LeftModule Integer Int Source # | |
|
LeftModule Integer Int8 Source # | |
|
LeftModule Integer Int16 Source # | |
|
LeftModule Integer Int32 Source # | |
|
LeftModule Integer Int64 Source # | |
|
LeftModule Integer Integer Source # | |
|
LeftModule Integer Word Source # | |
|
LeftModule Integer Word8 Source # | |
|
LeftModule Integer Word16 Source # | |
|
LeftModule Integer Word32 Source # | |
|
LeftModule Integer Word64 Source # | |
|
LeftModule Integer Euclidean Source # | |
|
LeftModule Natural Bool Source # | |
|
LeftModule Natural Int Source # | |
|
LeftModule Natural Int8 Source # | |
|
LeftModule Natural Int16 Source # | |
|
LeftModule Natural Int32 Source # | |
|
LeftModule Natural Int64 Source # | |
|
LeftModule Natural Integer Source # | |
|
LeftModule Natural Natural Source # | |
|
LeftModule Natural Word Source # | |
|
LeftModule Natural Word8 Source # | |
|
LeftModule Natural Word16 Source # | |
|
LeftModule Natural Word32 Source # | |
|
LeftModule Natural Word64 Source # | |
|
LeftModule Natural Euclidean Source # | |
|
Additive m => LeftModule () m Source # | |
|
Semiring r => LeftModule r () Source # | |
|
Group r => LeftModule Integer (ZeroRng r) Source # | |
|
(Abelian r, Group r) => LeftModule Integer (RngRing r) Source # | |
|
Division r => LeftModule Integer (Log r) Source # | |
|
GCDDomain d => LeftModule Integer (Fraction d) Source # | |
|
Monoidal r => LeftModule Natural (ZeroRng r) Source # | |
|
(Abelian r, Monoidal r) => LeftModule Natural (RngRing r) Source # | |
|
Unital r => LeftModule Natural (Log r) Source # | |
|
LeftModule Natural (BasisCoblade m) Source # | |
|
GCDDomain d => LeftModule Natural (Fraction d) Source # | |
|
RightModule r s => LeftModule r (Opposite s) Source # | |
|
LeftModule r m => LeftModule r (End m) Source # | |
|
LeftModule r s => LeftModule r (Trig s) Source # | |
|
LeftModule r s => LeftModule r (Quaternion' s) Source # | |
|
LeftModule r s => LeftModule r (Hyper s) Source # | |
|
LeftModule r s => LeftModule r (Dual' s) Source # | |
|
LeftModule r s => LeftModule r (Quaternion s) Source # | |
|
LeftModule r s => LeftModule r (Hyper' s) Source # | |
|
LeftModule r s => LeftModule r (Dual s) Source # | |
|
LeftModule r s => LeftModule r (Complex s) Source # | |
|
(LeftModule r a, LeftModule r b) => LeftModule r (a, b) Source # | |
|
LeftModule r m => LeftModule r (e -> m) Source # | |
|
LeftModule r s => LeftModule r (Covector s m) Source # | |
|
(LeftModule r a, LeftModule r b, LeftModule r c) => LeftModule r (a, b, c) Source # | |
|
LeftModule r s => LeftModule r (Map s b m) Source # | |
|
(LeftModule r a, LeftModule r b, LeftModule r c, LeftModule r d) => LeftModule r (a, b, c, d) Source # | |
Methods (.*) :: r -> (a, b, c, d) -> (a, b, c, d) Source # |
(LeftModule r a, LeftModule r b, LeftModule r c, LeftModule r d, LeftModule r e) => LeftModule r (a, b, c, d, e) Source # | |
Methods (.*) :: r -> (a, b, c, d, e) -> (a, b, c, d, e) Source # |
Rng s => LeftModule (RngRing s) (RngRing s) Source # | |
|
Semiring r => LeftModule (Opposite r) (Opposite r) Source # | |
|
(Monoidal m, Abelian m) => LeftModule (End m) (End m) Source # | |
|
(Commutative r, Rng r) => LeftModule (Trig r) (Trig r) Source # | |
|
(TriviallyInvolutive r, Rng r) => LeftModule (Quaternion' r) (Quaternion' r) Source # | |
|
(Commutative r, Semiring r) => LeftModule (Hyper r) (Hyper r) Source # | |
|
(Commutative r, Rng r) => LeftModule (Dual' r) (Dual' r) Source # | |
|
(TriviallyInvolutive r, Rng r) => LeftModule (Quaternion r) (Quaternion r) Source # | |
|
(Commutative r, Semiring r) => LeftModule (Hyper' r) (Hyper' r) Source # | |
|
(Commutative r, Rng r) => LeftModule (Dual r) (Dual r) Source # | |
|
(Commutative r, Rng r) => LeftModule (Complex r) (Complex r) Source # | |
|
Coalgebra r m => LeftModule (Covector r m) (Covector r m) Source # | |
|
Coalgebra r m => LeftModule (Map r b m) (Map r b m) Source # | |
|