{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NegativeLiterals #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_GHC -fplugin=GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module Clash.Sized.Fixed
(
SFixed, sf, unSF
, UFixed, uf, unUF
, divide
, fLit
, fLitR
, Fixed (..), resizeF, fracShift
, NumSFixedC, ENumSFixedC, FracSFixedC, ResizeSFC, DivideSC
, NumUFixedC, ENumUFixedC, FracUFixedC, ResizeUFC, DivideUC
, NumFixedC, ENumFixedC, FracFixedC, ResizeFC, DivideC
, asRepProxy, asIntProxy
)
where
import Control.DeepSeq (NFData)
import Control.Arrow ((***), second)
import Data.Bits (Bits (..), FiniteBits)
import Data.Data (Data)
import Data.Default.Class (Default (..))
import Data.Either (isLeft)
import Data.Kind (Type)
import Text.Read (Read(..))
import Data.List (find)
import Data.Proxy (Proxy (..))
import Data.Ratio ((%), denominator, numerator)
import Data.Typeable (Typeable, TypeRep, typeRep, typeOf)
import GHC.TypeLits (KnownNat, Nat, type (+), natVal)
import GHC.TypeLits.Extra (Max)
import Language.Haskell.TH (Q, appT, conT, litT, mkName,
numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
#if MIN_VERSION_template_haskell(2,16,0)
import Language.Haskell.TH.Compat
#endif
#if MIN_VERSION_template_haskell(2,17,0)
import Language.Haskell.TH (Quote)
import qualified Language.Haskell.TH as TH
#else
import Language.Haskell.TH (TExp, TypeQ)
#endif
import Test.QuickCheck (Arbitrary, CoArbitrary)
import Clash.Class.BitPack (BitPack (..))
import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..), boundedAdd, boundedSub,
boundedMul)
import Clash.Class.Resize (Resize (..))
import Clash.Promoted.Nat (SNat, natToNum, natToInteger)
import Clash.Class.BitPack.BitIndex (lsb, msb, split)
import Clash.Class.BitPack.BitReduction (reduceAnd, reduceOr)
import Clash.Sized.BitVector (BitVector, (++#))
import Clash.Sized.Signed (Signed)
import Clash.Sized.Unsigned (Unsigned)
import Clash.XException
(ShowX (..), NFDataX (..), isX, errorX, showsPrecXWith, fromJustX)
newtype Fixed (rep :: Nat -> Type) (int :: Nat) (frac :: Nat) =
Fixed { Fixed rep int frac -> rep (int + frac)
unFixed :: rep (int + frac) }
deriving instance NFData (rep (int + frac)) => NFData (Fixed rep int frac)
deriving instance (Typeable rep, Typeable int, Typeable frac
, Data (rep (int + frac))) => Data (Fixed rep int frac)
deriving instance Eq (rep (int + frac)) => Eq (Fixed rep int frac)
deriving instance Ord (rep (int + frac)) => Ord (Fixed rep int frac)
deriving instance Bounded (rep (int + frac)) => Bounded (Fixed rep int frac)
deriving instance Default (rep (int + frac)) => Default (Fixed rep int frac)
deriving instance Arbitrary (rep (int + frac)) => Arbitrary (Fixed rep int frac)
deriving instance CoArbitrary (rep (int + frac)) => CoArbitrary (Fixed rep int frac)
deriving instance FiniteBits (rep (int + frac)) => FiniteBits (Fixed rep int frac)
deriving instance Bits (rep (int + frac)) => Bits (Fixed rep int frac)
type SFixed = Fixed Signed
type UFixed = Fixed Unsigned
{-# INLINE sf #-}
sf
:: SNat frac
-> Signed (int + frac)
-> SFixed int frac
sf :: SNat frac -> Signed (int + frac) -> SFixed int frac
sf SNat frac
_ Signed (int + frac)
fRep = Signed (int + frac) -> SFixed int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed Signed (int + frac)
fRep
{-# INLINE unSF #-}
unSF :: SFixed int frac
-> Signed (int + frac)
unSF :: SFixed int frac -> Signed (int + frac)
unSF (Fixed Signed (int + frac)
fRep) = Signed (int + frac)
fRep
{-# INLINE uf #-}
uf
:: SNat frac
-> Unsigned (int + frac)
-> UFixed int frac
uf :: SNat frac -> Unsigned (int + frac) -> UFixed int frac
uf SNat frac
_ Unsigned (int + frac)
fRep = Unsigned (int + frac) -> UFixed int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed Unsigned (int + frac)
fRep
{-# INLINE unUF #-}
unUF :: UFixed int frac
-> Unsigned (int + frac)
unUF :: UFixed int frac -> Unsigned (int + frac)
unUF (Fixed Unsigned (int + frac)
fRep) = Unsigned (int + frac)
fRep
{-# INLINE asRepProxy #-}
asRepProxy :: Fixed rep int frac -> Proxy rep
asRepProxy :: Fixed rep int frac -> Proxy rep
asRepProxy Fixed rep int frac
_ = Proxy rep
forall k (t :: k). Proxy t
Proxy
{-# INLINE asIntProxy #-}
asIntProxy :: Fixed rep int frac -> Proxy int
asIntProxy :: Fixed rep int frac -> Proxy int
asIntProxy Fixed rep int frac
_ = Proxy int
forall k (t :: k). Proxy t
Proxy
fracShift :: KnownNat frac => Fixed rep int frac -> Int
fracShift :: Fixed rep int frac -> Int
fracShift Fixed rep int frac
fx = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Fixed rep int frac -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Fixed rep int frac
fx)
instance ( size ~ (int + frac), KnownNat frac, Integral (rep size)
) => Show (Fixed rep int frac) where
show :: Fixed rep int frac -> String
show f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) =
String
i String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"." String -> ShowS
forall a. [a] -> [a] -> [a]
++ ((Int -> ShowS) -> (Int, String) -> String
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Int -> ShowS
pad ((Int, String) -> String)
-> (Ratio Integer -> (Int, String)) -> Ratio Integer -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Ratio Integer -> String) -> (Int, Ratio Integer) -> (Int, String)
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Integer -> String
forall a. Show a => a -> String
show (Integer -> String)
-> (Ratio Integer -> Integer) -> Ratio Integer -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ratio Integer -> Integer
forall a. Ratio a -> a
numerator) ((Int, Ratio Integer) -> (Int, String))
-> (Ratio Integer -> (Int, Ratio Integer))
-> Ratio Integer
-> (Int, String)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Maybe (Int, Ratio Integer) -> (Int, Ratio Integer)
forall a. (HasCallStack, NFDataX a) => Maybe a -> a
fromJustX (Maybe (Int, Ratio Integer) -> (Int, Ratio Integer))
-> (Ratio Integer -> Maybe (Int, Ratio Integer))
-> Ratio Integer
-> (Int, Ratio Integer)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Int, Ratio Integer) -> Bool)
-> [(Int, Ratio Integer)] -> Maybe (Int, Ratio Integer)
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Maybe a
find ((Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
==Integer
1) (Integer -> Bool)
-> ((Int, Ratio Integer) -> Integer)
-> (Int, Ratio Integer)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ratio Integer -> Integer
forall a. Ratio a -> a
denominator (Ratio Integer -> Integer)
-> ((Int, Ratio Integer) -> Ratio Integer)
-> (Int, Ratio Integer)
-> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int, Ratio Integer) -> Ratio Integer
forall a b. (a, b) -> b
snd) ([(Int, Ratio Integer)] -> Maybe (Int, Ratio Integer))
-> (Ratio Integer -> [(Int, Ratio Integer)])
-> Ratio Integer
-> Maybe (Int, Ratio Integer)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
((Int, Ratio Integer) -> (Int, Ratio Integer))
-> (Int, Ratio Integer) -> [(Int, Ratio Integer)]
forall a. (a -> a) -> a -> [a]
iterate (Int -> Int
forall a. Enum a => a -> a
succ (Int -> Int)
-> (Ratio Integer -> Ratio Integer)
-> (Int, Ratio Integer)
-> (Int, Ratio Integer)
forall (a :: Type -> Type -> Type) b c b' c'.
Arrow a =>
a b c -> a b' c' -> a (b, b') (c, c')
*** (Ratio Integer -> Ratio Integer -> Ratio Integer
forall a. Num a => a -> a -> a
*Ratio Integer
10)) ((Int, Ratio Integer) -> [(Int, Ratio Integer)])
-> (Ratio Integer -> (Int, Ratio Integer))
-> Ratio Integer
-> [(Int, Ratio Integer)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (,) Int
0 (Ratio Integer -> String) -> Ratio Integer -> String
forall a b. (a -> b) -> a -> b
$ (Integer
nom Integer -> Integer -> Ratio Integer
forall a. Integral a => a -> a -> Ratio a
% Integer
denom))
where
pad :: Int -> ShowS
pad Int
n String
str = Int -> Char -> String
forall a. Int -> a -> [a]
replicate (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- String -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length String
str) Char
'0' String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
str
nF :: Int
nF = Fixed rep int frac -> Int
forall (frac :: Nat) (rep :: Nat -> Type) (int :: Nat).
KnownNat frac =>
Fixed rep int frac -> Int
fracShift Fixed rep int frac
f
fRepI :: Integer
fRepI = rep size -> Integer
forall a. Integral a => a -> Integer
toInteger rep size
rep (int + frac)
fRep
fRepI_abs :: Integer
fRepI_abs = Integer -> Integer
forall a. Num a => a -> a
abs Integer
fRepI
i :: String
i = if Integer
fRepI Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 then Char
'-' Char -> ShowS
forall a. a -> [a] -> [a]
: Integer -> String
forall a. Show a => a -> String
show (Integer
fRepI_abs Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Int
nF)
else Integer -> String
forall a. Show a => a -> String
show (Integer
fRepI Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Int
nF)
nom :: Integer
nom = if Integer
fRepI Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 then Integer
fRepI_abs Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. ((Integer
2 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
nF) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
else Integer
fRepI Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. ((Integer
2 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
nF) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
denom :: Integer
denom = Integer
2 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
nF
instance ( size ~ (int + frac), KnownNat frac, Integral (rep size)
) => ShowX (Fixed rep int frac) where
showsPrecX :: Int -> Fixed rep int frac -> ShowS
showsPrecX = (Int -> Fixed rep int frac -> ShowS)
-> Int -> Fixed rep int frac -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> Fixed rep int frac -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
instance NFDataX (rep (int + frac)) => NFDataX (Fixed rep int frac) where
deepErrorX :: String -> Fixed rep int frac
deepErrorX = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> (String -> rep (int + frac)) -> String -> Fixed rep int frac
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> rep (int + frac)
forall a. HasCallStack => String -> a
errorX
rnfX :: Fixed rep int frac -> ()
rnfX f :: Fixed rep int frac
f@(~(Fixed rep (int + frac)
x)) = if Either String (Fixed rep int frac) -> Bool
forall a b. Either a b -> Bool
isLeft (Fixed rep int frac -> Either String (Fixed rep int frac)
forall a. a -> Either String a
isX Fixed rep int frac
f) then () else rep (int + frac) -> ()
forall a. NFDataX a => a -> ()
rnfX rep (int + frac)
x
hasUndefined :: Fixed rep int frac -> Bool
hasUndefined f :: Fixed rep int frac
f@(~(Fixed rep (int + frac)
x)) = if Either String (Fixed rep int frac) -> Bool
forall a b. Either a b -> Bool
isLeft (Fixed rep int frac -> Either String (Fixed rep int frac)
forall a. a -> Either String a
isX Fixed rep int frac
f) then Bool
True else rep (int + frac) -> Bool
forall a. NFDataX a => a -> Bool
hasUndefined rep (int + frac)
x
ensureSpine :: Fixed rep int frac -> Fixed rep int frac
ensureSpine ~(Fixed rep (int + frac)
x) = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed rep (int + frac)
x
instance (size ~ (int + frac), KnownNat frac, Bounded (rep size), Integral (rep size))
=> Read (Fixed rep int frac) where
readPrec :: ReadPrec (Fixed rep int frac)
readPrec = Double -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat)
(size :: Nat).
(size ~ (int + frac), KnownNat frac, Bounded (rep size),
Integral (rep size)) =>
Double -> Fixed rep int frac
fLitR (Double -> Fixed rep int frac)
-> ReadPrec Double -> ReadPrec (Fixed rep int frac)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec Double
forall a. Read a => ReadPrec a
readPrec
type ENumFixedC rep int1 frac1 int2 frac2
= ( Bounded (rep ((1 + Max int1 int2) + Max frac1 frac2))
, Num (rep ((1 + Max int1 int2) + Max frac1 frac2))
, Bits (rep ((1 + Max int1 int2) + Max frac1 frac2))
, ExtendingNum (rep (int1 + frac1)) (rep (int2 + frac2))
, MResult (rep (int1 + frac1)) (rep (int2 + frac2)) ~
rep ((int1 + int2) + (frac1 + frac2))
, KnownNat int1
, KnownNat int2
, KnownNat frac1
, KnownNat frac2
, Resize rep
)
type ENumSFixedC int1 frac1 int2 frac2
= ( KnownNat (int2 + frac2)
, KnownNat (1 + Max int1 int2 + Max frac1 frac2)
, KnownNat (Max frac1 frac2)
, KnownNat (1 + Max int1 int2)
, KnownNat (int1 + frac1)
, KnownNat frac2
, KnownNat int2
, KnownNat frac1
, KnownNat int1
)
type ENumUFixedC int1 frac1 int2 frac2 =
ENumSFixedC int1 frac1 int2 frac2
instance ENumFixedC rep int1 frac1 int2 frac2 =>
ExtendingNum (Fixed rep int1 frac1) (Fixed rep int2 frac2) where
type AResult (Fixed rep int1 frac1) (Fixed rep int2 frac2) =
Fixed rep (1 + Max int1 int2) (Max frac1 frac2)
add :: Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> AResult (Fixed rep int1 frac1) (Fixed rep int2 frac2)
add (Fixed rep (int1 + frac1)
f1) (Fixed rep (int2 + frac2)
f2) =
let sh1 :: Int
sh1 = forall a. (Num a, KnownNat (Max frac1 frac2)) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @(Max frac1 frac2) Int -> Int -> Int
forall a. Num a => a -> a -> a
- forall a. (Num a, KnownNat frac1) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac1 :: Int
f1R :: rep ((1 + Max int1 int2) + Max frac1 frac2)
f1R = rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Int -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Bits a => a -> Int -> a
shiftL (rep (int1 + frac1) -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
f1) Int
sh1 :: rep ((1 + Max int1 int2) + (Max frac1 frac2))
sh2 :: Int
sh2 = forall a. (Num a, KnownNat (Max frac1 frac2)) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @(Max frac1 frac2) Int -> Int -> Int
forall a. Num a => a -> a -> a
- forall a. (Num a, KnownNat frac2) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac2 :: Int
f2R :: rep ((1 + Max int1 int2) + Max frac1 frac2)
f2R = rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Int -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Bits a => a -> Int -> a
shiftL (rep (int2 + frac2) -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int2 + frac2)
f2) Int
sh2 :: rep ((1 + Max int1 int2) + (Max frac1 frac2))
in rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Fixed rep (1 + Max int1 int2) (Max frac1 frac2)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep ((1 + Max int1 int2) + Max frac1 frac2)
f1R rep ((1 + Max int1 int2) + Max frac1 frac2)
-> rep ((1 + Max int1 int2) + Max frac1 frac2)
-> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Num a => a -> a -> a
+ rep ((1 + Max int1 int2) + Max frac1 frac2)
f2R)
sub :: Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> AResult (Fixed rep int1 frac1) (Fixed rep int2 frac2)
sub (Fixed rep (int1 + frac1)
f1) (Fixed rep (int2 + frac2)
f2) =
let sh1 :: Int
sh1 = forall a. (Num a, KnownNat (Max frac1 frac2)) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @(Max frac1 frac2) Int -> Int -> Int
forall a. Num a => a -> a -> a
- forall a. (Num a, KnownNat frac1) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac1 :: Int
f1R :: rep ((1 + Max int1 int2) + Max frac1 frac2)
f1R = rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Int -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Bits a => a -> Int -> a
shiftL (rep (int1 + frac1) -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
f1) Int
sh1 :: rep ((1 + Max int1 int2) + (Max frac1 frac2))
sh2 :: Int
sh2 = forall a. (Num a, KnownNat (Max frac1 frac2)) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @(Max frac1 frac2) Int -> Int -> Int
forall a. Num a => a -> a -> a
- forall a. (Num a, KnownNat frac2) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac2 :: Int
f2R :: rep ((1 + Max int1 int2) + Max frac1 frac2)
f2R = rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Int -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Bits a => a -> Int -> a
shiftL (rep (int2 + frac2) -> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int2 + frac2)
f2) Int
sh2 :: rep ((1 + Max int1 int2) + (Max frac1 frac2))
in rep ((1 + Max int1 int2) + Max frac1 frac2)
-> Fixed rep (1 + Max int1 int2) (Max frac1 frac2)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep ((1 + Max int1 int2) + Max frac1 frac2)
f1R rep ((1 + Max int1 int2) + Max frac1 frac2)
-> rep ((1 + Max int1 int2) + Max frac1 frac2)
-> rep ((1 + Max int1 int2) + Max frac1 frac2)
forall a. Num a => a -> a -> a
- rep ((1 + Max int1 int2) + Max frac1 frac2)
f2R)
type MResult (Fixed rep int1 frac1) (Fixed rep int2 frac2) =
Fixed rep (int1 + int2) (frac1 + frac2)
mul :: Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> MResult (Fixed rep int1 frac1) (Fixed rep int2 frac2)
mul (Fixed rep (int1 + frac1)
fRep1) (Fixed rep (int2 + frac2)
fRep2) = rep ((int1 + int2) + (frac1 + frac2))
-> Fixed rep (int1 + int2) (frac1 + frac2)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int1 + frac1)
-> rep (int2 + frac2)
-> MResult (rep (int1 + frac1)) (rep (int2 + frac2))
forall a b. ExtendingNum a b => a -> b -> MResult a b
mul rep (int1 + frac1)
fRep1 rep (int2 + frac2)
fRep2)
type NumFixedC rep int frac
= ( SaturatingNum (rep (int + frac))
, ExtendingNum (rep (int + frac)) (rep (int + frac))
, MResult (rep (int + frac)) (rep (int + frac)) ~
rep ((int + int) + (frac + frac))
, BitSize (rep ((int + int) + (frac + frac))) ~
(int + ((int + frac) + frac))
, BitPack (rep ((int + int) + (frac + frac)))
, Bits (rep ((int + int) + (frac + frac)))
, BitPack (rep (int + frac))
, Bits (rep (int + frac))
, Integral (rep (int + frac))
, Resize rep
, Typeable rep
, KnownNat int
, KnownNat frac
)
type NumSFixedC int frac =
( KnownNat ((int + int) + (frac + frac))
, KnownNat (frac + frac)
, KnownNat (int + int)
, KnownNat (int + frac)
, KnownNat frac
, KnownNat int
)
type NumUFixedC int frac =
NumSFixedC int frac
instance (NumFixedC rep int frac) => Num (Fixed rep int frac) where
+ :: Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
(+) = Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => a -> a -> a
boundedAdd
* :: Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
(*) = Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => a -> a -> a
boundedMul
(-) = Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => a -> a -> a
boundedSub
negate :: Fixed rep int frac -> Fixed rep int frac
negate = Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => a -> a -> a
boundedSub (rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed rep (int + frac)
0)
abs :: Fixed rep int frac -> Fixed rep int frac
abs (Fixed rep (int + frac)
a) = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> rep (int + frac)
forall a. Num a => a -> a
abs rep (int + frac)
a)
signum :: Fixed rep int frac -> Fixed rep int frac
signum (Fixed rep (int + frac)
a)
| rep (int + frac)
a rep (int + frac) -> rep (int + frac) -> Bool
forall a. Eq a => a -> a -> Bool
== rep (int + frac)
0 = Fixed rep int frac
0
| rep (int + frac)
a rep (int + frac) -> rep (int + frac) -> Bool
forall a. Ord a => a -> a -> Bool
< rep (int + frac)
0 = Fixed rep int frac
-1
| Bool
otherwise = Fixed rep int frac
1
fromInteger :: Integer -> Fixed rep int frac
fromInteger Integer
i = let fSH :: Int
fSH = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
res :: Integer
res = Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
fSH
rMax :: Integer
rMax = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
maxBound :: rep (int + frac))
rMin :: Integer
rMin = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
minBound :: rep (int + frac))
sat :: Integer
sat | Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax = Integer
rMax
| Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin = Integer
rMin
| Bool
otherwise = Integer
res
in rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger Integer
sat)
instance (BitPack (rep (int + frac)), KnownNat (BitSize (rep (int + frac)))) => BitPack (Fixed rep int frac) where
type BitSize (Fixed rep int frac) = BitSize (rep (int + frac))
pack :: Fixed rep int frac -> BitVector (BitSize (Fixed rep int frac))
pack (Fixed rep (int + frac)
fRep) = rep (int + frac) -> BitVector (BitSize (rep (int + frac)))
forall a. BitPack a => a -> BitVector (BitSize a)
pack rep (int + frac)
fRep
unpack :: BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
unpack BitVector (BitSize (Fixed rep int frac))
bv = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (BitVector (BitSize (rep (int + frac))) -> rep (int + frac)
forall a. BitPack a => BitVector (BitSize a) -> a
unpack BitVector (BitSize (rep (int + frac)))
BitVector (BitSize (Fixed rep int frac))
bv)
instance (Lift (rep (int + frac)), KnownNat frac, KnownNat int, Typeable rep) =>
Lift (Fixed rep int frac) where
lift :: Fixed rep int frac -> Q Exp
lift f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) = Q Exp -> TypeQ -> Q Exp
sigE [| Fixed fRep |]
(TypeRep -> Integer -> Integer -> TypeQ
decFixed (Proxy rep -> TypeRep
forall k (proxy :: k -> Type) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep (Fixed rep int frac -> Proxy rep
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
Fixed rep int frac -> Proxy rep
asRepProxy Fixed rep int frac
f))
(Proxy int -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Fixed rep int frac -> Proxy int
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
Fixed rep int frac -> Proxy int
asIntProxy Fixed rep int frac
f))
(Fixed rep int frac -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Fixed rep int frac
f))
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: Fixed rep int frac -> Q (TExp (Fixed rep int frac))
liftTyped = Fixed rep int frac -> Q (TExp (Fixed rep int frac))
forall a. Lift a => a -> Q (TExp a)
liftTypedFromUntyped
#endif
#if MIN_VERSION_template_haskell(2,17,0)
decFixed :: Quote m => TypeRep -> Integer -> Integer -> m TH.Type
#else
decFixed :: TypeRep -> Integer -> Integer -> TypeQ
#endif
decFixed :: TypeRep -> Integer -> Integer -> TypeQ
decFixed TypeRep
r Integer
i Integer
f = do
(TypeQ -> TypeQ -> TypeQ) -> TypeQ -> [TypeQ] -> TypeQ
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl TypeQ -> TypeQ -> TypeQ
appT (Name -> TypeQ
conT ''Fixed) [ Name -> TypeQ
conT (String -> Name
mkName (TypeRep -> String
forall a. Show a => a -> String
show TypeRep
r))
, TyLitQ -> TypeQ
litT (Integer -> TyLitQ
numTyLit Integer
i)
, TyLitQ -> TypeQ
litT (Integer -> TyLitQ
numTyLit Integer
f)
]
type ResizeFC rep int1 frac1 int2 frac2
= ( Resize rep
, Ord (rep (int1 + frac1))
, Num (rep (int1 + frac1))
, Bits (rep (int1 + frac1))
, Bits (rep (int2 + frac2))
, Bounded (rep (int2 + frac2))
, KnownNat int1
, KnownNat frac1
, KnownNat int2
, KnownNat frac2
)
type ResizeSFC int1 frac1 int2 frac2
= ( KnownNat int1
, KnownNat frac1
, KnownNat int2
, KnownNat frac2
, KnownNat (int2 + frac2)
, KnownNat (int1 + frac1)
)
type ResizeUFC int1 frac1 int2 frac2 =
ResizeSFC int1 frac1 int2 frac2
{-# INLINE resizeF #-}
resizeF
:: forall rep int1 frac1 int2 frac2
. ResizeFC rep int1 frac1 int2 frac2
=> Fixed rep int1 frac1
-> Fixed rep int2 frac2
resizeF :: Fixed rep int1 frac1 -> Fixed rep int2 frac2
resizeF (Fixed rep (int1 + frac1)
fRep) = rep (int2 + frac2) -> Fixed rep int2 frac2
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed rep (int2 + frac2)
sat
where
fMin :: rep (int2 + frac2)
fMin = rep (int2 + frac2)
forall a. Bounded a => a
minBound :: rep (int2 + frac2)
fMax :: rep (int2 + frac2)
fMax = rep (int2 + frac2)
forall a. Bounded a => a
maxBound :: rep (int2 + frac2)
argSZ :: Integer
argSZ = KnownNat (int1 + frac1) => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @(int1 + frac1)
resSZ :: Integer
resSZ = KnownNat (int2 + frac2) => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @(int2 + frac2)
argFracSZ :: Int
argFracSZ = forall a. (Num a, KnownNat frac1) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac1
resFracSZ :: Int
resFracSZ = forall a. (Num a, KnownNat frac2) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac2
sat :: rep (int2 + frac2)
sat = if Integer
argSZ Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
resSZ
then if Int
argFracSZ Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
resFracSZ
then rep (int1 + frac1) -> rep (int2 + frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
fRep rep (int2 + frac2) -> Int -> rep (int2 + frac2)
forall a. Bits a => a -> Int -> a
`shiftL` (Int
resFracSZ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
argFracSZ)
else rep (int1 + frac1) -> rep (int2 + frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
fRep rep (int2 + frac2) -> Int -> rep (int2 + frac2)
forall a. Bits a => a -> Int -> a
`shiftR` (Int
argFracSZ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
resFracSZ)
else let mask :: rep (int1 + frac1)
mask = rep (int1 + frac1) -> rep (int1 + frac1)
forall a. Bits a => a -> a
complement (rep (int2 + frac2) -> rep (int1 + frac1)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int2 + frac2)
fMax) :: rep (int1 + frac1)
in if Int
argFracSZ Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
resFracSZ
then let shiftedL :: rep (int1 + frac1)
shiftedL = rep (int1 + frac1)
fRep rep (int1 + frac1) -> Int -> rep (int1 + frac1)
forall a. Bits a => a -> Int -> a
`shiftL`
(Int
resFracSZ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
argFracSZ)
shiftedL_masked :: rep (int1 + frac1)
shiftedL_masked = rep (int1 + frac1)
shiftedL rep (int1 + frac1) -> rep (int1 + frac1) -> rep (int1 + frac1)
forall a. Bits a => a -> a -> a
.&. rep (int1 + frac1)
mask
shiftedL_resized :: rep (int2 + frac2)
shiftedL_resized = rep (int1 + frac1) -> rep (int2 + frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
shiftedL
in if rep (int1 + frac1)
fRep rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Ord a => a -> a -> Bool
>= rep (int1 + frac1)
0
then if rep (int1 + frac1)
shiftedL_masked rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Eq a => a -> a -> Bool
== rep (int1 + frac1)
0
then rep (int2 + frac2)
shiftedL_resized
else rep (int2 + frac2)
fMax
else if rep (int1 + frac1)
shiftedL_masked rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Eq a => a -> a -> Bool
== rep (int1 + frac1)
mask
then rep (int2 + frac2)
shiftedL_resized
else rep (int2 + frac2)
fMin
else let shiftedR :: rep (int1 + frac1)
shiftedR = rep (int1 + frac1)
fRep rep (int1 + frac1) -> Int -> rep (int1 + frac1)
forall a. Bits a => a -> Int -> a
`shiftR`
(Int
argFracSZ Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
resFracSZ)
shiftedR_masked :: rep (int1 + frac1)
shiftedR_masked = rep (int1 + frac1)
shiftedR rep (int1 + frac1) -> rep (int1 + frac1) -> rep (int1 + frac1)
forall a. Bits a => a -> a -> a
.&. rep (int1 + frac1)
mask
shiftedR_resized :: rep (int2 + frac2)
shiftedR_resized = rep (int1 + frac1) -> rep (int2 + frac2)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
shiftedR
in if rep (int1 + frac1)
fRep rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Ord a => a -> a -> Bool
>= rep (int1 + frac1)
0
then if rep (int1 + frac1)
shiftedR_masked rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Eq a => a -> a -> Bool
== rep (int1 + frac1)
0
then rep (int2 + frac2)
shiftedR_resized
else rep (int2 + frac2)
fMax
else if rep (int1 + frac1)
shiftedR_masked rep (int1 + frac1) -> rep (int1 + frac1) -> Bool
forall a. Eq a => a -> a -> Bool
== rep (int1 + frac1)
mask
then rep (int2 + frac2)
shiftedR_resized
else rep (int2 + frac2)
fMin
fLit
:: forall rep int frac size
. ( size ~ (int + frac)
, KnownNat frac
, Bounded (rep size)
, Integral (rep size) )
=> Double
#if MIN_VERSION_template_haskell(2,17,0)
-> TH.Code Q (Fixed rep int frac)
#else
-> Q (TExp (Fixed rep int frac))
#endif
fLit :: Double -> Q (TExp (Fixed rep int frac))
fLit Double
a = [|| Fixed (fromInteger sat) ||]
where
rMax :: Integer
rMax = rep size -> Integer
forall a. Integral a => a -> Integer
toInteger (rep size
forall a. Bounded a => a
maxBound :: rep size)
rMin :: Integer
rMin = rep size -> Integer
forall a. Integral a => a -> Integer
toInteger (rep size
forall a. Bounded a => a
minBound :: rep size)
sat :: Integer
sat = if Integer
truncated Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax
then Integer
rMax
else if Integer
truncated Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin
then Integer
rMin
else Integer
truncated
truncated :: Integer
truncated = Double -> Integer
forall a b. (RealFrac a, Integral b) => a -> b
truncate Double
shifted :: Integer
shifted :: Double
shifted = Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
* (Double
2 Double -> Integer -> Double
forall a b. (Num a, Integral b) => a -> b -> a
^ (KnownNat frac => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @frac))
fLitR
:: forall rep int frac size
. ( size ~ (int + frac)
, KnownNat frac
, Bounded (rep size)
, Integral (rep size))
=> Double
-> Fixed rep int frac
fLitR :: Double -> Fixed rep int frac
fLitR Double
a = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (Integer -> rep size
forall a. Num a => Integer -> a
fromInteger Integer
sat)
where
rMax :: Integer
rMax = rep size -> Integer
forall a. Integral a => a -> Integer
toInteger (rep size
forall a. Bounded a => a
maxBound :: rep size)
rMin :: Integer
rMin = rep size -> Integer
forall a. Integral a => a -> Integer
toInteger (rep size
forall a. Bounded a => a
minBound :: rep size)
sat :: Integer
sat = if Integer
truncated Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax
then Integer
rMax
else if Integer
truncated Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin
then Integer
rMin
else Integer
truncated
truncated :: Integer
truncated = Double -> Integer
forall a b. (RealFrac a, Integral b) => a -> b
truncate Double
shifted :: Integer
shifted :: Double
shifted = Double
a Double -> Double -> Double
forall a. Num a => a -> a -> a
* (Double
2 Double -> Integer -> Double
forall a b. (Num a, Integral b) => a -> b -> a
^ (KnownNat frac => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @frac))
instance NumFixedC rep int frac => Enum (Fixed rep int frac) where
succ :: Fixed rep int frac -> Fixed rep int frac
succ Fixed rep int frac
f =
let err :: Fixed rep int frac
err = String -> Fixed rep int frac
forall a. HasCallStack => String -> a
error (String -> Fixed rep int frac) -> String -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$
String
"Enum.succ{" String -> ShowS
forall a. [a] -> [a] -> [a]
++ TypeRep -> String
forall a. Show a => a -> String
show (Fixed rep int frac -> TypeRep
forall a. Typeable a => a -> TypeRep
typeOf Fixed rep int frac
f) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"}: tried to take 'succ' of "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ Fixed rep int frac -> String
forall a. Show a => a -> String
show Fixed rep int frac
f String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", causing overflow. Use 'satSucc' and specify a "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"SaturationMode if you need other behavior."
in case KnownNat int => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @int of
Integer
0 -> Fixed rep int frac
err
Integer
_ -> if Fixed rep int frac
f Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
> SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satPred SaturationMode
SatBound Fixed rep int frac
forall a. Bounded a => a
maxBound then
Fixed rep int frac
err
else
SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satSucc SaturationMode
SatWrap Fixed rep int frac
f
pred :: Fixed rep int frac -> Fixed rep int frac
pred Fixed rep int frac
f =
let err :: Fixed rep int frac
err = String -> Fixed rep int frac
forall a. HasCallStack => String -> a
error (String -> Fixed rep int frac) -> String -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$
String
"Enum.pred{" String -> ShowS
forall a. [a] -> [a] -> [a]
++ TypeRep -> String
forall a. Show a => a -> String
show (Fixed rep int frac -> TypeRep
forall a. Typeable a => a -> TypeRep
typeOf Fixed rep int frac
f) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"}: tried to take 'pred' of "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ Fixed rep int frac -> String
forall a. Show a => a -> String
show Fixed rep int frac
f String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", causing negative overflow. Use 'satPred' and "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"specify a SaturationMode if you need other behavior."
in case KnownNat int => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @int of
Integer
0 -> Fixed rep int frac
err
Integer
_ -> if Fixed rep int frac
f Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
< SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satSucc SaturationMode
SatBound Fixed rep int frac
forall a. Bounded a => a
minBound then
Fixed rep int frac
err
else
SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satPred SaturationMode
SatWrap Fixed rep int frac
f
toEnum :: Int -> Fixed rep int frac
toEnum Int
i =
if Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax Bool -> Bool -> Bool
|| Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin then
String -> Fixed rep int frac
forall a. HasCallStack => String -> a
error (String -> Fixed rep int frac) -> String -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ String
"Enum.toEnum{"
String -> ShowS
forall a. [a] -> [a] -> [a]
++ TypeRep -> String
forall a. Show a => a -> String
show (Proxy (Fixed rep int frac) -> TypeRep
forall k (proxy :: k -> Type) (a :: k).
Typeable a =>
proxy a -> TypeRep
typeRep (Proxy (Fixed rep int frac) -> TypeRep)
-> Proxy (Fixed rep int frac) -> TypeRep
forall a b. (a -> b) -> a -> b
$ Proxy (Fixed rep int frac)
forall k (t :: k). Proxy t
Proxy @(Fixed rep int frac)) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"}: tag ("
String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
i String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
") is outside of bounds "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ (Fixed rep int frac, Fixed rep int frac) -> String
forall a. Show a => a -> String
show ( Fixed rep int frac
forall a. Bounded a => a
minBound :: Fixed rep int frac
, Fixed rep int frac
forall a. Bounded a => a
maxBound :: Fixed rep int frac)
else
rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger Integer
res)
where
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
res :: Integer
res = Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sh
rMax :: Integer
rMax = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
maxBound :: rep (int + frac))
rMin :: Integer
rMin = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
minBound :: rep (int + frac))
fromEnum :: Fixed rep int frac -> Int
fromEnum f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) =
if Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax Bool -> Bool -> Bool
|| Integer
res Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin then
String -> Int
forall a. HasCallStack => String -> a
error (String -> Int) -> String -> Int
forall a b. (a -> b) -> a -> b
$ String
"Enum.fromEnum{" String -> ShowS
forall a. [a] -> [a] -> [a]
++ TypeRep -> String
forall a. Show a => a -> String
show (Fixed rep int frac -> TypeRep
forall a. Typeable a => a -> TypeRep
typeOf Fixed rep int frac
f) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"}: value ("
String -> ShowS
forall a. [a] -> [a] -> [a]
++ Fixed rep int frac -> String
forall a. Show a => a -> String
show Fixed rep int frac
f String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
") is outside of Int's bounds "
String -> ShowS
forall a. [a] -> [a] -> [a]
++ (Integer, Integer) -> String
forall a. Show a => a -> String
show (Integer
rMin, Integer
rMax)
else
Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
res
where
nF :: Int
nF = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
frMask :: rep (int + frac)
frMask = Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ (Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
nF) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
offset :: rep (int + frac)
offset = if Fixed rep int frac
f Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
< Fixed rep int frac
0 Bool -> Bool -> Bool
&& rep (int + frac)
fRep rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Bits a => a -> a -> a
.&. rep (int + frac)
frMask rep (int + frac) -> rep (int + frac) -> Bool
forall a. Eq a => a -> a -> Bool
/= rep (int + frac)
0 then rep (int + frac)
1 else rep (int + frac)
0
res :: Integer
res = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac) -> Integer) -> rep (int + frac) -> Integer
forall a b. (a -> b) -> a -> b
$ (rep (int + frac)
fRep rep (int + frac) -> Int -> rep (int + frac)
forall a. Bits a => a -> Int -> a
`shiftR` Int
nF) rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Num a => a -> a -> a
+ rep (int + frac)
offset
rMax :: Integer
rMax = Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int
forall a. Bounded a => a
maxBound :: Int)
rMin :: Integer
rMin = Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int
forall a. Bounded a => a
minBound :: Int)
enumFrom :: Fixed rep int frac -> [Fixed rep int frac]
enumFrom Fixed rep int frac
x1 = Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac]
forall a. Enum a => a -> a -> [a]
enumFromTo Fixed rep int frac
x1 Fixed rep int frac
forall a. Bounded a => a
maxBound
enumFromThen :: Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac]
enumFromThen (Fixed rep (int + frac)
x1Rep) (Fixed rep (int + frac)
x2Rep) =
(rep (int + frac) -> Fixed rep int frac)
-> [rep (int + frac)] -> [Fixed rep int frac]
forall a b. (a -> b) -> [a] -> [b]
map rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed ([rep (int + frac)] -> [Fixed rep int frac])
-> [rep (int + frac)] -> [Fixed rep int frac]
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> rep (int + frac) -> [rep (int + frac)]
forall a. Enum a => a -> a -> [a]
enumFromThen rep (int + frac)
x1Rep rep (int + frac)
x2Rep
enumFromTo :: Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac]
enumFromTo x1 :: Fixed rep int frac
x1@(Fixed rep (int + frac)
x1Rep) y :: Fixed rep int frac
y@(Fixed rep (int + frac)
yRep)
| Fixed rep int frac
yPlusHalf Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
< Fixed rep int frac
x1 = []
| Bool
closeToMax = [Fixed rep int frac
x1]
| Bool
otherwise = (rep (int + frac) -> Fixed rep int frac)
-> [rep (int + frac)] -> [Fixed rep int frac]
forall a b. (a -> b) -> [a] -> [b]
map rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed ([rep (int + frac)] -> [Fixed rep int frac])
-> [rep (int + frac)] -> [Fixed rep int frac]
forall a b. (a -> b) -> a -> b
$ rep (int + frac)
-> rep (int + frac) -> rep (int + frac) -> [rep (int + frac)]
forall a. Enum a => a -> a -> a -> [a]
enumFromThenTo
rep (int + frac)
x1Rep
(Fixed rep int frac -> rep (int + frac)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
Fixed rep int frac -> rep (int + frac)
unFixed (Fixed rep int frac -> rep (int + frac))
-> Fixed rep int frac -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satSucc SaturationMode
SatWrap Fixed rep int frac
x1)
(Fixed rep int frac -> rep (int + frac)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
Fixed rep int frac -> rep (int + frac)
unFixed (Fixed rep int frac -> rep (int + frac))
-> Fixed rep int frac -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ Fixed rep int frac
yPlusHalf)
where
closeToMax :: Bool
closeToMax = KnownNat int => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @int Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 Bool -> Bool -> Bool
|| Fixed rep int frac
x1 Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
> SaturationMode -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a
satPred SaturationMode
SatBound Fixed rep int frac
forall a. Bounded a => a
maxBound
nF :: Int
nF = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
yPlusHalf :: Fixed rep int frac
yPlusHalf | Int
nF Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Fixed rep int frac
y
| rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
yRep = Fixed rep int frac
y Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. Num a => a -> a -> a
- (rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac)
-1 rep (int + frac) -> Int -> rep (int + frac)
forall a. Bits a => a -> Int -> a
`shiftL` (Int
nF Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))
| Bool
otherwise = Fixed rep int frac
y Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. Num a => a -> a -> a
+ (rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac)
1 rep (int + frac) -> Int -> rep (int + frac)
forall a. Bits a => a -> Int -> a
`shiftL` (Int
nF Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))
enumFromThenTo :: Fixed rep int frac
-> Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac]
enumFromThenTo = Fixed rep int frac
-> Fixed rep int frac -> Fixed rep int frac -> [Fixed rep int frac]
forall f (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
(NumFixedC rep int frac, f ~ Fixed rep int frac) =>
f -> f -> f -> [f]
enumFromThenTo#
enumFromThenTo#
:: forall f rep int frac
. ( NumFixedC rep int frac
, f ~ Fixed rep int frac)
=> f
-> f
-> f
-> [f]
enumFromThenTo# :: f -> f -> f -> [f]
enumFromThenTo# f
x1 f
x2 f
y
| f
x2 f -> f -> Bool
forall a. Eq a => a -> a -> Bool
== f
x1 = if f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x1 then
[]
else
f -> [f]
forall a. a -> [a]
repeat f
x1
| f
x2 f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x1 = f -> f -> f -> [f]
forall f (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
(NumFixedC rep int frac, f ~ Fixed rep int frac) =>
f -> f -> f -> [f]
enumFromThenToUp f
x1 f
x2 f
y
| Bool
otherwise = f -> f -> f -> [f]
forall f (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
(NumFixedC rep int frac, f ~ Fixed rep int frac) =>
f -> f -> f -> [f]
enumFromThenToDown f
x1 f
x2 f
y
enumFromThenToUp
:: forall f rep int frac
. ( NumFixedC rep int frac
, f ~ Fixed rep int frac)
=> f
-> f
-> f
-> [f]
enumFromThenToUp :: f -> f -> f -> [f]
enumFromThenToUp f
x1 f
x2 f
y
| f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x1 = let y' :: f
y' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
SatWrap f
y f
halfDelta
in if f
y' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x1 Bool -> Bool -> Bool
|| (Bool
isMinusHalf Bool -> Bool -> Bool
&& f
y' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
<= f
x1) then
[]
else
[f
x1]
| f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x2 = let x2' :: f
x2' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
x2 f
halfDelta
in if f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x2' Bool -> Bool -> Bool
|| (Bool -> Bool
not Bool
isMinusHalf Bool -> Bool -> Bool
&& f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
>= f
x2') then
[f
x1, f
x2]
else
[f
x1]
| Bool
otherwise = let y' :: f
y' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
y (f
delta f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1)
go_up :: f -> [f]
go_up f
x
| f
x' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x = [f
x]
| Bool
isHalf Bool -> Bool -> Bool
&& f
x f -> f -> Bool
forall a. Ord a => a -> a -> Bool
>= f
y' = [f
x]
| f
x f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
y' = [f
x]
| Bool
otherwise = f
x f -> [f] -> [f]
forall a. a -> [a] -> [a]
: f -> [f]
go_up f
x'
where
x' :: f
x' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
SatWrap f
x f
delta
in f
x1 f -> [f] -> [f]
forall a. a -> [a] -> [a]
: f -> [f]
go_up f
x2
where
delta :: f
delta = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
x2 f
x1
halfDelta :: f
halfDelta = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap (f
x2 f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1) (f
x1 f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1)
isHalf :: Bool
isHalf = f -> Bit
forall a. BitPack a => a -> Bit
lsb f
delta Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
1
isMinusHalf :: Bool
isMinusHalf = f -> Bit
forall a. BitPack a => a -> Bit
lsb f
x2 Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
0 Bool -> Bool -> Bool
&& f -> Bit
forall a. BitPack a => a -> Bit
lsb f
x1 Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
1
enumFromThenToDown
:: forall f rep int frac
. ( NumFixedC rep int frac
, f ~ Fixed rep int frac)
=> f
-> f
-> f
-> [f]
enumFromThenToDown :: f -> f -> f -> [f]
enumFromThenToDown f
x1 f
x2 f
y
| f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x1 = let y' :: f
y' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
y f
halfDelta
in if f
y' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x1 Bool -> Bool -> Bool
|| (Bool
isMinusHalf Bool -> Bool -> Bool
&& f
y' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
>= f
x1) then
[]
else
[f
x1]
| f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x2 = let x2' :: f
x2' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
SatWrap f
x2 f
halfDelta
in if f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
x2' Bool -> Bool -> Bool
|| (Bool -> Bool
not Bool
isMinusHalf Bool -> Bool -> Bool
&& f
y f -> f -> Bool
forall a. Ord a => a -> a -> Bool
<= f
x2') then
[f
x1, f
x2]
else
[f
x1]
| Bool
otherwise = let y' :: f
y' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
SatWrap f
y (f
delta f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1)
go_dn :: f -> [f]
go_dn f
x
| f
x' f -> f -> Bool
forall a. Ord a => a -> a -> Bool
> f
x = [f
x]
| Bool
isHalf Bool -> Bool -> Bool
&& f
x f -> f -> Bool
forall a. Ord a => a -> a -> Bool
<= f
y' = [f
x]
| f
x f -> f -> Bool
forall a. Ord a => a -> a -> Bool
< f
y' = [f
x]
| Bool
otherwise = f
x f -> [f] -> [f]
forall a. a -> [a] -> [a]
: f -> [f]
go_dn f
x'
where
x' :: f
x' = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
x f
delta
in f
x1 f -> [f] -> [f]
forall a. a -> [a] -> [a]
: f -> [f]
go_dn f
x2
where
delta :: f
delta = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap f
x1 f
x2
halfDelta :: f
halfDelta = SaturationMode -> f -> f -> f
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
SatWrap (f
x1 f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1) (f
x2 f -> Int -> f
forall a. Bits a => a -> Int -> a
`shiftR` Int
1)
isHalf :: Bool
isHalf = f -> Bit
forall a. BitPack a => a -> Bit
lsb f
delta Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
1
isMinusHalf :: Bool
isMinusHalf = f -> Bit
forall a. BitPack a => a -> Bit
lsb f
x1 Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
0 Bool -> Bool -> Bool
&& f -> Bit
forall a. BitPack a => a -> Bit
lsb f
x2 Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
1
instance NumFixedC rep int frac => SaturatingNum (Fixed rep int frac) where
satAdd :: SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
satAdd SaturationMode
w (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (SaturationMode
-> rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
w rep (int + frac)
a rep (int + frac)
b)
satSub :: SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
satSub SaturationMode
w (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (SaturationMode
-> rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
w rep (int + frac)
a rep (int + frac)
b)
satMul :: SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
satMul SaturationMode
SatWrap (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) =
let res :: MResult (rep (int + frac)) (rep (int + frac))
res = rep (int + frac)
a rep (int + frac)
-> rep (int + frac)
-> MResult (rep (int + frac)) (rep (int + frac))
forall a b. ExtendingNum a b => a -> b -> MResult a b
`mul` rep (int + frac)
b
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
res' :: rep ((int + int) + (frac + frac))
res' = rep ((int + int) + (frac + frac))
-> Int -> rep ((int + int) + (frac + frac))
forall a. Bits a => a -> Int -> a
shiftR rep ((int + int) + (frac + frac))
MResult (rep (int + frac)) (rep (int + frac))
res Int
sh
in rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep ((int + int) + (frac + frac)) -> rep (int + frac)
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep ((int + int) + (frac + frac))
res')
satMul SaturationMode
SatBound (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) =
let res :: MResult (rep (int + frac)) (rep (int + frac))
res = rep (int + frac)
a rep (int + frac)
-> rep (int + frac)
-> MResult (rep (int + frac)) (rep (int + frac))
forall a b. ExtendingNum a b => a -> b -> MResult a b
`mul` rep (int + frac)
b
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
(BitVector int
rL,BitVector ((int + frac) + frac)
rR) = rep ((int + int) + (frac + frac))
-> (BitVector int, BitVector ((int + frac) + frac))
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split rep ((int + int) + (frac + frac))
MResult (rep (int + frac)) (rep (int + frac))
res :: (BitVector int, BitVector (int + frac + frac))
in case rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
a of
Bool
True -> let overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)
in case Bit
overflow of
Bit
1 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
Bit
_ -> case BitVector int -> Bit
forall a. BitPack a => a -> Bit
msb BitVector int
rL of
Bit
0 -> Fixed rep int frac
forall a. Bounded a => a
maxBound
Bit
_ -> Fixed rep int frac
forall a. Bounded a => a
minBound
Bool
False -> case BitVector int
rL of
BitVector int
0 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
BitVector int
_ -> Fixed rep int frac
forall a. Bounded a => a
maxBound
satMul SaturationMode
SatZero (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) =
let res :: MResult (rep (int + frac)) (rep (int + frac))
res = rep (int + frac)
a rep (int + frac)
-> rep (int + frac)
-> MResult (rep (int + frac)) (rep (int + frac))
forall a b. ExtendingNum a b => a -> b -> MResult a b
`mul` rep (int + frac)
b
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
(BitVector int
rL,BitVector ((int + frac) + frac)
rR) = rep ((int + int) + (frac + frac))
-> (BitVector int, BitVector ((int + frac) + frac))
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split rep ((int + int) + (frac + frac))
MResult (rep (int + frac)) (rep (int + frac))
res :: (BitVector int, BitVector (int + frac + frac))
in case rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
a of
Bool
True -> let overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)
in case Bit
overflow of
Bit
1 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
Bit
_ -> Fixed rep int frac
0
Bool
False -> case BitVector int
rL of
BitVector int
0 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
BitVector int
_ -> Fixed rep int frac
0
satMul SaturationMode
SatError (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) =
let res :: MResult (rep (int + frac)) (rep (int + frac))
res = rep (int + frac)
a rep (int + frac)
-> rep (int + frac)
-> MResult (rep (int + frac)) (rep (int + frac))
forall a b. ExtendingNum a b => a -> b -> MResult a b
`mul` rep (int + frac)
b
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
(BitVector int
rL,BitVector ((int + frac) + frac)
rR) = rep ((int + int) + (frac + frac))
-> (BitVector int, BitVector ((int + frac) + frac))
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split rep ((int + int) + (frac + frac))
MResult (rep (int + frac)) (rep (int + frac))
res :: (BitVector int, BitVector (int + frac + frac))
in case rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
a of
Bool
True -> let overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)
in case Bit
overflow of
Bit
1 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
Bit
_ -> String -> Fixed rep int frac
forall a. HasCallStack => String -> a
errorX String
"Fixed.satMul: result exceeds bounds"
Bool
False -> case BitVector int
rL of
BitVector int
0 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
BitVector int
_ -> String -> Fixed rep int frac
forall a. HasCallStack => String -> a
errorX String
"Fixed.satMul: result exceeds maxBound"
satMul SaturationMode
SatSymmetric (Fixed rep (int + frac)
a) (Fixed rep (int + frac)
b) =
let res :: MResult (rep (int + frac)) (rep (int + frac))
res = rep (int + frac)
a rep (int + frac)
-> rep (int + frac)
-> MResult (rep (int + frac)) (rep (int + frac))
forall a b. ExtendingNum a b => a -> b -> MResult a b
`mul` rep (int + frac)
b
sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
(BitVector int
rL,BitVector ((int + frac) + frac)
rR) = rep ((int + int) + (frac + frac))
-> (BitVector int, BitVector ((int + frac) + frac))
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split rep ((int + int) + (frac + frac))
MResult (rep (int + frac)) (rep (int + frac))
res :: (BitVector int, BitVector (int + frac + frac))
in case rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
a of
Bool
True -> let overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + int) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector (BitSize Bit)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (BitVector ((int + frac) + frac) -> Bit
forall a. BitPack a => a -> Bit
msb BitVector ((int + frac) + frac)
rR) BitVector 1 -> BitVector int -> BitVector (1 + int)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector int -> BitVector (BitSize (BitVector int))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector int
rL)
in case Bit
overflow of
Bit
1 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
Bit
_ -> case BitVector int -> Bit
forall a. BitPack a => a -> Bit
msb BitVector int
rL of
Bit
0 -> Fixed rep int frac
forall a. Bounded a => a
maxBound
Bit
_ -> rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> rep (int + frac)
forall a. Enum a => a -> a
succ rep (int + frac)
forall a. Bounded a => a
minBound
Bool
False -> case BitVector int
rL of
BitVector int
0 -> BitVector (BitSize (Fixed rep int frac)) -> Fixed rep int frac
forall a. BitPack a => BitVector (BitSize a) -> a
unpack (BitVector ((int + frac) + frac)
-> BitVector (BitSize (rep (int + frac)))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize (BitVector ((int + frac) + frac)
-> Int -> BitVector ((int + frac) + frac)
forall a. Bits a => a -> Int -> a
shiftR BitVector ((int + frac) + frac)
rR Int
sh))
BitVector int
_ -> Fixed rep int frac
forall a. Bounded a => a
maxBound
satSucc :: SaturationMode -> Fixed rep int frac -> Fixed rep int frac
satSucc SaturationMode
satMode f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) =
let sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
in case KnownNat int => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @int of
Integer
0 -> case SaturationMode
satMode of
SaturationMode
SatWrap -> Fixed rep int frac
f
SaturationMode
SatZero -> Fixed rep int frac
0
SaturationMode
SatError -> String -> Fixed rep int frac
forall a. HasCallStack => String -> a
errorX String
"Fixed.satSucc: result exceeds maxBound"
SaturationMode
_ -> Fixed rep int frac
forall a. Bounded a => a
maxBound
Integer
_ -> if rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
fRep
then SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
satMode Fixed rep int frac
f (Fixed rep int frac -> Fixed rep int frac)
-> Fixed rep int frac -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ (Integer
-1) Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sh
else SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
satMode Fixed rep int frac
f (Fixed rep int frac -> Fixed rep int frac)
-> Fixed rep int frac -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sh
{-# INLINE satSucc #-}
satPred :: SaturationMode -> Fixed rep int frac -> Fixed rep int frac
satPred SaturationMode
satMode f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) =
let sh :: Int
sh = forall a. (Num a, KnownNat frac) => a
forall (n :: Nat) a. (Num a, KnownNat n) => a
natToNum @frac
symBound :: Fixed rep int frac
symBound = if rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
fRep
then rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac)
forall a. Bounded a => a
minBound rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Num a => a -> a -> a
+ rep (int + frac)
1
else Fixed rep int frac
forall a. Bounded a => a
minBound
in case KnownNat int => Integer
forall (n :: Nat). KnownNat n => Integer
natToInteger @int of
Integer
0 -> case SaturationMode
satMode of
SaturationMode
SatWrap -> Fixed rep int frac
f
SaturationMode
SatBound -> Fixed rep int frac
forall a. Bounded a => a
minBound
SaturationMode
SatZero -> Fixed rep int frac
0
SaturationMode
SatError -> String -> Fixed rep int frac
forall a. HasCallStack => String -> a
errorX String
"Fixed.satPred: result exceeds minBound"
SaturationMode
SatSymmetric -> Fixed rep int frac
symBound
Integer
_ -> if rep (int + frac) -> Bool
forall a. Bits a => a -> Bool
isSigned rep (int + frac)
fRep
then SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
satMode Fixed rep int frac
f (Fixed rep int frac -> Fixed rep int frac)
-> Fixed rep int frac -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ (Integer
-1) Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sh
else SaturationMode
-> Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
satMode Fixed rep int frac
f (Fixed rep int frac -> Fixed rep int frac)
-> Fixed rep int frac -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sh
{-# INLINE satPred #-}
type DivideC rep int1 frac1 int2 frac2
= ( Resize rep
, Integral (rep (((int1 + frac2) + 1) + (int2 + frac1)))
, Bits (rep (((int1 + frac2) + 1) + (int2 + frac1)))
, KnownNat int1
, KnownNat frac1
, KnownNat int2
, KnownNat frac2
)
type DivideSC int1 frac1 int2 frac2
= ( KnownNat (((int1 + frac2) + 1) + (int2 + frac1))
, KnownNat frac2
, KnownNat int2
, KnownNat frac1
, KnownNat int1
)
type DivideUC int1 frac1 int2 frac2 =
DivideSC int1 frac1 int2 frac2
divide
:: DivideC rep int1 frac1 int2 frac2
=> Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> Fixed rep (int1 + frac2 + 1) (int2 + frac1)
divide :: Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> Fixed rep ((int1 + frac2) + 1) (int2 + frac1)
divide (Fixed rep (int1 + frac1)
fr1) fx2 :: Fixed rep int2 frac2
fx2@(Fixed rep (int2 + frac2)
fr2) =
let int2 :: Int
int2 = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy int2 -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Fixed rep int2 frac2 -> Proxy int2
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
Fixed rep int frac -> Proxy int
asIntProxy Fixed rep int2 frac2
fx2))
frac2 :: Int
frac2 = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Fixed rep int2 frac2 -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Fixed rep int2 frac2
fx2)
fr1' :: rep (((int1 + frac2) + 1) + (int2 + frac1))
fr1' = rep (int1 + frac1) -> rep (((int1 + frac2) + 1) + (int2 + frac1))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int1 + frac1)
fr1
fr2' :: rep (((int1 + frac2) + 1) + (int2 + frac1))
fr2' = rep (int2 + frac2) -> rep (((int1 + frac2) + 1) + (int2 + frac1))
forall (f :: Nat -> Type) (a :: Nat) (b :: Nat).
(Resize f, KnownNat a, KnownNat b) =>
f a -> f b
resize rep (int2 + frac2)
fr2
fr1SH :: rep (((int1 + frac2) + 1) + (int2 + frac1))
fr1SH = rep (((int1 + frac2) + 1) + (int2 + frac1))
-> Int -> rep (((int1 + frac2) + 1) + (int2 + frac1))
forall a. Bits a => a -> Int -> a
shiftL rep (((int1 + frac2) + 1) + (int2 + frac1))
fr1' ((Int
int2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
frac2))
res :: rep (((int1 + frac2) + 1) + (int2 + frac1))
res = rep (((int1 + frac2) + 1) + (int2 + frac1))
fr1SH rep (((int1 + frac2) + 1) + (int2 + frac1))
-> rep (((int1 + frac2) + 1) + (int2 + frac1))
-> rep (((int1 + frac2) + 1) + (int2 + frac1))
forall a. Integral a => a -> a -> a
`quot` rep (((int1 + frac2) + 1) + (int2 + frac1))
fr2'
in rep (((int1 + frac2) + 1) + (int2 + frac1))
-> Fixed rep ((int1 + frac2) + 1) (int2 + frac1)
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed rep (((int1 + frac2) + 1) + (int2 + frac1))
res
type FracFixedC rep int frac
= ( NumFixedC rep int frac
, DivideC rep int frac int frac
)
type FracSFixedC int frac
= ( NumSFixedC int frac
, KnownNat ((int + frac + 1) + (int + frac))
)
type FracUFixedC int frac
= FracSFixedC int frac
instance FracFixedC rep int frac => Fractional (Fixed rep int frac) where
Fixed rep int frac
f1 / :: Fixed rep int frac -> Fixed rep int frac -> Fixed rep int frac
/ Fixed rep int frac
f2 = Fixed rep ((int + frac) + 1) (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int1 :: Nat) (frac1 :: Nat)
(int2 :: Nat) (frac2 :: Nat).
ResizeFC rep int1 frac1 int2 frac2 =>
Fixed rep int1 frac1 -> Fixed rep int2 frac2
resizeF (Fixed rep int frac
-> Fixed rep int frac -> Fixed rep ((int + frac) + 1) (int + frac)
forall (rep :: Nat -> Type) (int1 :: Nat) (frac1 :: Nat)
(int2 :: Nat) (frac2 :: Nat).
DivideC rep int1 frac1 int2 frac2 =>
Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> Fixed rep ((int1 + frac2) + 1) (int2 + frac1)
divide Fixed rep int frac
f1 Fixed rep int frac
f2)
recip :: Fixed rep int frac -> Fixed rep int frac
recip Fixed rep int frac
fx = Fixed rep ((int + frac) + 1) (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int1 :: Nat) (frac1 :: Nat)
(int2 :: Nat) (frac2 :: Nat).
ResizeFC rep int1 frac1 int2 frac2 =>
Fixed rep int1 frac1 -> Fixed rep int2 frac2
resizeF (Fixed rep int frac
-> Fixed rep int frac -> Fixed rep ((int + frac) + 1) (int + frac)
forall (rep :: Nat -> Type) (int1 :: Nat) (frac1 :: Nat)
(int2 :: Nat) (frac2 :: Nat).
DivideC rep int1 frac1 int2 frac2 =>
Fixed rep int1 frac1
-> Fixed rep int2 frac2
-> Fixed rep ((int1 + frac2) + 1) (int2 + frac1)
divide (Fixed rep int frac
1 :: Fixed rep int frac) Fixed rep int frac
fx)
fromRational :: Ratio Integer -> Fixed rep int frac
fromRational Ratio Integer
r = Fixed rep int frac
res
where
res :: Fixed rep int frac
res = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger Integer
sat)
sat :: Integer
sat = if Integer
res' Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
rMax
then Integer
rMax
else if Integer
res' Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
rMin then Integer
rMin else Integer
res'
rMax :: Integer
rMax = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
maxBound :: rep (int + frac))
rMin :: Integer
rMin = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger (rep (int + frac)
forall a. Bounded a => a
minBound :: rep (int + frac))
res' :: Integer
res' = Integer
n Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
d
frac :: Int
frac = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Fixed rep int frac -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Fixed rep int frac
res)
n :: Integer
n = Ratio Integer -> Integer
forall a. Ratio a -> a
numerator Ratio Integer
r Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
frac)
d :: Integer
d = Ratio Integer -> Integer
forall a. Ratio a -> a
denominator Ratio Integer
r Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
frac
instance NumFixedC rep int frac => Real (Fixed rep int frac) where
toRational :: Fixed rep int frac -> Ratio Integer
toRational f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) = Integer
nom Integer -> Integer -> Ratio Integer
forall a. Integral a => a -> a -> Ratio a
% Integer
denom
where
nF :: Int
nF = Fixed rep int frac -> Int
forall (frac :: Nat) (rep :: Nat -> Type) (int :: Nat).
KnownNat frac =>
Fixed rep int frac -> Int
fracShift Fixed rep int frac
f
denom :: Integer
denom = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
nF
nom :: Integer
nom = rep (int + frac) -> Integer
forall a. Integral a => a -> Integer
toInteger rep (int + frac)
fRep
instance FracFixedC rep int frac => RealFrac (Fixed rep int frac) where
properFraction :: Fixed rep int frac -> (b, Fixed rep int frac)
properFraction f :: Fixed rep int frac
f@(Fixed rep (int + frac)
fRep) = (rep (int + frac) -> b
forall a b. (Integral a, Num b) => a -> b
fromIntegral rep (int + frac)
whole, Fixed rep int frac
fract)
where
whole :: rep (int + frac)
whole = (rep (int + frac)
fRep rep (int + frac) -> Int -> rep (int + frac)
forall a. Bits a => a -> Int -> a
`shiftR` Fixed rep int frac -> Int
forall (frac :: Nat) (rep :: Nat -> Type) (int :: Nat).
KnownNat frac =>
Fixed rep int frac -> Int
fracShift Fixed rep int frac
f) rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Num a => a -> a -> a
+ rep (int + frac)
offset
fract :: Fixed rep int frac
fract = rep (int + frac) -> Fixed rep int frac
forall (rep :: Nat -> Type) (int :: Nat) (frac :: Nat).
rep (int + frac) -> Fixed rep int frac
Fixed (rep (int + frac) -> Fixed rep int frac)
-> rep (int + frac) -> Fixed rep int frac
forall a b. (a -> b) -> a -> b
$ rep (int + frac)
fRep rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Num a => a -> a -> a
- (rep (int + frac)
whole rep (int + frac) -> Int -> rep (int + frac)
forall a. Bits a => a -> Int -> a
`shiftL` Fixed rep int frac -> Int
forall (frac :: Nat) (rep :: Nat -> Type) (int :: Nat).
KnownNat frac =>
Fixed rep int frac -> Int
fracShift Fixed rep int frac
f)
frMask :: rep (int + frac)
frMask = Integer -> rep (int + frac)
forall a. Num a => Integer -> a
fromInteger (Integer -> rep (int + frac)) -> Integer -> rep (int + frac)
forall a b. (a -> b) -> a -> b
$ (Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Fixed rep int frac -> Int
forall (frac :: Nat) (rep :: Nat -> Type) (int :: Nat).
KnownNat frac =>
Fixed rep int frac -> Int
fracShift Fixed rep int frac
f) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
offset :: rep (int + frac)
offset = if Fixed rep int frac
f Fixed rep int frac -> Fixed rep int frac -> Bool
forall a. Ord a => a -> a -> Bool
< Fixed rep int frac
0 Bool -> Bool -> Bool
&& rep (int + frac)
fRep rep (int + frac) -> rep (int + frac) -> rep (int + frac)
forall a. Bits a => a -> a -> a
.&. rep (int + frac)
frMask rep (int + frac) -> rep (int + frac) -> Bool
forall a. Eq a => a -> a -> Bool
/= rep (int + frac)
0 then rep (int + frac)
1 else rep (int + frac)
0