algebra-4.3.1: Constructive abstract algebra

Safe HaskellNone
LanguageHaskell98

Numeric.Map

Synopsis

Documentation

newtype Map r b a Source #

linear maps from elements of a free module to another free module over r

f $# x + y = (f $# x) + (f $# y)
f $# (r .* x) = r .* (f $# x)

Map r b a represents a linear mapping from a free module with basis a over r to a free module with basis b over r.

Note well the reversed direction of the arrow, due to the contravariance of change of basis!

This way enables we can employ arbitrary pure functions as linear maps by lifting them using arr, or build them by using the monad instance for Map r b. As a consequence Map is an instance of, well, almost everything.

Constructors

Map ((a -> r) -> b -> r) 

Instances

MonadReader b (Map r b) Source # 

Methods

ask :: Map r b b #

local :: (b -> b) -> Map r b a -> Map r b a #

reader :: (b -> a) -> Map r b a #

RightModule r s => RightModule r (Map s b m) Source # 

Methods

(*.) :: Map s b m -> r -> Map s b m Source #

LeftModule r s => LeftModule r (Map s b m) Source # 

Methods

(.*) :: r -> Map s b m -> Map s b m Source #

Arrow (Map r) Source # 

Methods

arr :: (b -> c) -> Map r b c #

first :: Map r b c -> Map r (b, d) (c, d) #

second :: Map r b c -> Map r (d, b) (d, c) #

(***) :: Map r b c -> Map r b' c' -> Map r (b, b') (c, c') #

(&&&) :: Map r b c -> Map r b c' -> Map r b (c, c') #

Monoidal r => ArrowZero (Map r) Source # 

Methods

zeroArrow :: Map r b c #

Monoidal r => ArrowPlus (Map r) Source # 

Methods

(<+>) :: Map r b c -> Map r b c -> Map r b c #

ArrowChoice (Map r) Source # 

Methods

left :: Map r b c -> Map r (Either b d) (Either c d) #

right :: Map r b c -> Map r (Either d b) (Either d c) #

(+++) :: Map r b c -> Map r b' c' -> Map r (Either b b') (Either c c') #

(|||) :: Map r b d -> Map r c d -> Map r (Either b c) d #

ArrowApply (Map r) Source # 

Methods

app :: Map r (Map r b c, b) c #

Category * (Map r) Source # 

Methods

id :: cat a a #

(.) :: cat b c -> cat a b -> cat a c #

Semigroupoid * (Map r) Source # 

Methods

o :: c j k1 -> c i j -> c i k1 #

Monad (Map r b) Source # 

Methods

(>>=) :: Map r b a -> (a -> Map r b b) -> Map r b b #

(>>) :: Map r b a -> Map r b b -> Map r b b #

return :: a -> Map r b a #

fail :: String -> Map r b a #

Functor (Map r b) Source # 

Methods

fmap :: (a -> b) -> Map r b a -> Map r b b #

(<$) :: a -> Map r b b -> Map r b a #

Applicative (Map r b) Source # 

Methods

pure :: a -> Map r b a #

(<*>) :: Map r b (a -> b) -> Map r b a -> Map r b b #

liftA2 :: (a -> b -> c) -> Map r b a -> Map r b b -> Map r b c #

(*>) :: Map r b a -> Map r b b -> Map r b b #

(<*) :: Map r b a -> Map r b b -> Map r b a #

Monoidal r => Alternative (Map r b) Source # 

Methods

empty :: Map r b a #

(<|>) :: Map r b a -> Map r b a -> Map r b a #

some :: Map r b a -> Map r b [a] #

many :: Map r b a -> Map r b [a] #

Monoidal r => MonadPlus (Map r b) Source # 

Methods

mzero :: Map r b a #

mplus :: Map r b a -> Map r b a -> Map r b a #

Monoidal r => Plus (Map r b) Source # 

Methods

zero :: Map r b a #

Additive r => Alt (Map r b) Source # 

Methods

(<!>) :: Map r b a -> Map r b a -> Map r b a #

some :: Applicative (Map r b) => Map r b a -> Map r b [a] #

many :: Applicative (Map r b) => Map r b a -> Map r b [a] #

Apply (Map r b) Source # 

Methods

(<.>) :: Map r b (a -> b) -> Map r b a -> Map r b b #

(.>) :: Map r b a -> Map r b b -> Map r b b #

(<.) :: Map r b a -> Map r b b -> Map r b a #

Bind (Map r b) Source # 

Methods

(>>-) :: Map r b a -> (a -> Map r b b) -> Map r b b #

join :: Map r b (Map r b a) -> Map r b a #

Abelian s => Abelian (Map s b a) Source # 
Additive r => Additive (Map r b a) Source # 

Methods

(+) :: Map r b a -> Map r b a -> Map r b a Source #

sinnum1p :: Natural -> Map r b a -> Map r b a Source #

sumWith1 :: Foldable1 f => (a -> Map r b a) -> f a -> Map r b a Source #

Monoidal s => Monoidal (Map s b a) Source # 

Methods

zero :: Map s b a Source #

sinnum :: Natural -> Map s b a -> Map s b a Source #

sumWith :: Foldable f => (a -> Map s b a) -> f a -> Map s b a Source #

Coalgebra r m => Semiring (Map r b m) Source # 
Coalgebra r m => Multiplicative (Map r b m) Source # 

Methods

(*) :: Map r b m -> Map r b m -> Map r b m Source #

pow1p :: Map r b m -> Natural -> Map r b m Source #

productWith1 :: Foldable1 f => (a -> Map r b m) -> f a -> Map r b m Source #

Group s => Group (Map s b a) Source # 

Methods

(-) :: Map s b a -> Map s b a -> Map s b a Source #

negate :: Map s b a -> Map s b a Source #

subtract :: Map s b a -> Map s b a -> Map s b a Source #

times :: Integral n => n -> Map s b a -> Map s b a Source #

CounitalCoalgebra r m => Unital (Map r b m) Source # 

Methods

one :: Map r b m Source #

pow :: Map r b m -> Natural -> Map r b m Source #

productWith :: Foldable f => (a -> Map r b m) -> f a -> Map r b m Source #

(Commutative m, Coalgebra r m) => Commutative (Map r b m) Source # 
(Rig r, CounitalCoalgebra r m) => Rig (Map r b m) Source # 

Methods

fromNatural :: Natural -> Map r b m Source #

(Ring r, CounitalCoalgebra r m) => Ring (Map r a m) Source # 

Methods

fromInteger :: Integer -> Map r a m Source #

Coalgebra r m => RightModule (Map r b m) (Map r b m) Source # 

Methods

(*.) :: Map r b m -> Map r b m -> Map r b m Source #

Coalgebra r m => LeftModule (Map r b m) (Map r b m) Source # 

Methods

(.*) :: Map r b m -> Map r b m -> Map r b m Source #

($@) :: Map r b a -> b -> Covector r a infixr 0 Source #

extract a linear functional from a linear map

multMap :: Coalgebra r c => Map r (c, c) c Source #

comultMap :: Algebra r a => Map r a (a, a) Source #

(inefficiently) combine a linear combination of basis vectors to make a map. arrMap :: (Monoidal r, Semiring r) => (b -> [(r, a)]) -> Map r b a arrMap f = Map $ k b -> sum [ r * k a | (r, a) <- f b ]

convolveMap :: (Algebra r a, Coalgebra r c) => Map r a c -> Map r a c -> Map r a c Source #

convolution given an associative algebra and coassociative coalgebra