symbolic-base-0.1.0.0: ZkFold Symbolic compiler and zero-knowledge proof protocols
Safe HaskellSafe-Inferred
LanguageHaskell2010

ZkFold.Symbolic.Data.Combinators

Synopsis

Documentation

mzipWithMRep :: (Representable f, Traversable f, Applicative m) => (a -> b -> m c) -> f a -> f b -> m (f c) Source #

class Iso b a => Iso a b where Source #

A class for isomorphic types. The Iso b a context ensures that transformations in both directions are defined

Methods

from :: a -> b Source #

Instances

Instances details
(Symbolic c, NumberOfBits (BaseField c) ~ n) => Iso (FieldElement c) (ByteString n c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.ByteString

Methods

from :: FieldElement c -> ByteString n c Source #

(Symbolic c, KnownRegisterSize r, NumberOfBits (BaseField c) ~ n) => Iso (FieldElement c) (UInt n r c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.UInt

Methods

from :: FieldElement c -> UInt n r c Source #

(Symbolic c, NumberOfBits (BaseField c) ~ n) => Iso (ByteString n c) (FieldElement c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.ByteString

Methods

from :: ByteString n c -> FieldElement c Source #

(Symbolic c, KnownNat n, KnownRegisterSize r) => Iso (ByteString n c) (UInt n r c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.UInt

Methods

from :: ByteString n c -> UInt n r c Source #

(Symbolic c, KnownRegisterSize r, NumberOfBits (BaseField c) ~ n) => Iso (UInt n r c) (FieldElement c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.UInt

Methods

from :: UInt n r c -> FieldElement c Source #

(Symbolic c, KnownNat n, KnownRegisterSize r) => Iso (UInt n r c) (ByteString n c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.UInt

Methods

from :: UInt n r c -> ByteString n c Source #

class Resize a b where Source #

Describes types that can increase or shrink their capacity by adding zero bits to the beginning (i.e. before the higher register) or removing higher bits.

Methods

resize :: a -> b Source #

Instances

Instances details
(Symbolic c, KnownNat k, KnownNat n) => Resize (ByteString k c) (ByteString n c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.ByteString

Methods

resize :: ByteString k c -> ByteString n c Source #

(Symbolic c, KnownNat n, KnownNat k, KnownRegisterSize r) => Resize (UInt n r c) (UInt k r c) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.UInt

Methods

resize :: UInt n r c -> UInt k r c Source #

toBits :: (MonadCircuit v a w m, Arithmetic a) => [v] -> Natural -> Natural -> m [v] Source #

Convert an ArithmeticCircuit to bits and return their corresponding variables.

fromBits :: Natural -> Natural -> forall v w m. MonadCircuit v a w m => [v] -> m [v] Source #

The inverse of toBits.

data RegisterSize Source #

Constructors

Auto 
Fixed Natural 

Instances

Instances details
Eq RegisterSize Source # 
Instance details

Defined in ZkFold.Symbolic.Data.Combinators

class KnownRegisterSize (r :: RegisterSize) where Source #

Instances

Instances details
KnownRegisterSize 'Auto Source # 
Instance details

Defined in ZkFold.Symbolic.Data.Combinators

KnownNat n => KnownRegisterSize ('Fixed n) Source # 
Instance details

Defined in ZkFold.Symbolic.Data.Combinators

type Ceil a b = Div ((a + b) - 1) b Source #

type family GetRegisterSize (a :: Type) (bits :: Natural) (r :: RegisterSize) :: Natural where ... Source #

Equations

GetRegisterSize a bits (Fixed rs) = rs 
GetRegisterSize a bits Auto = Ceil bits (NumberOfRegisters a bits Auto) 

type family NumberOfRegisters (a :: Type) (bits :: Natural) (r :: RegisterSize) :: Natural where ... Source #

Equations

NumberOfRegisters a bits (Fixed rs) = If (Mod bits rs >? 0) (Div bits rs + 1) (Div bits rs) 
NumberOfRegisters a bits Auto = NumberOfRegisters' a bits (ListRange 1 50) 

type family NumberOfRegisters' (a :: Type) (bits :: Natural) (c :: [Natural]) :: Natural where ... Source #

Equations

NumberOfRegisters' a bits '[] = 0 
NumberOfRegisters' a bits (x ': xs) = OrdCond (CmpNat bits (x * MaxRegisterSize a x)) x x (NumberOfRegisters' a bits xs) 

type family BitLimit (a :: Type) :: Natural where ... Source #

Equations

BitLimit a = Log2 (Order a) 

type family MaxAdded (regCount :: Natural) :: Natural where ... Source #

Equations

MaxAdded regCount = OrdCond (CmpNat regCount (2 ^ Log2 regCount)) (TypeError (Text "Impossible")) (Log2 regCount) (1 + Log2 regCount) 

type family MaxRegisterSize (a :: Type) (regCount :: Natural) :: Natural where ... Source #

Equations

MaxRegisterSize a regCount = Div (BitLimit a - MaxAdded regCount) 2 

type family ListRange (from :: Natural) (to :: Natural) :: [Natural] where ... Source #

Equations

ListRange from from = '[from] 
ListRange from to = from ': ListRange (from + 1) to 

getNatural :: forall n. KnownNat n => Natural Source #

maxBitsPerFieldElement :: forall p. Finite p => Natural Source #

The maximum number of bits a Field element can encode.

maxBitsPerRegister :: forall p n. (Finite p, KnownNat n) => Natural Source #

The maximum number of bits it makes sense to encode in a register. That is, if the field elements can encode more bits than required, choose the smaller number.

highRegisterBits :: forall p n. (Finite p, KnownNat n) => Natural Source #

The number of bits remaining for the higher register assuming that all smaller registers have the same optimal number of bits.

minNumberOfRegisters :: forall p n. (Finite p, KnownNat n) => Natural Source #

The lowest possible number of registers to encode n bits using Field elements from p assuming that each register storest the largest possible number of bits.

expansion :: (MonadCircuit i a w m, Arithmetic a) => Natural -> i -> m [i] Source #

expansion n k computes a binary expansion of k if it fits in n bits.

expansionW :: forall r i a w m. (KnownNat r, MonadCircuit i a w m, Arithmetic a) => Natural -> i -> m [i] Source #

bitsOf :: (MonadCircuit i a w m, Arithmetic a) => Natural -> i -> m [i] Source #

bitsOf n k creates n bits and sets their witnesses equal to n smaller bits of k.

wordsOf :: forall r i a w m. (KnownNat r, MonadCircuit i a w m, Arithmetic a) => Natural -> i -> m [i] Source #

wordsOf n k creates n r-bit words and sets their witnesses equal to n smaller words of k.

hornerW :: forall r i a w m. (KnownNat r, MonadCircuit i a w m) => [i] -> m i Source #

horner [b0,...,bn] computes the sum b0 + (2^r) b1 + ... + 2^rn bn using Horner's scheme.

horner :: MonadCircuit i a w m => [i] -> m i Source #

horner [b0,...,bn] computes the sum b0 + 2 b1 + ... + 2^n bn using Horner's scheme.

splitExpansion :: (MonadCircuit i a w m, Arithmetic a) => Natural -> Natural -> i -> m (i, i) Source #

splitExpansion n1 n2 k computes two values (l, h) such that k = 2^n1 h + l, l fits in n1 bits and h fits in n2 bits (if such values exist).

runInvert :: (MonadCircuit i a w m, Representable f, Traversable f) => f i -> m (f i, f i) Source #

isZero :: (MonadCircuit i a w m, Representable f, Traversable f) => f i -> m (f i) Source #