a command before xmonad starts (like spawnPipe
)?
If you're using it for a status bar, see if dzen
or xmobar
does what you want. If so, you can apply
it with applyIO
.
If not, you can write your own XConfig l -> IO (XConfig l)
and apply it
with applyIO
. When writing this function, see the above tip about using
normal monads.
Alternatively, you could do something like this this:
import qualified Prelude as P (>>) main = openFile ".xmonad.log" AppendMode >>= \log -> hSetBuffering log LineBuffering P.>> (xmonad $ do nothing -- Prime config here. )